kvm: add error message for when SMP is requested
[qemu-kvm/fedora.git] / vl.c
blob9f25cd40d5620766ae9557d1bc943180709ffd89
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
168 #endif
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
377 int i, bsize;
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
395 return 0;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
402 int i, bsize;
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
420 return 0;
423 void isa_unassign_ioport(int start, int length)
425 int i;
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
472 int cpu_inb(CPUState *env, int addr)
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
484 int cpu_inw(CPUState *env, int addr)
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 int cpu_inl(CPUState *env, int addr)
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
511 va_list ap;
512 CPUState *env;
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
526 va_end(ap);
527 abort();
530 /***************/
531 /* ballooning */
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
555 /***********************************************************/
556 /* keyboard/mouse */
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
595 return s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
644 if (!qemu_put_mouse_event_current) {
645 return;
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
670 return 0;
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
747 #ifdef WIN32
749 static int64_t clock_freq;
751 static void init_get_clock(void)
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
770 #else
772 static int use_rt_clock;
774 static void init_get_clock(void)
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
785 #endif
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
806 #endif
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
833 if (use_icount) {
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
885 /* timers */
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
924 return;
926 t->rearm(t);
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
934 #ifdef _WIN32
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
945 #else
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
950 #ifdef __linux__
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
964 #endif /* _WIN32 */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1051 static void show_available_alarms(void)
1053 int i;
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1074 arg = strdup(opt);
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1103 free(arg);
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130 QEMUTimer *ts;
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1139 void qemu_free_timer(QEMUTimer *ts)
1141 qemu_free(ts);
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1147 QEMUTimer **pt, *t;
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1160 pt = &t->next;
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168 QEMUTimer **pt, *t;
1170 qemu_del_timer(ts);
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1206 return 0;
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218 QEMUTimer *ts;
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1248 static void init_timers(void)
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1303 return 0;
1306 static void qemu_event_increment(void);
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1316 #if 0
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1342 last_clock = ti;
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1362 #endif
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1372 int64_t delta;
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1382 if (delta < 0)
1383 delta = 0;
1385 return delta;
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1391 int64_t delta;
1392 int64_t rtdelta;
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1409 return delta;
1411 #endif
1413 #ifndef _WIN32
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1418 int flags;
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1427 return 0;
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1451 int r, fd;
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1494 close(fd);
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1523 return 0;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1530 close(rtc_fd);
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1560 return -1;
1563 t->priv = (void *)(long)host_timer;
1565 return 0;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1572 timer_delete(host_timer);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1622 sigaction(SIGALRM, &act, NULL);
