use KVM_UPSTREAM for ppc.
[qemu-kvm/fedora.git] / gdbstub.c
bloba23e916a5cff98b42003b59ab47904697e6a65a3
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
37 #include "qemu-kvm.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
44 enum {
45 GDB_SIGNAL_0 = 0,
46 GDB_SIGNAL_INT = 2,
47 GDB_SIGNAL_TRAP = 5,
48 GDB_SIGNAL_UNKNOWN = 143
51 #ifdef CONFIG_USER_ONLY
53 /* Map target signal numbers to GDB protocol signal numbers and vice
54 * versa. For user emulation's currently supported systems, we can
55 * assume most signals are defined.
58 static int gdb_signal_table[] = {
60 TARGET_SIGHUP,
61 TARGET_SIGINT,
62 TARGET_SIGQUIT,
63 TARGET_SIGILL,
64 TARGET_SIGTRAP,
65 TARGET_SIGABRT,
66 -1, /* SIGEMT */
67 TARGET_SIGFPE,
68 TARGET_SIGKILL,
69 TARGET_SIGBUS,
70 TARGET_SIGSEGV,
71 TARGET_SIGSYS,
72 TARGET_SIGPIPE,
73 TARGET_SIGALRM,
74 TARGET_SIGTERM,
75 TARGET_SIGURG,
76 TARGET_SIGSTOP,
77 TARGET_SIGTSTP,
78 TARGET_SIGCONT,
79 TARGET_SIGCHLD,
80 TARGET_SIGTTIN,
81 TARGET_SIGTTOU,
82 TARGET_SIGIO,
83 TARGET_SIGXCPU,
84 TARGET_SIGXFSZ,
85 TARGET_SIGVTALRM,
86 TARGET_SIGPROF,
87 TARGET_SIGWINCH,
88 -1, /* SIGLOST */
89 TARGET_SIGUSR1,
90 TARGET_SIGUSR2,
91 #ifdef TARGET_SIGPWR
92 TARGET_SIGPWR,
93 #else
94 -1,
95 #endif
96 -1, /* SIGPOLL */
97 -1,
98 -1,
99 -1,
108 #ifdef __SIGRTMIN
109 __SIGRTMIN + 1,
110 __SIGRTMIN + 2,
111 __SIGRTMIN + 3,
112 __SIGRTMIN + 4,
113 __SIGRTMIN + 5,
114 __SIGRTMIN + 6,
115 __SIGRTMIN + 7,
116 __SIGRTMIN + 8,
117 __SIGRTMIN + 9,
118 __SIGRTMIN + 10,
119 __SIGRTMIN + 11,
120 __SIGRTMIN + 12,
121 __SIGRTMIN + 13,
122 __SIGRTMIN + 14,
123 __SIGRTMIN + 15,
124 __SIGRTMIN + 16,
125 __SIGRTMIN + 17,
126 __SIGRTMIN + 18,
127 __SIGRTMIN + 19,
128 __SIGRTMIN + 20,
129 __SIGRTMIN + 21,
130 __SIGRTMIN + 22,
131 __SIGRTMIN + 23,
132 __SIGRTMIN + 24,
133 __SIGRTMIN + 25,
134 __SIGRTMIN + 26,
135 __SIGRTMIN + 27,
136 __SIGRTMIN + 28,
137 __SIGRTMIN + 29,
138 __SIGRTMIN + 30,
139 __SIGRTMIN + 31,
140 -1, /* SIGCANCEL */
141 __SIGRTMIN,
142 __SIGRTMIN + 32,
143 __SIGRTMIN + 33,
144 __SIGRTMIN + 34,
145 __SIGRTMIN + 35,
146 __SIGRTMIN + 36,
147 __SIGRTMIN + 37,
148 __SIGRTMIN + 38,
149 __SIGRTMIN + 39,
150 __SIGRTMIN + 40,
151 __SIGRTMIN + 41,
152 __SIGRTMIN + 42,
153 __SIGRTMIN + 43,
154 __SIGRTMIN + 44,
155 __SIGRTMIN + 45,
156 __SIGRTMIN + 46,
157 __SIGRTMIN + 47,
158 __SIGRTMIN + 48,
159 __SIGRTMIN + 49,
160 __SIGRTMIN + 50,
161 __SIGRTMIN + 51,
162 __SIGRTMIN + 52,
163 __SIGRTMIN + 53,
164 __SIGRTMIN + 54,
165 __SIGRTMIN + 55,
166 __SIGRTMIN + 56,
167 __SIGRTMIN + 57,
168 __SIGRTMIN + 58,
169 __SIGRTMIN + 59,
170 __SIGRTMIN + 60,
171 __SIGRTMIN + 61,
172 __SIGRTMIN + 62,
173 __SIGRTMIN + 63,
174 __SIGRTMIN + 64,
175 __SIGRTMIN + 65,
176 __SIGRTMIN + 66,
177 __SIGRTMIN + 67,
178 __SIGRTMIN + 68,
179 __SIGRTMIN + 69,
180 __SIGRTMIN + 70,
181 __SIGRTMIN + 71,
182 __SIGRTMIN + 72,
183 __SIGRTMIN + 73,
184 __SIGRTMIN + 74,
185 __SIGRTMIN + 75,
186 __SIGRTMIN + 76,
187 __SIGRTMIN + 77,
188 __SIGRTMIN + 78,
189 __SIGRTMIN + 79,
190 __SIGRTMIN + 80,
191 __SIGRTMIN + 81,
192 __SIGRTMIN + 82,
193 __SIGRTMIN + 83,
194 __SIGRTMIN + 84,
195 __SIGRTMIN + 85,
196 __SIGRTMIN + 86,
197 __SIGRTMIN + 87,
198 __SIGRTMIN + 88,
199 __SIGRTMIN + 89,
200 __SIGRTMIN + 90,
201 __SIGRTMIN + 91,
202 __SIGRTMIN + 92,
203 __SIGRTMIN + 93,
204 __SIGRTMIN + 94,
205 __SIGRTMIN + 95,
206 -1, /* SIGINFO */
207 -1, /* UNKNOWN */
208 -1, /* DEFAULT */
215 #endif
217 #else
218 /* In system mode we only need SIGINT and SIGTRAP; other signals
219 are not yet supported. */
221 enum {
222 TARGET_SIGINT = 2,
223 TARGET_SIGTRAP = 5
226 static int gdb_signal_table[] = {
229 TARGET_SIGINT,
232 TARGET_SIGTRAP
234 #endif
236 #ifdef CONFIG_USER_ONLY
237 static int target_signal_to_gdb (int sig)
239 int i;
240 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
241 if (gdb_signal_table[i] == sig)
242 return i;
243 return GDB_SIGNAL_UNKNOWN;
245 #endif
247 static int gdb_signal_to_target (int sig)
249 if (sig < ARRAY_SIZE (gdb_signal_table))
250 return gdb_signal_table[sig];
251 else
252 return -1;
255 //#define DEBUG_GDB
257 typedef struct GDBRegisterState {
258 int base_reg;
259 int num_regs;
260 gdb_reg_cb get_reg;
261 gdb_reg_cb set_reg;
262 const char *xml;
263 struct GDBRegisterState *next;
264 } GDBRegisterState;
266 enum RSState {
267 RS_IDLE,
268 RS_GETLINE,
269 RS_CHKSUM1,
270 RS_CHKSUM2,
271 RS_SYSCALL,
273 typedef struct GDBState {
274 CPUState *c_cpu; /* current CPU for step/continue ops */
275 CPUState *g_cpu; /* current CPU for other ops */
276 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
277 enum RSState state; /* parsing state */
278 char line_buf[MAX_PACKET_LENGTH];
279 int line_buf_index;
280 int line_csum;
281 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
282 int last_packet_len;
283 int signal;
284 #ifdef CONFIG_USER_ONLY
285 int fd;
286 int running_state;
287 #else
288 CharDriverState *chr;
289 #endif
290 } GDBState;
292 /* By default use no IRQs and no timers while single stepping so as to
293 * make single stepping like an ICE HW step.