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1634 return 0;
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1639 struct itimerval itv;
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1645 #endif /* !defined(_WIN32) */
1648 #ifdef _WIN32
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1662 timeBeginPeriod(data->period);
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1682 return 0;
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1687 struct qemu_alarm_win32 *data = t->priv;
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1705 timeKillEvent(data->timerId);
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data->period);
1717 exit(1);
1721 #endif /* _WIN32 */
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1731 err = t->start(t);
1732 if (!err)
1733 break;
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1741 alarm_timer = t;
1743 return 0;
1745 fail:
1746 return err;
1749 static void quit_timers(void)
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1759 time_t ti;
1760 struct tm *ret;
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1774 memcpy(tm, ret, sizeof(struct tm));
1777 int qemu_timedate_diff(struct tm *tm)
1779 time_t seconds;
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1789 return seconds - time(NULL);
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1795 WSACleanup();
1798 static int socket_init(void)
1800 WSADATA Data;
1801 int ret, err;
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1809 atexit(socket_cleanup);
1810 return 0;
1812 #endif
1814 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1816 char *q;
1818 q = buf;
1819 while (*p != '\0' && *p != delim) {
1820 if (q && (q - buf) < buf_size - 1)
1821 *q++ = *p;
1822 p++;
1824 if (q)
1825 *q = '\0';
1827 return p;
1830 const char *get_opt_value(char *buf, int buf_size, const char *p)
1832 char *q;
1834 q = buf;
1835 while (*p != '\0') {
1836 if (*p == ',') {
1837 if (*(p + 1) != ',')
1838 break;
1839 p++;
1841 if (q && (q - buf) < buf_size - 1)
1842 *q++ = *p;
1843 p++;
1845 if (q)
1846 *q = '\0';
1848 return p;
1851 int get_param_value(char *buf, int buf_size,
1852 const char *tag, const char *str)
1854 const char *p;
1855 char option[128];
1857 p = str;
1858 for(;;) {
1859 p = get_opt_name(option, sizeof(option), p, '=');
1860 if (*p != '=')
1861 break;
1862 p++;
1863 if (!strcmp(tag, option)) {
1864 (void)get_opt_value(buf, buf_size, p);
1865 return strlen(buf);
1866 } else {
1867 p = get_opt_value(NULL, 0, p);
1869 if (*p != ',')
1870 break;
1871 p++;
1873 return 0;
1876 int check_params(const char * const *params, const char *str)
1878 int name_buf_size = 1;
1879 const char *p;
1880 char *name_buf;
1881 int i, len;
1882 int ret = 0;
1884 for (i = 0; params[i] != NULL; i++) {
1885 len = strlen(params[i]) + 1;
1886 if (len > name_buf_size) {
1887 name_buf_size = len;
1890 name_buf = qemu_malloc(name_buf_size);
1892 p = str;
1893 while (*p != '\0') {
1894 p = get_opt_name(name_buf, name_buf_size, p, '=');
1895 if (*p != '=') {
1896 ret = -1;
1897 break;
1899 p++;
1900 for(i = 0; params[i] != NULL; i++)
1901 if (!strcmp(params[i], name_buf))
1902 break;
1903 if (params[i] == NULL) {
1904 ret = -1;
1905 break;
1907 p = get_opt_value(NULL, 0, p);
1908 if (*p != ',')
1909 break;
1910 p++;
1913 qemu_free(name_buf);
1914 return ret;
1917 /***********************************************************/
1918 /* Bluetooth support */
1919 static int nb_hcis;
1920 static int cur_hci;
1921 static struct HCIInfo *hci_table[MAX_NICS];
1923 static struct bt_vlan_s {
1924 struct bt_scatternet_s net;
1925 int id;
1926 struct bt_vlan_s *next;
1927 } *first_bt_vlan;
1929 /* find or alloc a new bluetooth "VLAN" */
1930 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1932 struct bt_vlan_s **pvlan, *vlan;
1933 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1934 if (vlan->id == id)
1935 return &vlan->net;
1937 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1938 vlan->id = id;
1939 pvlan = &first_bt_vlan;
1940 while (*pvlan != NULL)
1941 pvlan = &(*pvlan)->next;
1942 *pvlan = vlan;
1943 return &vlan->net;
1946 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1950 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1952 return -ENOTSUP;
1955 static struct HCIInfo null_hci = {
1956 .cmd_send = null_hci_send,
1957 .sco_send = null_hci_send,
1958 .acl_send = null_hci_send,
1959 .bdaddr_set = null_hci_addr_set,
1962 struct HCIInfo *qemu_next_hci(void)
1964 if (cur_hci == nb_hcis)
1965 return &null_hci;
1967 return hci_table[cur_hci++];