295 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
297 static GDBState *gdbserver_state;
299 /* This is an ugly hack to cope with both new and old gdb.
300 If gdb sends qXfer:features:read then assume we're talking to a newish
301 gdb that understands target descriptions. */
302 static int gdb_has_xml;
304 #ifdef CONFIG_USER_ONLY
305 /* XXX: This is not thread safe. Do we care? */
306 static int gdbserver_fd = -1;
308 static int get_char(GDBState *s)
310 uint8_t ch;
311 int ret;
313 for(;;) {
314 ret = recv(s->fd, &ch, 1, 0);
315 if (ret < 0) {
316 if (errno == ECONNRESET)
317 s->fd = -1;
318 if (errno != EINTR && errno != EAGAIN)
319 return -1;
320 } else if (ret == 0) {
321 close(s->fd);
322 s->fd = -1;
323 return -1;
324 } else {
325 break;
328 return ch;
330 #endif
332 static gdb_syscall_complete_cb gdb_current_syscall_cb;
334 enum {
335 GDB_SYS_UNKNOWN,
336 GDB_SYS_ENABLED,
337 GDB_SYS_DISABLED,
338 } gdb_syscall_mode;
340 /* If gdb is connected when the first semihosting syscall occurs then use
341 remote gdb syscalls. Otherwise use native file IO. */
342 int use_gdb_syscalls(void)
344 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
345 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
346 : GDB_SYS_DISABLED);
348 return gdb_syscall_mode == GDB_SYS_ENABLED;
351 /* Resume execution. */
352 static inline void gdb_continue(GDBState *s)
354 #ifdef CONFIG_USER_ONLY
355 s->running_state = 1;
356 #else
357 vm_start();
358 #endif
361 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
363 #ifdef CONFIG_USER_ONLY
364 int ret;
366 while (len > 0) {
367 ret = send(s->fd, buf, len, 0);
368 if (ret < 0) {
369 if (errno != EINTR && errno != EAGAIN)
370 return;
371 } else {
372 buf += ret;
373 len -= ret;
376 #else
377 qemu_chr_write(s->chr, buf, len);
378 #endif
381 static inline int fromhex(int v)
383 if (v >= '0' && v <= '9')
384 return v - '0';
385 else if (v >= 'A' && v <= 'F')
386 return v - 'A' + 10;
387 else if (v >= 'a' && v <= 'f')
388 return v - 'a' + 10;
389 else
390 return 0;
393 static inline int tohex(int v)
395 if (v < 10)
396 return v + '0';
397 else
398 return v - 10 + 'a';
401 static void memtohex(char *buf, const uint8_t *mem, int len)
403 int i, c;
404 char *q;
405 q = buf;
406 for(i = 0; i < len; i++) {
407 c = mem[i];
408 *q++ = tohex(c >> 4);
409 *q++ = tohex(c & 0xf);
411 *q = '\0';
414 static void hextomem(uint8_t *mem, const char *buf, int len)
416 int i;
418 for(i = 0; i < len; i++) {
419 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
420 buf += 2;
424 /* return -1 if error, 0 if OK */
425 static int put_packet_binary(GDBState *s, const char *buf, int len)
427 int csum, i;
428 uint8_t *p;
430 for(;;) {
431 p = s->last_packet;
432 *(p++) = '$';
433 memcpy(p, buf, len);
434 p += len;
435 csum = 0;
436 for(i = 0; i < len; i++) {
437 csum += buf[i];
439 *(p++) = '#';
440 *(p++) = tohex((csum >> 4) & 0xf);
441 *(p++) = tohex((csum) & 0xf);
443 s->last_packet_len = p - s->last_packet;
444 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
446 #ifdef CONFIG_USER_ONLY
447 i = get_char(s);
448 if (i < 0)
449 return -1;
450 if (i == '+')
451 break;
452 #else
453 break;
454 #endif
456 return 0;
459 /* return -1 if error, 0 if OK */
460 static int put_packet(GDBState *s, const char *buf)
462 #ifdef DEBUG_GDB
463 printf("reply='%s'\n", buf);
464 #endif
466 return put_packet_binary(s, buf, strlen(buf));
469 /* The GDB remote protocol transfers values in target byte order. This means
470 we can use the raw memory access routines to access the value buffer.
471 Conveniently, these also handle the case where the buffer is mis-aligned.
473 #define GET_REG8(val) do { \
474 stb_p(mem_buf, val); \
475 return 1; \
476 } while(0)
477 #define GET_REG16(val) do { \
478 stw_p(mem_buf, val); \
479 return 2; \
480 } while(0)
481 #define GET_REG32(val) do { \
482 stl_p(mem_buf, val); \
483 return 4; \
484 } while(0)
485 #define GET_REG64(val) do { \
486 stq_p(mem_buf, val); \
487 return 8; \
488 } while(0)
490 #if TARGET_LONG_BITS == 64
491 #define GET_REGL(val) GET_REG64(val)
492 #define ldtul_p(addr) ldq_p(addr)
493 #else
494 #define GET_REGL(val) GET_REG32(val)
495 #define ldtul_p(addr) ldl_p(addr)
496 #endif
498 #if defined(TARGET_I386)
500 #ifdef TARGET_X86_64
501 static const int gpr_map[16] = {
502 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
503 8, 9, 10, 11, 12, 13, 14, 15
505 #else
506 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
507 #endif
509 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
511 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
513 if (n < CPU_NB_REGS) {
514 GET_REGL(env->regs[gpr_map[n]]);
515 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
516 /* FIXME: byteswap float values. */
517 #ifdef USE_X86LDOUBLE
518 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
519 #else
520 memset(mem_buf, 0, 10);
521 #endif
522 return 10;
523 } else if (n >= CPU_NB_REGS + 24) {
524 n -= CPU_NB_REGS + 24;
525 if (n < CPU_NB_REGS) {
526 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
527 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
528 return 16;
529 } else if (n == CPU_NB_REGS) {
530 GET_REG32(env->mxcsr);
532 } else {
533 n -= CPU_NB_REGS;
534 switch (n) {
535 case 0: GET_REGL(env->eip);
536 case 1: GET_REG32(env->eflags);
537 case 2: GET_REG32(env->segs[R_CS].selector);
538 case 3: GET_REG32(env->segs[R_SS].selector);
539 case 4: GET_REG32(env->segs[R_DS].selector);
540 case 5: GET_REG32(env->segs[R_ES].selector);
541 case 6: GET_REG32(env->segs[R_FS].selector);
542 case 7: GET_REG32(env->segs[R_GS].selector);
543 /* 8...15 x87 regs. */
544 case 16: GET_REG32(env->fpuc);
545 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
546 case 18: GET_REG32(0); /* ftag */
547 case 19: GET_REG32(0); /* fiseg */
548 case 20: GET_REG32(0); /* fioff */
549 case 21: GET_REG32(0); /* foseg */
550 case 22: GET_REG32(0); /* fooff */
551 case 23: GET_REG32(0); /* fop */
552 /* 24+ xmm regs. */
555 return 0;
558 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
560 uint32_t tmp;
562 if (i < CPU_NB_REGS) {
563 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
564 return sizeof(target_ulong);
565 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
566 i -= CPU_NB_REGS + 8;
567 #ifdef USE_X86LDOUBLE
568 memcpy(&env->fpregs[i], mem_buf, 10);
569 #endif
570 return 10;
571 } else if (i >= CPU_NB_REGS + 24) {
572 i -= CPU_NB_REGS + 24;
573 if (i < CPU_NB_REGS) {
574 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
575 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
576 return 16;
577 } else if (i == CPU_NB_REGS) {
578 env->mxcsr = ldl_p(mem_buf);
579 return 4;
581 } else {
582 i -= CPU_NB_REGS;
583 switch (i) {
584 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
585 case 1: env->eflags = ldl_p(mem_buf); return 4;
586 #if defined(CONFIG_USER_ONLY)
587 #define LOAD_SEG(index, sreg)\
588 tmp = ldl_p(mem_buf);\
589 if (tmp != env->segs[sreg].selector)\
590 cpu_x86_load_seg(env, sreg, tmp);
591 #else
592 /* FIXME: Honor segment registers. Needs to avoid raising an exception
593 when the selector is invalid. */
594 #define LOAD_SEG(index, sreg) do {} while(0)
595 #endif
596 case 2: LOAD_SEG(10, R_CS); return 4;
597 case 3: LOAD_SEG(11, R_SS); return 4;
598 case 4: LOAD_SEG(12, R_DS); return 4;
599 case 5: LOAD_SEG(13, R_ES); return 4;
600 case 6: LOAD_SEG(14, R_FS); return 4;
601 case 7: LOAD_SEG(15, R_GS); return 4;
602 /* 8...15 x87 regs. */
603 case 16: env->fpuc = ldl_p(mem_buf); return 4;
604 case 17:
605 tmp = ldl_p(mem_buf);
606 env->fpstt = (tmp >> 11) & 7;
607 env->fpus = tmp & ~0x3800;
608 return 4;
609 case 18: /* ftag */ return 4;
610 case 19: /* fiseg */ return 4;
611 case 20: /* fioff */ return 4;
612 case 21: /* foseg */ return 4;
613 case 22: /* fooff */ return 4;
614 case 23: /* fop */ return 4;
615 /* 24+ xmm regs. */
618 /* Unrecognised register. */
619 return 0;
622 #elif defined (TARGET_PPC)
624 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
625 expects whatever the target description contains. Due to a
626 historical mishap the FP registers appear in between core integer
627 regs and PC, MSR, CR, and so forth. We hack round this by giving the
628 FP regs zero size when talking to a newer gdb. */
629 #define NUM_CORE_REGS 71
630 #if defined (TARGET_PPC64)
631 #define GDB_CORE_XML "power64-core.xml"
632 #else
633 #define GDB_CORE_XML "power-core.xml"
634 #endif
636 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
638 if (n < 32) {
639 /* gprs */
640 GET_REGL(env->gpr[n]);
641 } else if (n < 64) {
642 /* fprs */
643 if (gdb_has_xml)
644 return 0;
645 stfq_p(mem_buf, env->fpr[n-32]);
646 return 8;
647 } else {
648 switch (n) {
649 case 64: GET_REGL(env->nip);
650 case 65: GET_REGL(env->msr);
651 case 66:
653 uint32_t cr = 0;
654 int i;
655 for (i = 0; i < 8; i++)
656 cr |= env->crf[i] << (32 - ((i + 1) * 4));
657 GET_REG32(cr);
659 case 67: GET_REGL(env->lr);
660 case 68: GET_REGL(env->ctr);
661 case 69: GET_REGL(env->xer);
662 case 70:
664 if (gdb_has_xml)
665 return 0;
666 GET_REG32(0); /* fpscr */
670 return 0;
673 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
675 if (n < 32) {
676 /* gprs */
677 env->gpr[n] = ldtul_p(mem_buf);
678 return sizeof(target_ulong);
679 } else if (n < 64) {
680 /* fprs */
681 if (gdb_has_xml)
682 return 0;
683 env->fpr[n-32] = ldfq_p(mem_buf);
684 return 8;
685 } else {
686 switch (n) {
687 case 64:
688 env->nip = ldtul_p(mem_buf);
689 return sizeof(target_ulong);
690 case 65:
691 ppc_store_msr(env, ldtul_p(mem_buf));
692 return sizeof(target_ulong);
693 case 66:
695 uint32_t cr = ldl_p(mem_buf);
696 int i;
697 for (i = 0; i < 8; i++)
698 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
699 return 4;
701 case 67:
702 env->lr = ldtul_p(mem_buf);
703 return sizeof(target_ulong);
704 case 68:
705 env->ctr = ldtul_p(mem_buf);
706 return sizeof(target_ulong);
707 case 69:
708 env->xer = ldtul_p(mem_buf);
709 return sizeof(target_ulong);
710 case 70:
711 /* fpscr */
712 if (gdb_has_xml)
713 return 0;
714 return 4;
717 return 0;
720 #elif defined (TARGET_SPARC)
722 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
723 #define NUM_CORE_REGS 86
724 #else
725 #define NUM_CORE_REGS 72
726 #endif
728 #ifdef TARGET_ABI32
729 #define GET_REGA(val) GET_REG32(val)
730 #else
731 #define GET_REGA(val) GET_REGL(val)
732 #endif
734 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
736 if (n < 8) {
737 /* g0..g7 */
738 GET_REGA(env->gregs[n]);
740 if (n < 32) {
741 /* register window */
742 GET_REGA(env->regwptr[n - 8]);
744 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
745 if (n < 64) {
746 /* fprs */
747 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
749 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
750 switch (n) {
751 case 64: GET_REGA(env->y);
752 case 65: GET_REGA(GET_PSR(env));
753 case 66: GET_REGA(env->wim);
754 case 67: GET_REGA(env->tbr);
755 case 68: GET_REGA(env->pc);
756 case 69: GET_REGA(env->npc);
757 case 70: GET_REGA(env->fsr);
758 case 71: GET_REGA(0); /* csr */
759 default: GET_REGA(0);
761 #else
762 if (n < 64) {
763 /* f0-f31 */
764 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
766 if (n < 80) {
767 /* f32-f62 (double width, even numbers only) */
768 uint64_t val;
770 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
771 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
772 GET_REG64(val);
774 switch (n) {
775 case 80: GET_REGL(env->pc);
776 case 81: GET_REGL(env->npc);
777 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
778 ((env->asi & 0xff) << 24) |
779 ((env->pstate & 0xfff) << 8) |
780 GET_CWP64(env));
781 case 83: GET_REGL(env->fsr);
782 case 84: GET_REGL(env->fprs);
783 case 85: GET_REGL(env->y);
785 #endif
786 return 0;
789 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
791 #if defined(TARGET_ABI32)
792 abi_ulong tmp;
794 tmp = ldl_p(mem_buf);
795 #else
796 target_ulong tmp;
798 tmp = ldtul_p(mem_buf);
799 #endif
801 if (n < 8) {
802 /* g0..g7 */
803 env->gregs[n] = tmp;
804 } else if (n < 32) {
805 /* register window */
806 env->regwptr[n - 8] = tmp;
808 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
809 else if (n < 64) {
810 /* fprs */
811 *((uint32_t *)&env->fpr[n - 32]) = tmp;
812 } else {
813 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
814 switch (n) {
815 case 64: env->y = tmp; break;
816 case 65: PUT_PSR(env, tmp); break;
817 case 66: env->wim = tmp; break;
818 case 67: env->tbr = tmp; break;
819 case 68: env->pc = tmp; break;
820 case 69: env->npc = tmp; break;
821 case 70: env->fsr = tmp; break;
822 default: return 0;
825 return 4;
826 #else
827 else if (n < 64) {
828 /* f0-f31 */
829 env->fpr[n] = ldfl_p(mem_buf);
830 return 4;
831 } else if (n < 80) {
832 /* f32-f62 (double width, even numbers only) */
833 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
834 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
835 } else {
836 switch (n) {
837 case 80: env->pc = tmp; break;
838 case 81: env->npc = tmp; break;
839 case 82:
840 PUT_CCR(env, tmp >> 32);
841 env->asi = (tmp >> 24) & 0xff;
842 env->pstate = (tmp >> 8) & 0xfff;
843 PUT_CWP64(env, tmp & 0xff);
844 break;
845 case 83: env->fsr = tmp; break;
846 case 84: env->fprs = tmp; break;
847 case 85: env->y = tmp; break;
848 default: return 0;
851 return 8;
852 #endif
854 #elif defined (TARGET_ARM)
856 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
857 whatever the target description contains. Due to a historical mishap
858 the FPA registers appear in between core integer regs and the CPSR.