1970 static struct HCIInfo *hci_init(const char *str)
1972 char *endp;
1973 struct bt_scatternet_s *vlan = 0;
1975 if (!strcmp(str, "null"))
1976 /* null */
1977 return &null_hci;
1978 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1979 /* host[:hciN] */
1980 return bt_host_hci(str[4] ? str + 5 : "hci0");
1981 else if (!strncmp(str, "hci", 3)) {
1982 /* hci[,vlan=n] */
1983 if (str[3]) {
1984 if (!strncmp(str + 3, ",vlan=", 6)) {
1985 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1986 if (*endp)
1987 vlan = 0;
1989 } else
1990 vlan = qemu_find_bt_vlan(0);
1991 if (vlan)
1992 return bt_new_hci(vlan);
1995 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1997 return 0;
2000 static int bt_hci_parse(const char *str)
2002 struct HCIInfo *hci;
2003 bdaddr_t bdaddr;
2005 if (nb_hcis >= MAX_NICS) {
2006 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2007 return -1;
2010 hci = hci_init(str);
2011 if (!hci)
2012 return -1;
2014 bdaddr.b[0] = 0x52;
2015 bdaddr.b[1] = 0x54;
2016 bdaddr.b[2] = 0x00;
2017 bdaddr.b[3] = 0x12;
2018 bdaddr.b[4] = 0x34;
2019 bdaddr.b[5] = 0x56 + nb_hcis;
2020 hci->bdaddr_set(hci, bdaddr.b);
2022 hci_table[nb_hcis++] = hci;
2024 return 0;
2027 static void bt_vhci_add(int vlan_id)
2029 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2031 if (!vlan->slave)
2032 fprintf(stderr, "qemu: warning: adding a VHCI to "
2033 "an empty scatternet %i\n", vlan_id);
2035 bt_vhci_init(bt_new_hci(vlan));
2038 static struct bt_device_s *bt_device_add(const char *opt)
2040 struct bt_scatternet_s *vlan;
2041 int vlan_id = 0;
2042 char *endp = strstr(opt, ",vlan=");
2043 int len = (endp ? endp - opt : strlen(opt)) + 1;
2044 char devname[10];
2046 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2048 if (endp) {
2049 vlan_id = strtol(endp + 6, &endp, 0);
2050 if (*endp) {
2051 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2052 return 0;
2056 vlan = qemu_find_bt_vlan(vlan_id);
2058 if (!vlan->slave)
2059 fprintf(stderr, "qemu: warning: adding a slave device to "
2060 "an empty scatternet %i\n", vlan_id);
2062 if (!strcmp(devname, "keyboard"))
2063 return bt_keyboard_init(vlan);
2065 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2066 return 0;
2069 static int bt_parse(const char *opt)
2071 const char *endp, *p;
2072 int vlan;
2074 if (strstart(opt, "hci", &endp)) {
2075 if (!*endp || *endp == ',') {
2076 if (*endp)
2077 if (!strstart(endp, ",vlan=", 0))
2078 opt = endp + 1;
2080 return bt_hci_parse(opt);
2082 } else if (strstart(opt, "vhci", &endp)) {
2083 if (!*endp || *endp == ',') {
2084 if (*endp) {
2085 if (strstart(endp, ",vlan=", &p)) {
2086 vlan = strtol(p, (char **) &endp, 0);
2087 if (*endp) {
2088 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2089 return 1;
2091 } else {
2092 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2093 return 1;
2095 } else
2096 vlan = 0;
2098 bt_vhci_add(vlan);
2099 return 0;
2101 } else if (strstart(opt, "device:", &endp))
2102 return !bt_device_add(endp);
2104 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2105 return 1;
2108 /***********************************************************/
2109 /* QEMU Block devices */
2111 #define HD_ALIAS "index=%d,media=disk"
2112 #define CDROM_ALIAS "index=2,media=cdrom"
2113 #define FD_ALIAS "index=%d,if=floppy"
2114 #define PFLASH_ALIAS "if=pflash"
2115 #define MTD_ALIAS "if=mtd"
2116 #define SD_ALIAS "index=0,if=sd"
2118 static int drive_opt_get_free_idx(void)
2120 int index;
2122 for (index = 0; index < MAX_DRIVES; index++)
2123 if (!drives_opt[index].used) {
2124 drives_opt[index].used = 1;
2125 return index;
2128 return -1;
2131 static int drive_get_free_idx(void)
2133 int index;
2135 for (index = 0; index < MAX_DRIVES; index++)
2136 if (!drives_table[index].used) {
2137 drives_table[index].used = 1;
2138 return index;
2141 return -1;
2144 int drive_add(const char *file, const char *fmt, ...)
2146 va_list ap;
2147 int index = drive_opt_get_free_idx();
2149 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2150 fprintf(stderr, "qemu: too many drives\n");
2151 return -1;
2154 drives_opt[index].file = file;
2155 va_start(ap, fmt);
2156 vsnprintf(drives_opt[index].opt,
2157 sizeof(drives_opt[0].opt), fmt, ap);
2158 va_end(ap);
2160 nb_drives_opt++;
2161 return index;
2164 void drive_remove(int index)
2166 drives_opt[index].used = 0;
2167 nb_drives_opt--;
2170 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2172 int index;
2174 /* seek interface, bus and unit */
2176 for (index = 0; index < MAX_DRIVES; index++)
2177 if (drives_table[index].type == type &&
2178 drives_table[index].bus == bus &&