859 We hack round this by giving the FPA regs zero size when talking to a
860 newer gdb. */
861 #define NUM_CORE_REGS 26
862 #define GDB_CORE_XML "arm-core.xml"
864 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
866 if (n < 16) {
867 /* Core integer register. */
868 GET_REG32(env->regs[n]);
870 if (n < 24) {
871 /* FPA registers. */
872 if (gdb_has_xml)
873 return 0;
874 memset(mem_buf, 0, 12);
875 return 12;
877 switch (n) {
878 case 24:
879 /* FPA status register. */
880 if (gdb_has_xml)
881 return 0;
882 GET_REG32(0);
883 case 25:
884 /* CPSR */
885 GET_REG32(cpsr_read(env));
887 /* Unknown register. */
888 return 0;
891 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
893 uint32_t tmp;
895 tmp = ldl_p(mem_buf);
897 /* Mask out low bit of PC to workaround gdb bugs. This will probably
898 cause problems if we ever implement the Jazelle DBX extensions. */
899 if (n == 15)
900 tmp &= ~1;
902 if (n < 16) {
903 /* Core integer register. */
904 env->regs[n] = tmp;
905 return 4;
907 if (n < 24) { /* 16-23 */
908 /* FPA registers (ignored). */
909 if (gdb_has_xml)
910 return 0;
911 return 12;
913 switch (n) {
914 case 24:
915 /* FPA status register (ignored). */
916 if (gdb_has_xml)
917 return 0;
918 return 4;
919 case 25:
920 /* CPSR */
921 cpsr_write (env, tmp, 0xffffffff);
922 return 4;
924 /* Unknown register. */
925 return 0;
928 #elif defined (TARGET_M68K)
930 #define NUM_CORE_REGS 18
932 #define GDB_CORE_XML "cf-core.xml"
934 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
936 if (n < 8) {
937 /* D0-D7 */
938 GET_REG32(env->dregs[n]);
939 } else if (n < 16) {
940 /* A0-A7 */
941 GET_REG32(env->aregs[n - 8]);
942 } else {
943 switch (n) {
944 case 16: GET_REG32(env->sr);
945 case 17: GET_REG32(env->pc);
948 /* FP registers not included here because they vary between
949 ColdFire and m68k. Use XML bits for these. */
950 return 0;
953 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
955 uint32_t tmp;
957 tmp = ldl_p(mem_buf);
959 if (n < 8) {
960 /* D0-D7 */
961 env->dregs[n] = tmp;
962 } else if (n < 8) {
963 /* A0-A7 */
964 env->aregs[n - 8] = tmp;
965 } else {
966 switch (n) {
967 case 16: env->sr = tmp; break;
968 case 17: env->pc = tmp; break;
969 default: return 0;
972 return 4;
974 #elif defined (TARGET_MIPS)
976 #define NUM_CORE_REGS 73
978 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
980 if (n < 32) {
981 GET_REGL(env->active_tc.gpr[n]);
983 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
984 if (n >= 38 && n < 70) {
985 if (env->CP0_Status & (1 << CP0St_FR))
986 GET_REGL(env->active_fpu.fpr[n - 38].d);
987 else
988 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
990 switch (n) {
991 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
992 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
995 switch (n) {
996 case 32: GET_REGL((int32_t)env->CP0_Status);
997 case 33: GET_REGL(env->active_tc.LO[0]);
998 case 34: GET_REGL(env->active_tc.HI[0]);
999 case 35: GET_REGL(env->CP0_BadVAddr);
1000 case 36: GET_REGL((int32_t)env->CP0_Cause);
1001 case 37: GET_REGL(env->active_tc.PC);
1002 case 72: GET_REGL(0); /* fp */
1003 case 89: GET_REGL((int32_t)env->CP0_PRid);
1005 if (n >= 73 && n <= 88) {
1006 /* 16 embedded regs. */
1007 GET_REGL(0);
1010 return 0;
1013 /* convert MIPS rounding mode in FCR31 to IEEE library */
1014 static unsigned int ieee_rm[] =
1016 float_round_nearest_even,
1017 float_round_to_zero,
1018 float_round_up,
1019 float_round_down
1021 #define RESTORE_ROUNDING_MODE \
1022 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1024 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1026 target_ulong tmp;
1028 tmp = ldtul_p(mem_buf);
1030 if (n < 32) {
1031 env->active_tc.gpr[n] = tmp;
1032 return sizeof(target_ulong);
1034 if (env->CP0_Config1 & (1 << CP0C1_FP)
1035 && n >= 38 && n < 73) {
1036 if (n < 70) {
1037 if (env->CP0_Status & (1 << CP0St_FR))
1038 env->active_fpu.fpr[n - 38].d = tmp;
1039 else
1040 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1042 switch (n) {
1043 case 70:
1044 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1045 /* set rounding mode */
1046 RESTORE_ROUNDING_MODE;
1047 #ifndef CONFIG_SOFTFLOAT
1048 /* no floating point exception for native float */
1049 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1050 #endif
1051 break;
1052 case 71: env->active_fpu.fcr0 = tmp; break;
1054 return sizeof(target_ulong);
1056 switch (n) {
1057 case 32: env->CP0_Status = tmp; break;
1058 case 33: env->active_tc.LO[0] = tmp; break;
1059 case 34: env->active_tc.HI[0] = tmp; break;
1060 case 35: env->CP0_BadVAddr = tmp; break;
1061 case 36: env->CP0_Cause = tmp; break;
1062 case 37: env->active_tc.PC = tmp; break;
1063 case 72: /* fp, ignored */ break;
1064 default:
1065 if (n > 89)
1066 return 0;
1067 /* Other registers are readonly. Ignore writes. */
1068 break;
1071 return sizeof(target_ulong);
1073 #elif defined (TARGET_SH4)
1075 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1076 /* FIXME: We should use XML for this. */
1078 #define NUM_CORE_REGS 59
1080 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1082 if (n < 8) {
1083 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1084 GET_REGL(env->gregs[n + 16]);
1085 } else {
1086 GET_REGL(env->gregs[n]);
1088 } else if (n < 16) {
1089 GET_REGL(env->gregs[n - 8]);
1090 } else if (n >= 25 && n < 41) {
1091 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1092 } else if (n >= 43 && n < 51) {
1093 GET_REGL(env->gregs[n - 43]);
1094 } else if (n >= 51 && n < 59) {
1095 GET_REGL(env->gregs[n - (51 - 16)]);
1097 switch (n) {
1098 case 16: GET_REGL(env->pc);
1099 case 17: GET_REGL(env->pr);
1100 case 18: GET_REGL(env->gbr);
1101 case 19: GET_REGL(env->vbr);
1102 case 20: GET_REGL(env->mach);
1103 case 21: GET_REGL(env->macl);
1104 case 22: GET_REGL(env->sr);
1105 case 23: GET_REGL(env->fpul);
1106 case 24: GET_REGL(env->fpscr);
1107 case 41: GET_REGL(env->ssr);
1108 case 42: GET_REGL(env->spc);
1111 return 0;
1114 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1116 uint32_t tmp;
1118 tmp = ldl_p(mem_buf);
1120 if (n < 8) {
1121 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1122 env->gregs[n + 16] = tmp;
1123 } else {
1124 env->gregs[n] = tmp;
1126 return 4;
1127 } else if (n < 16) {
1128 env->gregs[n - 8] = tmp;
1129 return 4;
1130 } else if (n >= 25 && n < 41) {
1131 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1132 } else if (n >= 43 && n < 51) {
1133 env->gregs[n - 43] = tmp;
1134 return 4;
1135 } else if (n >= 51 && n < 59) {
1136 env->gregs[n - (51 - 16)] = tmp;
1137 return 4;
1139 switch (n) {
1140 case 16: env->pc = tmp;
1141 case 17: env->pr = tmp;
1142 case 18: env->gbr = tmp;
1143 case 19: env->vbr = tmp;
1144 case 20: env->mach = tmp;
1145 case 21: env->macl = tmp;
1146 case 22: env->sr = tmp;
1147 case 23: env->fpul = tmp;
1148 case 24: env->fpscr = tmp;
1149 case 41: env->ssr = tmp;
1150 case 42: env->spc = tmp;
1151 default: return 0;
1154 return 4;
1156 #elif defined (TARGET_CRIS)
1158 #define NUM_CORE_REGS 49
1160 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1162 uint8_t srs;
1164 srs = env->pregs[PR_SRS];
1165 if (n < 16) {
1166 GET_REG32(env->regs[n]);
1169 if (n >= 21 && n < 32) {
1170 GET_REG32(env->pregs[n - 16]);
1172 if (n >= 33 && n < 49) {
1173 GET_REG32(env->sregs[srs][n - 33]);
1175 switch (n) {
1176 case 16: GET_REG8(env->pregs[0]);
1177 case 17: GET_REG8(env->pregs[1]);
1178 case 18: GET_REG32(env->pregs[2]);
1179 case 19: GET_REG8(srs);
1180 case 20: GET_REG16(env->pregs[4]);
1181 case 32: GET_REG32(env->pc);
1184 return 0;
1187 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1189 uint32_t tmp;
1191 if (n > 49)
1192 return 0;
1194 tmp = ldl_p(mem_buf);
1196 if (n < 16) {
1197 env->regs[n] = tmp;
1200 if (n >= 21 && n < 32) {
1201 env->pregs[n - 16] = tmp;
1204 /* FIXME: Should support function regs be writable? */
1205 switch (n) {
1206 case 16: return 1;
1207 case 17: return 1;
1208 case 18: env->pregs[PR_PID] = tmp; break;
1209 case 19: return 1;
1210 case 20: return 2;
1211 case 32: env->pc = tmp; break;
1214 return 4;
1216 #elif defined (TARGET_ALPHA)
1218 #define NUM_CORE_REGS 65
1220 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1222 if (n < 31) {
1223 GET_REGL(env->ir[n]);
1225 else if (n == 31) {
1226 GET_REGL(0);
1228 else if (n<63) {
1229 uint64_t val;
1231 val=*((uint64_t *)&env->fir[n-32]);
1232 GET_REGL(val);
1234 else if (n==63) {
1235 GET_REGL(env->fpcr);
1237 else if (n==64) {
1238 GET_REGL(env->pc);
1240 else {
1241 GET_REGL(0);
1244 return 0;
1247 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1249 target_ulong tmp;
1250 tmp = ldtul_p(mem_buf);
1252 if (n < 31) {
1253 env->ir[n] = tmp;
1256 if (n > 31 && n < 63) {
1257 env->fir[n - 32] = ldfl_p(mem_buf);
1260 if (n == 64 ) {
1261 env->pc=tmp;
1264 return 8;
1266 #else
1268 #define NUM_CORE_REGS 0
1270 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1272 return 0;
1275 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1277 return 0;
1280 #endif
1282 static int num_g_regs = NUM_CORE_REGS;
1284 #ifdef GDB_CORE_XML
1285 /* Encode data using the encoding for 'x' packets. */
1286 static int memtox(char *buf, const char *mem, int len)
1288 char *p = buf;
1289 char c;
1291 while (len--) {
1292 c = *(mem++);
1293 switch (c) {
1294 case '#': case '$': case '*': case '}':
1295 *(p++) = '}';
1296 *(p++) = c ^ 0x20;
1297 break;
1298 default:
1299 *(p++) = c;
1300 break;
1303 return p - buf;
1306 static const char *get_feature_xml(const char *p, const char **newp)
1308 extern const char *const xml_builtin[][2];
1309 size_t len;
1310 int i;
1311 const char *name;
1312 static char target_xml[1024];
1314 len = 0;
1315 while (p[len] && p[len] != ':')
1316 len++;
1317 *newp = p + len;
1319 name = NULL;
1320 if (strncmp(p, "target.xml", len) == 0) {
1321 /* Generate the XML description for this CPU. */
1322 if (!target_xml[0]) {
1323 GDBRegisterState *r;
1325 snprintf(target_xml, sizeof(target_xml),
1326 "<?xml version=\"1.0\"?>"
1327 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1328 "<target>"
1329 "<xi:include href=\"%s\"/>",
1330 GDB_CORE_XML);
1332 for (r = first_cpu->gdb_regs; r; r = r->next) {
1333 strcat(target_xml, "<xi:include href=\"");
1334 strcat(target_xml, r->xml);
1335 strcat(target_xml, "\"/>");
1337 strcat(target_xml, "</target>");
1339 return target_xml;
1341 for (i = 0; ; i++) {
1342 name = xml_builtin[i][0];
1343 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1344 break;
1346 return name ? xml_builtin[i][1] : NULL;
1348 #endif
1350 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1352 GDBRegisterState *r;
1354 if (reg < NUM_CORE_REGS)
1355 return cpu_gdb_read_register(env, mem_buf, reg);
1357 for (r = env->gdb_regs; r; r = r->next) {
1358 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1359 return r->get_reg(env, mem_buf, reg - r->base_reg);
1362 return 0;
1365 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1367 GDBRegisterState *r;
1369 if (reg < NUM_CORE_REGS)
1370 return cpu_gdb_write_register(env, mem_buf, reg);
1372 for (r = env->gdb_regs; r; r = r->next) {
1373 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1374 return r->set_reg(env, mem_buf, reg - r->base_reg);
1377 return 0;
1380 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1381 specifies the first register number and these registers are included in
1382 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1383 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1386 void gdb_register_coprocessor(CPUState * env,
1387 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1388 int num_regs, const char *xml, int g_pos)
1390 GDBRegisterState *s;
1391 GDBRegisterState **p;
1392 static int last_reg = NUM_CORE_REGS;
1394 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1395 s->base_reg = last_reg;
1396 s->num_regs = num_regs;
1397 s->get_reg = get_reg;
1398 s->set_reg = set_reg;
1399 s->xml = xml;
1400 p = &env->gdb_regs;
1401 while (*p) {
1402 /* Check for duplicates. */
1403 if (strcmp((*p)->xml, xml) == 0)
1404 return;
1405 p = &(*p)->next;
1407 /* Add to end of list. */
1408 last_reg += num_regs;
1409 *p = s;
1410 if (g_pos) {
1411 if (g_pos != s->base_reg) {
1412 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1413 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1414 } else {
1415 num_g_regs = last_reg;
1420 #ifndef CONFIG_USER_ONLY
1421 static const int xlat_gdb_type[] = {
1422 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1423 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1424 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1426 #endif
1428 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1430 CPUState *env;
1431 int err = 0;
1433 if (kvm_enabled())
1434 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1436 switch (type) {
1437 case GDB_BREAKPOINT_SW:
1438 case GDB_BREAKPOINT_HW:
1439 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1440 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1441 if (err)
1442 break;
1444 return err;
1445 #ifndef CONFIG_USER_ONLY
1446 case GDB_WATCHPOINT_WRITE:
1447 case GDB_WATCHPOINT_READ:
1448 case GDB_WATCHPOINT_ACCESS:
1449 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1450 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1451 NULL);
1452 if (err)
1453 break;
1455 return err;
1456 #endif
1457 default:
1458 return -ENOSYS;
1462 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1464 CPUState *env;
1465 int err = 0;
1467 if (kvm_enabled())
1468 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1470 switch (type) {
1471 case GDB_BREAKPOINT_SW:
1472 case GDB_BREAKPOINT_HW:
1473 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1474 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1475 if (err)
1476 break;
1478 return err;
1479 #ifndef CONFIG_USER_ONLY
1480 case GDB_WATCHPOINT_WRITE:
1481 case GDB_WATCHPOINT_READ:
1482 case GDB_WATCHPOINT_ACCESS:
1483 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1484 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1485 if (err)
1486 break;
1488 return err;
1489 #endif
1490 default:
1491 return -ENOSYS;
1495 static void gdb_breakpoint_remove_all(void)
1497 CPUState *env;
1499 if (kvm_enabled()) {
1500 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1501 return;
1504 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1505 cpu_breakpoint_remove_all(env, BP_GDB);
1506 #ifndef CONFIG_USER_ONLY
1507 cpu_watchpoint_remove_all(env, BP_GDB);
1508 #endif
1512 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1514 CPUState *env;
1515 const char *p;
1516 int ch, reg_size, type, res, thread;
1517 char buf[MAX_PACKET_LENGTH];
1518 uint8_t mem_buf[MAX_PACKET_LENGTH];
1519 uint8_t *registers;
1520 target_ulong addr, len;
1522 #ifdef DEBUG_GDB
1523 printf("command='%s'\n", line_buf);
1524 #endif
1525 p = line_buf;
1526 ch = *p++;
1527 switch(ch) {
1528 case '?':
1529 /* TODO: Make this return the correct value for user-mode. */
1530 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1531 s->c_cpu->cpu_index+1);
1532 put_packet(s, buf);
1533 /* Remove all the breakpoints when this query is issued,
1534 * because gdb is doing and initial connect and the state
1535 * should be cleaned up.