2179 drives_table[index].unit == unit &&
2180 drives_table[index].used)
2181 return index;
2183 return -1;
2186 int drive_get_max_bus(BlockInterfaceType type)
2188 int max_bus;
2189 int index;
2191 max_bus = -1;
2192 for (index = 0; index < nb_drives; index++) {
2193 if(drives_table[index].type == type &&
2194 drives_table[index].bus > max_bus)
2195 max_bus = drives_table[index].bus;
2197 return max_bus;
2200 const char *drive_get_serial(BlockDriverState *bdrv)
2202 int index;
2204 for (index = 0; index < nb_drives; index++)
2205 if (drives_table[index].bdrv == bdrv)
2206 return drives_table[index].serial;
2208 return "\0";
2211 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2213 int index;
2215 for (index = 0; index < nb_drives; index++)
2216 if (drives_table[index].bdrv == bdrv)
2217 return drives_table[index].onerror;
2219 return BLOCK_ERR_STOP_ENOSPC;
2222 static void bdrv_format_print(void *opaque, const char *name)
2224 fprintf(stderr, " %s", name);
2227 void drive_uninit(BlockDriverState *bdrv)
2229 int i;
2231 for (i = 0; i < MAX_DRIVES; i++)
2232 if (drives_table[i].bdrv == bdrv) {
2233 drives_table[i].bdrv = NULL;
2234 drives_table[i].used = 0;
2235 drive_remove(drives_table[i].drive_opt_idx);
2236 nb_drives--;
2237 break;
2241 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2243 char buf[128];
2244 char file[1024];
2245 char devname[128];
2246 char serial[21];
2247 const char *mediastr = "";
2248 BlockInterfaceType type;
2249 enum { MEDIA_DISK, MEDIA_CDROM } media;
2250 int bus_id, unit_id;
2251 int cyls, heads, secs, translation;
2252 BlockDriverState *bdrv;
2253 BlockDriver *drv = NULL;
2254 QEMUMachine *machine = opaque;
2255 int max_devs;
2256 int index;
2257 int cache;
2258 int bdrv_flags, onerror;
2259 int drives_table_idx;
2260 char *str = arg->opt;
2261 static const char * const params[] = { "bus", "unit", "if", "index",
2262 "cyls", "heads", "secs", "trans",
2263 "media", "snapshot", "file",
2264 "cache", "format", "serial", "werror",
2265 NULL };
2267 if (check_params(params, str) < 0) {
2268 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2269 buf, str);
2270 return -1;
2273 file[0] = 0;
2274 cyls = heads = secs = 0;
2275 bus_id = 0;
2276 unit_id = -1;
2277 translation = BIOS_ATA_TRANSLATION_AUTO;
2278 index = -1;
2279 cache = 3;
2281 if (machine->use_scsi) {
2282 type = IF_SCSI;
2283 max_devs = MAX_SCSI_DEVS;
2284 pstrcpy(devname, sizeof(devname), "scsi");
2285 } else {
2286 type = IF_IDE;
2287 max_devs = MAX_IDE_DEVS;
2288 pstrcpy(devname, sizeof(devname), "ide");
2290 media = MEDIA_DISK;
2292 /* extract parameters */
2294 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2295 bus_id = strtol(buf, NULL, 0);
2296 if (bus_id < 0) {
2297 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2298 return -1;
2302 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2303 unit_id = strtol(buf, NULL, 0);
2304 if (unit_id < 0) {
2305 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2306 return -1;
2310 if (get_param_value(buf, sizeof(buf), "if", str)) {
2311 pstrcpy(devname, sizeof(devname), buf);
2312 if (!strcmp(buf, "ide")) {
2313 type = IF_IDE;
2314 max_devs = MAX_IDE_DEVS;
2315 } else if (!strcmp(buf, "scsi")) {
2316 type = IF_SCSI;
2317 max_devs = MAX_SCSI_DEVS;
2318 } else if (!strcmp(buf, "floppy")) {
2319 type = IF_FLOPPY;
2320 max_devs = 0;
2321 } else if (!strcmp(buf, "pflash")) {
2322 type = IF_PFLASH;
2323 max_devs = 0;
2324 } else if (!strcmp(buf, "mtd")) {
2325 type = IF_MTD;
2326 max_devs = 0;
2327 } else if (!strcmp(buf, "sd")) {
2328 type = IF_SD;
2329 max_devs = 0;
2330 } else if (!strcmp(buf, "virtio")) {
2331 type = IF_VIRTIO;
2332 max_devs = 0;
2333 } else if (!strcmp(buf, "xen")) {
2334 type = IF_XEN;
2335 max_devs = 0;
2336 } else {
2337 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2338 return -1;
2342 if (get_param_value(buf, sizeof(buf), "index", str)) {
2343 index = strtol(buf, NULL, 0);
2344 if (index < 0) {
2345 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2346 return -1;
2350 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2351 cyls = strtol(buf, NULL, 0);
2354 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2355 heads = strtol(buf, NULL, 0);
2358 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2359 secs = strtol(buf, NULL, 0);
2362 if (cyls || heads || secs) {
2363 if (cyls < 1 || cyls > 16383) {
2364 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2365 return -1;
2367 if (heads < 1 || heads > 16) {
2368 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2369 return -1;
2371 if (secs < 1 || secs > 63) {