1537 gdb_breakpoint_remove_all();
1538 break;
1539 case 'c':
1540 if (*p != '\0') {
1541 addr = strtoull(p, (char **)&p, 16);
1542 #if defined(TARGET_I386)
1543 s->c_cpu->eip = addr;
1544 kvm_load_registers(s->c_cpu);
1545 #elif defined (TARGET_PPC)
1546 s->c_cpu->nip = addr;
1547 kvm_load_registers(s->c_cpu);
1548 #elif defined (TARGET_SPARC)
1549 s->c_cpu->pc = addr;
1550 s->c_cpu->npc = addr + 4;
1551 #elif defined (TARGET_ARM)
1552 s->c_cpu->regs[15] = addr;
1553 #elif defined (TARGET_SH4)
1554 s->c_cpu->pc = addr;
1555 #elif defined (TARGET_MIPS)
1556 s->c_cpu->active_tc.PC = addr;
1557 #elif defined (TARGET_CRIS)
1558 s->c_cpu->pc = addr;
1559 #elif defined (TARGET_ALPHA)
1560 s->c_cpu->pc = addr;
1561 #endif
1563 s->signal = 0;
1564 gdb_continue(s);
1565 return RS_IDLE;
1566 case 'C':
1567 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1568 if (s->signal == -1)
1569 s->signal = 0;
1570 gdb_continue(s);
1571 return RS_IDLE;
1572 case 'k':
1573 /* Kill the target */
1574 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1575 exit(0);
1576 case 'D':
1577 /* Detach packet */
1578 gdb_breakpoint_remove_all();
1579 gdb_continue(s);
1580 put_packet(s, "OK");
1581 break;
1582 case 's':
1583 if (*p != '\0') {
1584 addr = strtoull(p, (char **)&p, 16);
1585 #if defined(TARGET_I386)
1586 s->c_cpu->eip = addr;
1587 kvm_load_registers(s->c_cpu);
1588 #elif defined (TARGET_PPC)
1589 s->c_cpu->nip = addr;
1590 kvm_load_registers(s->c_cpu);
1591 #elif defined (TARGET_SPARC)
1592 s->c_cpu->pc = addr;
1593 s->c_cpu->npc = addr + 4;
1594 #elif defined (TARGET_ARM)
1595 s->c_cpu->regs[15] = addr;
1596 #elif defined (TARGET_SH4)
1597 s->c_cpu->pc = addr;
1598 #elif defined (TARGET_MIPS)
1599 s->c_cpu->active_tc.PC = addr;
1600 #elif defined (TARGET_CRIS)
1601 s->c_cpu->pc = addr;
1602 #elif defined (TARGET_ALPHA)
1603 s->c_cpu->pc = addr;
1604 #endif
1606 cpu_single_step(s->c_cpu, sstep_flags);
1607 gdb_continue(s);
1608 return RS_IDLE;
1609 case 'F':
1611 target_ulong ret;
1612 target_ulong err;
1614 ret = strtoull(p, (char **)&p, 16);
1615 if (*p == ',') {
1616 p++;
1617 err = strtoull(p, (char **)&p, 16);
1618 } else {
1619 err = 0;
1621 if (*p == ',')
1622 p++;
1623 type = *p;
1624 if (gdb_current_syscall_cb)
1625 gdb_current_syscall_cb(s->c_cpu, ret, err);
1626 if (type == 'C') {
1627 put_packet(s, "T02");
1628 } else {
1629 gdb_continue(s);
1632 break;
1633 case 'g':
1634 kvm_save_registers(s->g_cpu);
1635 len = 0;
1636 for (addr = 0; addr < num_g_regs; addr++) {
1637 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1638 len += reg_size;
1640 memtohex(buf, mem_buf, len);
1641 put_packet(s, buf);
1642 break;
1643 case 'G':
1644 registers = mem_buf;
1645 len = strlen(p) / 2;
1646 hextomem((uint8_t *)registers, p, len);
1647 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1648 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1649 len -= reg_size;
1650 registers += reg_size;
1652 kvm_load_registers(s->g_cpu);
1653 put_packet(s, "OK");
1654 break;
1655 case 'm':
1656 addr = strtoull(p, (char **)&p, 16);
1657 if (*p == ',')
1658 p++;
1659 len = strtoull(p, NULL, 16);
1660 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1661 put_packet (s, "E14");
1662 } else {
1663 memtohex(buf, mem_buf, len);
1664 put_packet(s, buf);
1666 break;
1667 case 'M':
1668 addr = strtoull(p, (char **)&p, 16);
1669 if (*p == ',')
1670 p++;
1671 len = strtoull(p, (char **)&p, 16);
1672 if (*p == ':')
1673 p++;
1674 hextomem(mem_buf, p, len);
1675 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1676 put_packet(s, "E14");
1677 else
1678 put_packet(s, "OK");
1679 break;
1680 case 'p':
1681 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1682 This works, but can be very slow. Anything new enough to
1683 understand XML also knows how to use this properly. */
1684 if (!gdb_has_xml)
1685 goto unknown_command;
1686 addr = strtoull(p, (char **)&p, 16);
1687 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1688 if (reg_size) {
1689 memtohex(buf, mem_buf, reg_size);
1690 put_packet(s, buf);
1691 } else {
1692 put_packet(s, "E14");
1694 break;
1695 case 'P':
1696 if (!gdb_has_xml)
1697 goto unknown_command;
1698 addr = strtoull(p, (char **)&p, 16);
1699 if (*p == '=')
1700 p++;
1701 reg_size = strlen(p) / 2;
1702 hextomem(mem_buf, p, reg_size);
1703 gdb_write_register(s->g_cpu, mem_buf, addr);
1704 put_packet(s, "OK");
1705 break;
1706 case 'Z':
1707 case 'z':
1708 type = strtoul(p, (char **)&p, 16);
1709 if (*p == ',')
1710 p++;
1711 addr = strtoull(p, (char **)&p, 16);
1712 if (*p == ',')
1713 p++;
1714 len = strtoull(p, (char **)&p, 16);
1715 if (ch == 'Z')
1716 res = gdb_breakpoint_insert(addr, len, type);
1717 else
1718 res = gdb_breakpoint_remove(addr, len, type);
1719 if (res >= 0)
1720 put_packet(s, "OK");
1721 else if (res == -ENOSYS)
1722 put_packet(s, "");
1723 else
1724 put_packet(s, "E22");
1725 break;
1726 case 'H':
1727 type = *p++;
1728 thread = strtoull(p, (char **)&p, 16);
1729 if (thread == -1 || thread == 0) {
1730 put_packet(s, "OK");
1731 break;
1733 for (env = first_cpu; env != NULL; env = env->next_cpu)
1734 if (env->cpu_index + 1 == thread)
1735 break;
1736 if (env == NULL) {
1737 put_packet(s, "E22");
1738 break;
1740 switch (type) {
1741 case 'c':
1742 s->c_cpu = env;
1743 put_packet(s, "OK");
1744 break;
1745 case 'g':
1746 s->g_cpu = env;
1747 put_packet(s, "OK");
1748 break;
1749 default:
1750 put_packet(s, "E22");
1751 break;
1753 break;
1754 case 'T':
1755 thread = strtoull(p, (char **)&p, 16);
1756 #ifndef CONFIG_USER_ONLY
1757 if (thread > 0 && thread < smp_cpus + 1)
1758 #else
1759 if (thread == 1)
1760 #endif
1761 put_packet(s, "OK");
1762 else
1763 put_packet(s, "E22");
1764 break;
1765 case 'q':
1766 case 'Q':
1767 /* parse any 'q' packets here */
1768 if (!strcmp(p,"qemu.sstepbits")) {
1769 /* Query Breakpoint bit definitions */
1770 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1771 SSTEP_ENABLE,
1772 SSTEP_NOIRQ,
1773 SSTEP_NOTIMER);
1774 put_packet(s, buf);
1775 break;
1776 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1777 /* Display or change the sstep_flags */
1778 p += 10;
1779 if (*p != '=') {
1780 /* Display current setting */
1781 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1782 put_packet(s, buf);
1783 break;
1785 p++;
1786 type = strtoul(p, (char **)&p, 16);
1787 sstep_flags = type;
1788 put_packet(s, "OK");
1789 break;
1790 } else if (strcmp(p,"C") == 0) {
1791 /* "Current thread" remains vague in the spec, so always return
1792 * the first CPU (gdb returns the first thread). */
1793 put_packet(s, "QC1");
1794 break;
1795 } else if (strcmp(p,"fThreadInfo") == 0) {
1796 s->query_cpu = first_cpu;
1797 goto report_cpuinfo;
1798 } else if (strcmp(p,"sThreadInfo") == 0) {
1799 report_cpuinfo:
1800 if (s->query_cpu) {
1801 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1802 put_packet(s, buf);
1803 s->query_cpu = s->query_cpu->next_cpu;
1804 } else
1805 put_packet(s, "l");
1806 break;
1807 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1808 thread = strtoull(p+16, (char **)&p, 16);
1809 for (env = first_cpu; env != NULL; env = env->next_cpu)
1810 if (env->cpu_index + 1 == thread) {
1811 kvm_save_registers(env);
1812 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1813 "CPU#%d [%s]", env->cpu_index,
1814 env->halted ? "halted " : "running");
1815 memtohex(buf, mem_buf, len);
1816 put_packet(s, buf);
1817 break;
1819 break;
1821 #ifdef CONFIG_LINUX_USER
1822 else if (strncmp(p, "Offsets", 7) == 0) {
1823 TaskState *ts = s->c_cpu->opaque;
1825 snprintf(buf, sizeof(buf),
1826 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1827 ";Bss=" TARGET_ABI_FMT_lx,
1828 ts->info->code_offset,
1829 ts->info->data_offset,
1830 ts->info->data_offset);
1831 put_packet(s, buf);
1832 break;
1834 #endif
1835 if (strncmp(p, "Supported", 9) == 0) {
1836 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1837 #ifdef GDB_CORE_XML
1838 strcat(buf, ";qXfer:features:read+");
1839 #endif
1840 put_packet(s, buf);
1841 break;
1843 #ifdef GDB_CORE_XML
1844 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1845 const char *xml;
1846 target_ulong total_len;
1848 gdb_has_xml = 1;
1849 p += 19;
1850 xml = get_feature_xml(p, &p);
1851 if (!xml) {
1852 snprintf(buf, sizeof(buf), "E00");
1853 put_packet(s, buf);
1854 break;
1857 if (*p == ':')
1858 p++;
1859 addr = strtoul(p, (char **)&p, 16);
1860 if (*p == ',')
1861 p++;
1862 len = strtoul(p, (char **)&p, 16);
1864 total_len = strlen(xml);
1865 if (addr > total_len) {
1866 snprintf(buf, sizeof(buf), "E00");
1867 put_packet(s, buf);
1868 break;
1870 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1871 len = (MAX_PACKET_LENGTH - 5) / 2;
1872 if (len < total_len - addr) {
1873 buf[0] = 'm';
1874 len = memtox(buf + 1, xml + addr, len);
1875 } else {
1876 buf[0] = 'l';
1877 len = memtox(buf + 1, xml + addr, total_len - addr);
1879 put_packet_binary(s, buf, len + 1);
1880 break;
1882 #endif
1883 /* Unrecognised 'q' command. */
1884 goto unknown_command;
1886 default:
1887 unknown_command:
1888 /* put empty packet */
1889 buf[0] = '\0';
1890 put_packet(s, buf);
1891 break;
1893 return RS_IDLE;
1896 void gdb_set_stop_cpu(CPUState *env)
1898 gdbserver_state->c_cpu = env;
1899 gdbserver_state->g_cpu = env;
1902 #ifndef CONFIG_USER_ONLY
1903 static void gdb_vm_state_change(void *opaque, int running, int reason)
1905 GDBState *s = gdbserver_state;
1906 CPUState *env = s->c_cpu;
1907 char buf[256];
1908 const char *type;
1909 int ret;
1911 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1912 s->state == RS_SYSCALL)
1913 return;
1915 /* disable single step if it was enable */
1916 cpu_single_step(env, 0);
1918 if (reason == EXCP_DEBUG) {
1919 if (env->watchpoint_hit) {
1920 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1921 case BP_MEM_READ:
1922 type = "r";
1923 break;
1924 case BP_MEM_ACCESS:
1925 type = "a";
1926 break;
1927 default:
1928 type = "";
1929 break;
1931 snprintf(buf, sizeof(buf),
1932 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1933 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1934 env->watchpoint_hit->vaddr);
1935 put_packet(s, buf);
1936 env->watchpoint_hit = NULL;
1937 return;
1939 tb_flush(env);
1940 ret = GDB_SIGNAL_TRAP;
1941 } else {
1942 ret = GDB_SIGNAL_INT;
1944 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1945 put_packet(s, buf);
1947 #endif
1949 /* Send a gdb syscall request.
1950 This accepts limited printf-style format specifiers, specifically:
1951 %x - target_ulong argument printed in hex.
1952 %lx - 64-bit argument printed in hex.