2372 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2373 return -1;
2377 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2378 if (!cyls) {
2379 fprintf(stderr,
2380 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2381 str);
2382 return -1;
2384 if (!strcmp(buf, "none"))
2385 translation = BIOS_ATA_TRANSLATION_NONE;
2386 else if (!strcmp(buf, "lba"))
2387 translation = BIOS_ATA_TRANSLATION_LBA;
2388 else if (!strcmp(buf, "auto"))
2389 translation = BIOS_ATA_TRANSLATION_AUTO;
2390 else {
2391 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2392 return -1;
2396 if (get_param_value(buf, sizeof(buf), "media", str)) {
2397 if (!strcmp(buf, "disk")) {
2398 media = MEDIA_DISK;
2399 } else if (!strcmp(buf, "cdrom")) {
2400 if (cyls || secs || heads) {
2401 fprintf(stderr,
2402 "qemu: '%s' invalid physical CHS format\n", str);
2403 return -1;
2405 media = MEDIA_CDROM;
2406 } else {
2407 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2408 return -1;
2412 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2413 if (!strcmp(buf, "on"))
2414 snapshot = 1;
2415 else if (!strcmp(buf, "off"))
2416 snapshot = 0;
2417 else {
2418 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2419 return -1;
2423 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2424 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2425 cache = 0;
2426 else if (!strcmp(buf, "writethrough"))
2427 cache = 1;
2428 else if (!strcmp(buf, "writeback"))
2429 cache = 2;
2430 else {
2431 fprintf(stderr, "qemu: invalid cache option\n");
2432 return -1;
2436 if (get_param_value(buf, sizeof(buf), "format", str)) {
2437 if (strcmp(buf, "?") == 0) {
2438 fprintf(stderr, "qemu: Supported formats:");
2439 bdrv_iterate_format(bdrv_format_print, NULL);
2440 fprintf(stderr, "\n");
2441 return -1;
2443 drv = bdrv_find_format(buf);
2444 if (!drv) {
2445 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2446 return -1;
2450 if (arg->file == NULL)
2451 get_param_value(file, sizeof(file), "file", str);
2452 else
2453 pstrcpy(file, sizeof(file), arg->file);
2455 if (!get_param_value(serial, sizeof(serial), "serial", str))
2456 memset(serial, 0, sizeof(serial));
2458 onerror = BLOCK_ERR_STOP_ENOSPC;
2459 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2460 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2461 fprintf(stderr, "werror is no supported by this format\n");
2462 return -1;
2464 if (!strcmp(buf, "ignore"))
2465 onerror = BLOCK_ERR_IGNORE;
2466 else if (!strcmp(buf, "enospc"))
2467 onerror = BLOCK_ERR_STOP_ENOSPC;
2468 else if (!strcmp(buf, "stop"))
2469 onerror = BLOCK_ERR_STOP_ANY;
2470 else if (!strcmp(buf, "report"))
2471 onerror = BLOCK_ERR_REPORT;
2472 else {
2473 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2474 return -1;
2478 /* compute bus and unit according index */
2480 if (index != -1) {
2481 if (bus_id != 0 || unit_id != -1) {
2482 fprintf(stderr,
2483 "qemu: '%s' index cannot be used with bus and unit\n", str);
2484 return -1;
2486 if (max_devs == 0)
2488 unit_id = index;
2489 bus_id = 0;
2490 } else {
2491 unit_id = index % max_devs;
2492 bus_id = index / max_devs;
2496 /* if user doesn't specify a unit_id,
2497 * try to find the first free
2500 if (unit_id == -1) {
2501 unit_id = 0;
2502 while (drive_get_index(type, bus_id, unit_id) != -1) {
2503 unit_id++;
2504 if (max_devs && unit_id >= max_devs) {
2505 unit_id -= max_devs;
2506 bus_id++;
2511 /* check unit id */
2513 if (max_devs && unit_id >= max_devs) {
2514 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2515 str, unit_id, max_devs - 1);
2516 return -1;
2520 * ignore multiple definitions
2523 if (drive_get_index(type, bus_id, unit_id) != -1)
2524 return -2;
2526 /* init */
2528 if (type == IF_IDE || type == IF_SCSI)
2529 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2530 if (max_devs)
2531 snprintf(buf, sizeof(buf), "%s%i%s%i",
2532 devname, bus_id, mediastr, unit_id);
2533 else
2534 snprintf(buf, sizeof(buf), "%s%s%i",
2535 devname, mediastr, unit_id);
2536 bdrv = bdrv_new(buf);
2537 drives_table_idx = drive_get_free_idx();
2538 drives_table[drives_table_idx].bdrv = bdrv;
2539 drives_table[drives_table_idx].type = type;
2540 drives_table[drives_table_idx].bus = bus_id;
2541 drives_table[drives_table_idx].unit = unit_id;
2542 drives_table[drives_table_idx].onerror = onerror;
2543 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2544 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2545 nb_drives++;
2547 switch(type) {
2548 case IF_IDE:
2549 case IF_SCSI:
2550 case IF_XEN:
2551 switch(media) {
2552 case MEDIA_DISK:
2553 if (cyls != 0) {
2554 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2555 bdrv_set_translation_hint(bdrv, translation);
2557 break;
2558 case MEDIA_CDROM:
2559 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2560 break;
2562 break;
2563 case IF_SD:
2564 /* FIXME: This isn't really a floppy, but it's a reasonable
2565 approximation. */
2566 case IF_FLOPPY:
2567 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2568 break;
2569 case IF_PFLASH:
2570 case IF_MTD:
2571 case IF_VIRTIO:
2572 break;
2573 case IF_COUNT:
2574 abort();
2576 if (!file[0])
2577 return -2;
2578 bdrv_flags = 0;
2579 if (snapshot) {
2580 bdrv_flags |= BDRV_O_SNAPSHOT;
2581 cache = 2; /* always use write-back with snapshot */
2583 if (cache == 0) /* no caching */
2584 bdrv_flags |= BDRV_O_NOCACHE;
2585 else if (cache == 2) /* write-back */
2586 bdrv_flags |= BDRV_O_CACHE_WB;
2587 else if (cache == 3) /* not specified */
2588 bdrv_flags |= BDRV_O_CACHE_DEF;
2589 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2590 fprintf(stderr, "qemu: could not open disk image %s\n",
2591 file);
2592 return -1;
2594 if (bdrv_key_required(bdrv))
2595 autostart = 0;
2596 return drives_table_idx;
2599 static void numa_add(const char *optarg)
2601 char option[128];
2602 char *endptr;
2603 unsigned long long value, endvalue;
2604 int nodenr;
2606 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2607 if (!strcmp(option, "node")) {
2608 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2609 nodenr = nb_numa_nodes;
2610 } else {
2611 nodenr = strtoull(option, NULL, 10);
2614 if (get_param_value(option, 128, "mem", optarg) == 0) {
2615 node_mem[nodenr] = 0;
2616 } else {
2617 value = strtoull(option, &endptr, 0);
2618 switch (*endptr) {
2619 case 0: case 'M': case 'm':
2620 value <<= 20;
2621 break;
2622 case 'G': case 'g':
2623 value <<= 30;
2624 break;
2626 node_mem[nodenr] = value;
2628 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2629 node_cpumask[nodenr] = 0;
2630 } else {
2631 value = strtoull(option, &endptr, 10);
2632 if (value >= 64) {
2633 value = 63;
2634 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2635 } else {
2636 if (*endptr == '-') {
2637 endvalue = strtoull(endptr+1, &endptr, 10);
2638 if (endvalue >= 63) {
2639 endvalue = 62;
2640 fprintf(stderr,
2641 "only 63 CPUs in NUMA mode supported.\n");
2643 value = (1 << (endvalue + 1)) - (1 << value);
2644 } else {
2645 value = 1 << value;
2648 node_cpumask[nodenr] = value;
2650 nb_numa_nodes++;
2652 return;
2655 /***********************************************************/
2656 /* USB devices */
2658 static USBPort *used_usb_ports;
2659 static USBPort *free_usb_ports;
2661 /* ??? Maybe change this to register a hub to keep track of the topology. */
2662 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2663 usb_attachfn attach)
2665 port->opaque = opaque;
2666 port->index = index;
2667 port->attach = attach;
2668 port->next = free_usb_ports;
2669 free_usb_ports = port;
2672 int usb_device_add_dev(USBDevice *dev)
2674 USBPort *port;
2676 /* Find a USB port to add the device to. */
2677 port = free_usb_ports;
2678 if (!port->next) {
2679 USBDevice *hub;
2681 /* Create a new hub and chain it on. */
2682 free_usb_ports = NULL;
2683 port->next = used_usb_ports;
2684 used_usb_ports = port;
2686 hub = usb_hub_init(VM_USB_HUB_SIZE);
2687 usb_attach(port, hub);
2688 port = free_usb_ports;
2691 free_usb_ports = port->next;
2692 port->next = used_usb_ports;
2693 used_usb_ports = port;
2694 usb_attach(port, dev);
2695 return 0;
2698 static void usb_msd_password_cb(void *opaque, int err)
2700 USBDevice *dev = opaque;
2702 if (!err)
2703 usb_device_add_dev(dev);
2704 else
2705 dev->handle_destroy(dev);
2708 static int usb_device_add(const char *devname, int is_hotplug)
2710 const char *p;
2711 USBDevice *dev;
2713 if (!free_usb_ports)
2714 return -1;
2716 if (strstart(devname, "host:", &p)) {
2717 dev = usb_host_device_open(p);
2718 } else if (!strcmp(devname, "mouse")) {
2719 dev = usb_mouse_init();
2720 } else if (!strcmp(devname, "tablet")) {
2721 dev = usb_tablet_init();
2722 } else if (!strcmp(devname, "keyboard")) {
2723 dev = usb_keyboard_init();
2724 } else if (strstart(devname, "disk:", &p)) {
2725 BlockDriverState *bs;
2727 dev = usb_msd_init(p);
2728 if (!dev)
2729 return -1;
2730 bs = usb_msd_get_bdrv(dev);
2731 if (bdrv_key_required(bs)) {
2732 autostart = 0;
2733 if (is_hotplug) {
2734 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2735 dev);
2736 return 0;
2739 } else if (!strcmp(devname, "wacom-tablet")) {
2740 dev = usb_wacom_init();
2741 } else if (strstart(devname, "serial:", &p)) {