1953 %s - string pointer (target_ulong) and length (int) pair. */
1954 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1956 va_list va;
1957 char buf[256];
1958 char *p;
1959 target_ulong addr;
1960 uint64_t i64;
1961 GDBState *s;
1963 s = gdbserver_state;
1964 if (!s)
1965 return;
1966 gdb_current_syscall_cb = cb;
1967 s->state = RS_SYSCALL;
1968 #ifndef CONFIG_USER_ONLY
1969 vm_stop(EXCP_DEBUG);
1970 #endif
1971 s->state = RS_IDLE;
1972 va_start(va, fmt);
1973 p = buf;
1974 *(p++) = 'F';
1975 while (*fmt) {
1976 if (*fmt == '%') {
1977 fmt++;
1978 switch (*fmt++) {
1979 case 'x':
1980 addr = va_arg(va, target_ulong);
1981 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1982 break;
1983 case 'l':
1984 if (*(fmt++) != 'x')
1985 goto bad_format;
1986 i64 = va_arg(va, uint64_t);
1987 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1988 break;
1989 case 's':
1990 addr = va_arg(va, target_ulong);
1991 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1992 addr, va_arg(va, int));
1993 break;
1994 default:
1995 bad_format:
1996 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1997 fmt - 1);
1998 break;
2000 } else {
2001 *(p++) = *(fmt++);
2004 *p = 0;
2005 va_end(va);
2006 put_packet(s, buf);
2007 #ifdef CONFIG_USER_ONLY
2008 gdb_handlesig(s->c_cpu, 0);
2009 #else
2010 cpu_interrupt(s->c_cpu, CPU_INTERRUPT_EXIT);
2011 #endif
2014 static void gdb_read_byte(GDBState *s, int ch)
2016 int i, csum;
2017 uint8_t reply;
2019 #ifndef CONFIG_USER_ONLY
2020 if (s->last_packet_len) {
2021 /* Waiting for a response to the last packet. If we see the start
2022 of a new command then abandon the previous response. */
2023 if (ch == '-') {
2024 #ifdef DEBUG_GDB
2025 printf("Got NACK, retransmitting\n");
2026 #endif
2027 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2029 #ifdef DEBUG_GDB
2030 else if (ch == '+')
2031 printf("Got ACK\n");
2032 else
2033 printf("Got '%c' when expecting ACK/NACK\n", ch);
2034 #endif
2035 if (ch == '+' || ch == '$')
2036 s->last_packet_len = 0;
2037 if (ch != '$')
2038 return;
2040 if (vm_running) {
2041 /* when the CPU is running, we cannot do anything except stop
2042 it when receiving a char */
2043 vm_stop(EXCP_INTERRUPT);
2044 } else
2045 #endif
2047 switch(s->state) {
2048 case RS_IDLE:
2049 if (ch == '$') {
2050 s->line_buf_index = 0;
2051 s->state = RS_GETLINE;
2053 break;
2054 case RS_GETLINE:
2055 if (ch == '#') {
2056 s->state = RS_CHKSUM1;
2057 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2058 s->state = RS_IDLE;
2059 } else {
2060 s->line_buf[s->line_buf_index++] = ch;
2062 break;
2063 case RS_CHKSUM1:
2064 s->line_buf[s->line_buf_index] = '\0';
2065 s->line_csum = fromhex(ch) << 4;
2066 s->state = RS_CHKSUM2;
2067 break;
2068 case RS_CHKSUM2:
2069 s->line_csum |= fromhex(ch);
2070 csum = 0;
2071 for(i = 0; i < s->line_buf_index; i++) {
2072 csum += s->line_buf[i];
2074 if (s->line_csum != (csum & 0xff)) {
2075 reply = '-';
2076 put_buffer(s, &reply, 1);
2077 s->state = RS_IDLE;
2078 } else {
2079 reply = '+';
2080 put_buffer(s, &reply, 1);
2081 s->state = gdb_handle_packet(s, s->line_buf);
2083 break;
2084 default:
2085 abort();
2090 #ifdef CONFIG_USER_ONLY
2092 gdb_queuesig (void)
2094 GDBState *s;
2096 s = gdbserver_state;
2098 if (gdbserver_fd < 0 || s->fd < 0)
2099 return 0;
2100 else
2101 return 1;
2105 gdb_handlesig (CPUState *env, int sig)
2107 GDBState *s;
2108 char buf[256];
2109 int n;
2111 s = gdbserver_state;
2112 if (gdbserver_fd < 0 || s->fd < 0)
2113 return sig;
2115 /* disable single step if it was enabled */
2116 cpu_single_step(env, 0);
2117 tb_flush(env);
2119 if (sig != 0)
2121 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2122 put_packet(s, buf);
2124 /* put_packet() might have detected that the peer terminated the
2125 connection. */
2126 if (s->fd < 0)
2127 return sig;
2129 sig = 0;
2130 s->state = RS_IDLE;
2131 s->running_state = 0;
2132 while (s->running_state == 0) {
2133 n = read (s->fd, buf, 256);
2134 if (n > 0)
2136 int i;
2138 for (i = 0; i < n; i++)
2139 gdb_read_byte (s, buf[i]);
2141 else if (n == 0 || errno != EAGAIN)
2143 /* XXX: Connection closed. Should probably wait for annother
2144 connection before continuing. */
2145 return sig;
2148 sig = s->signal;
2149 s->signal = 0;
2150 return sig;
2153 /* Tell the remote gdb that the process has exited. */
2154 void gdb_exit(CPUState *env, int code)
2156 GDBState *s;
2157 char buf[4];
2159 s = gdbserver_state;
2160 if (gdbserver_fd < 0 || s->fd < 0)
2161 return;
2163 snprintf(buf, sizeof(buf), "W%02x", code);
2164 put_packet(s, buf);
2167 /* Tell the remote gdb that the process has exited due to SIG. */
2168 void gdb_signalled(CPUState *env, int sig)
2170 GDBState *s;
2171 char buf[4];
2173 s = gdbserver_state;
2174 if (gdbserver_fd < 0 || s->fd < 0)
2175 return;
2177 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2178 put_packet(s, buf);
2181 static void gdb_accept(void)
2183 GDBState *s;
2184 struct sockaddr_in sockaddr;
2185 socklen_t len;
2186 int val, fd;
2188 for(;;) {
2189 len = sizeof(sockaddr);
2190 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2191 if (fd < 0 && errno != EINTR) {
2192 perror("accept");
2193 return;
2194 } else if (fd >= 0) {
2195 break;
2199 /* set short latency */
2200 val = 1;
2201 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2203 s = qemu_mallocz(sizeof(GDBState));
2205 memset (s, 0, sizeof (GDBState));
2206 s->c_cpu = first_cpu;
2207 s->g_cpu = first_cpu;
2208 s->fd = fd;
2209 gdb_has_xml = 0;
2211 gdbserver_state = s;
2213 fcntl(fd, F_SETFL, O_NONBLOCK);
2216 static int gdbserver_open(int port)
2218 struct sockaddr_in sockaddr;
2219 int fd, val, ret;
2221 fd = socket(PF_INET, SOCK_STREAM, 0);
2222 if (fd < 0) {
2223 perror("socket");
2224 return -1;
2227 /* allow fast reuse */
2228 val = 1;
2229 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2231 sockaddr.sin_family = AF_INET;
2232 sockaddr.sin_port = htons(port);
2233 sockaddr.sin_addr.s_addr = 0;
2234 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2235 if (ret < 0) {
2236 perror("bind");
2237 return -1;
2239 ret = listen(fd, 0);
2240 if (ret < 0) {
2241 perror("listen");
2242 return -1;
2244 return fd;
2247 int gdbserver_start(int port)
2249 gdbserver_fd = gdbserver_open(port);
2250 if (gdbserver_fd < 0)
2251 return -1;
2252 /* accept connections */
2253 gdb_accept();
2254 return 0;
2257 /* Disable gdb stub for child processes. */
2258 void gdbserver_fork(CPUState *env)
2260 GDBState *s = gdbserver_state;
2261 if (gdbserver_fd < 0 || s->fd < 0)
2262 return;
2263 close(s->fd);
2264 s->fd = -1;
2265 cpu_breakpoint_remove_all(env, BP_GDB);
2266 cpu_watchpoint_remove_all(env, BP_GDB);
2268 #else
2269 static int gdb_chr_can_receive(void *opaque)
2271 /* We can handle an arbitrarily large amount of data.
2272 Pick the maximum packet size, which is as good as anything. */
2273 return MAX_PACKET_LENGTH;
2276 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2278 int i;
2280 for (i = 0; i < size; i++) {
2281 gdb_read_byte(gdbserver_state, buf[i]);
2285 static void gdb_chr_event(void *opaque, int event)
2287 switch (event) {
2288 case CHR_EVENT_RESET:
2289 vm_stop(EXCP_INTERRUPT);
2290 gdb_has_xml = 0;
2291 break;
2292 default:
2293 break;
2297 int gdbserver_start(const char *port)
2299 GDBState *s;
2300 char gdbstub_port_name[128];
2301 int port_num;
2302 char *p;
2303 CharDriverState *chr;
2305 if (!port || !*port)
2306 return -1;
2308 port_num = strtol(port, &p, 10);
2309 if (*p == 0) {
2310 /* A numeric value is interpreted as a port number. */
2311 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2312 "tcp::%d,nowait,nodelay,server", port_num);
2313 port = gdbstub_port_name;
2316 chr = qemu_chr_open("gdb", port, NULL);
2317 if (!chr)
2318 return -1;
2320 s = qemu_mallocz(sizeof(GDBState));
2321 s->c_cpu = first_cpu;
2322 s->g_cpu = first_cpu;
2323 s->chr = chr;
2324 gdbserver_state = s;
2325 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2326 gdb_chr_event, NULL);
2327 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2328 return 0;
2330 #endif