2742 dev = usb_serial_init(p);
2743 #ifdef CONFIG_BRLAPI
2744 } else if (!strcmp(devname, "braille")) {
2745 dev = usb_baum_init();
2746 #endif
2747 } else if (strstart(devname, "net:", &p)) {
2748 int nic = nb_nics;
2750 if (net_client_init("nic", p) < 0)
2751 return -1;
2752 nd_table[nic].model = "usb";
2753 dev = usb_net_init(&nd_table[nic]);
2754 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2755 dev = usb_bt_init(devname[2] ? hci_init(p) :
2756 bt_new_hci(qemu_find_bt_vlan(0)));
2757 } else {
2758 return -1;
2760 if (!dev)
2761 return -1;
2763 return usb_device_add_dev(dev);
2766 int usb_device_del_addr(int bus_num, int addr)
2768 USBPort *port;
2769 USBPort **lastp;
2770 USBDevice *dev;
2772 if (!used_usb_ports)
2773 return -1;
2775 if (bus_num != 0)
2776 return -1;
2778 lastp = &used_usb_ports;
2779 port = used_usb_ports;
2780 while (port && port->dev->addr != addr) {
2781 lastp = &port->next;
2782 port = port->next;
2785 if (!port)
2786 return -1;
2788 dev = port->dev;
2789 *lastp = port->next;
2790 usb_attach(port, NULL);
2791 dev->handle_destroy(dev);
2792 port->next = free_usb_ports;
2793 free_usb_ports = port;
2794 return 0;
2797 static int usb_device_del(const char *devname)
2799 int bus_num, addr;
2800 const char *p;
2802 if (strstart(devname, "host:", &p))
2803 return usb_host_device_close(p);
2805 if (!used_usb_ports)
2806 return -1;
2808 p = strchr(devname, '.');
2809 if (!p)
2810 return -1;
2811 bus_num = strtoul(devname, NULL, 0);
2812 addr = strtoul(p + 1, NULL, 0);
2814 return usb_device_del_addr(bus_num, addr);
2817 void do_usb_add(Monitor *mon, const char *devname)
2819 usb_device_add(devname, 1);
2822 void do_usb_del(Monitor *mon, const char *devname)
2824 usb_device_del(devname);
2827 void usb_info(Monitor *mon)
2829 USBDevice *dev;
2830 USBPort *port;
2831 const char *speed_str;
2833 if (!usb_enabled) {
2834 monitor_printf(mon, "USB support not enabled\n");
2835 return;
2838 for (port = used_usb_ports; port; port = port->next) {
2839 dev = port->dev;
2840 if (!dev)
2841 continue;
2842 switch(dev->speed) {
2843 case USB_SPEED_LOW:
2844 speed_str = "1.5";
2845 break;
2846 case USB_SPEED_FULL:
2847 speed_str = "12";
2848 break;
2849 case USB_SPEED_HIGH:
2850 speed_str = "480";
2851 break;
2852 default:
2853 speed_str = "?";
2854 break;
2856 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2857 0, dev->addr, speed_str, dev->devname);
2861 /***********************************************************/
2862 /* PCMCIA/Cardbus */
2864 static struct pcmcia_socket_entry_s {
2865 PCMCIASocket *socket;
2866 struct pcmcia_socket_entry_s *next;
2867 } *pcmcia_sockets = 0;
2869 void pcmcia_socket_register(PCMCIASocket *socket)
2871 struct pcmcia_socket_entry_s *entry;
2873 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2874 entry->socket = socket;
2875 entry->next = pcmcia_sockets;
2876 pcmcia_sockets = entry;
2879 void pcmcia_socket_unregister(PCMCIASocket *socket)
2881 struct pcmcia_socket_entry_s *entry, **ptr;
2883 ptr = &pcmcia_sockets;
2884 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2885 if (entry->socket == socket) {
2886 *ptr = entry->next;
2887 qemu_free(entry);
2891 void pcmcia_info(Monitor *mon)
2893 struct pcmcia_socket_entry_s *iter;
2895 if (!pcmcia_sockets)
2896 monitor_printf(mon, "No PCMCIA sockets\n");
2898 for (iter = pcmcia_sockets; iter; iter = iter->next)
2899 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2900 iter->socket->attached ? iter->socket->card_string :
2901 "Empty");
2904 /***********************************************************/
2905 /* register display */
2907 struct DisplayAllocator default_allocator = {
2908 defaultallocator_create_displaysurface,
2909 defaultallocator_resize_displaysurface,
2910 defaultallocator_free_displaysurface
2913 void register_displaystate(DisplayState *ds)
2915 DisplayState **s;
2916 s = &display_state;
2917 while (*s != NULL)
2918 s = &(*s)->next;
2919 ds->next = NULL;
2920 *s = ds;
2923 DisplayState *get_displaystate(void)
2925 return display_state;
2928 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2930 if(ds->allocator == &default_allocator) ds->allocator = da;
2931 return ds->allocator;
2934 /* dumb display */
2936 static void dumb_display_init(void)
2938 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2939 ds->allocator = &default_allocator;
2940 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2941 register_displaystate(ds);
2944 /***********************************************************/
2945 /* I/O handling */
2947 typedef struct IOHandlerRecord {
2948 int fd;
2949 IOCanRWHandler *fd_read_poll;
2950 IOHandler *fd_read;
2951 IOHandler *fd_write;
2952 int deleted;
2953 void *opaque;
2954 /* temporary data */
2955 struct pollfd *ufd;
2956 struct IOHandlerRecord *next;
2957 } IOHandlerRecord;
2959 static IOHandlerRecord *first_io_handler;
2961 /* XXX: fd_read_poll should be suppressed, but an API change is
2962 necessary in the character devices to suppress fd_can_read(). */
2963 int qemu_set_fd_handler2(int fd,
2964 IOCanRWHandler *fd_read_poll,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2969 IOHandlerRecord **pioh, *ioh;
2971 if (!fd_read && !fd_write) {
2972 pioh = &first_io_handler;
2973 for(;;) {
2974 ioh = *pioh;
2975 if (ioh == NULL)
2976 break;
2977 if (ioh->fd == fd) {
2978 ioh->deleted = 1;
2979 break;
2981 pioh = &ioh->next;
2983 } else {
2984 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2985 if (ioh->fd == fd)
2986 goto found;
2988 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2989 ioh->next = first_io_handler;
2990 first_io_handler = ioh;
2991 found:
2992 ioh->fd = fd;
2993 ioh->fd_read_poll = fd_read_poll;
2994 ioh->fd_read = fd_read;
2995 ioh->fd_write = fd_write;
2996 ioh->opaque = opaque;
2997 ioh->deleted = 0;
2999 return 0;
3002 int qemu_set_fd_handler(int fd,
3003 IOHandler *fd_read,
3004 IOHandler *fd_write,
3005 void *opaque)
3007 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3010 #ifdef _WIN32
3011 /***********************************************************/
3012 /* Polling handling */
3014 typedef struct PollingEntry {
3015 PollingFunc *func;
3016 void *opaque;
3017 struct PollingEntry *next;
3018 } PollingEntry;
3020 static PollingEntry *first_polling_entry;
3022 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3024 PollingEntry **ppe, *pe;
3025 pe = qemu_mallocz(sizeof(PollingEntry));
3026 pe->func = func;
3027 pe->opaque = opaque;
3028 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3029 *ppe = pe;
3030 return 0;
3033 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3035 PollingEntry **ppe, *pe;
3036 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3037 pe = *ppe;
3038 if (pe->func == func && pe->opaque == opaque) {
3039 *ppe = pe->next;
3040 qemu_free(pe);
3041 break;
3046 /***********************************************************/
3047 /* Wait objects support */
3048 typedef struct WaitObjects {
3049 int num;
3050 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3051 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3052 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3053 } WaitObjects;
3055 static WaitObjects wait_objects = {0};
3057 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3059 WaitObjects *w = &wait_objects;
3061 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3062 return -1;
3063 w->events[w->num] = handle;
3064 w->func[w->num] = func;
3065 w->opaque[w->num] = opaque;
3066 w->num++;
3067 return 0;
3070 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3072 int i, found;
3073 WaitObjects *w = &wait_objects;
3075 found = 0;
3076 for (i = 0; i < w->num; i++) {
3077 if (w->events[i] == handle)
3078 found = 1;
3079 if (found) {
3080 w->events[i] = w->events[i + 1];
3081 w->func[i] = w->func[i + 1];
3082 w->opaque[i] = w->opaque[i + 1];
3085 if (found)
3086 w->num--;
3088 #endif
3090 /***********************************************************/
3091 /* ram save/restore */
3093 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3095 int v;
3097 v = qemu_get_byte(f);
3098 switch(v) {
3099 case 0:
3100 if (qemu_get_buffer(f, buf, len) != len)
3101 return -EIO;
3102 break;
3103 case 1:
3104 v = qemu_get_byte(f);
3105 memset(buf, v, len);
3106 break;
3107 default:
3108 return -EINVAL;
3111 if (qemu_file_has_error(f))
3112 return -EIO;
3114 return 0;
3117 static int ram_load_v1(QEMUFile *f, void *opaque)
3119 int ret;
3120 ram_addr_t i;
3122 if (qemu_get_be32(f) != last_ram_offset)
3123 return -EINVAL;
3124 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3125 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3126 if (ret)
3127 return ret;
3129 return 0;
3132 #define BDRV_HASH_BLOCK_SIZE 1024
3133 #define IOBUF_SIZE 4096
3134 #define RAM_CBLOCK_MAGIC 0xfabe
3136 typedef struct RamDecompressState {
3137 z_stream zstream;
3138 QEMUFile *f;
3139 uint8_t buf[IOBUF_SIZE];
3140 } RamDecompressState;
3142 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3144 int ret;
3145 memset(s, 0, sizeof(*s));
3146 s->f = f;
3147 ret = inflateInit(&s->zstream);
3148 if (ret != Z_OK)
3149 return -1;
3150 return 0;
3153 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3155 int ret, clen;
3157 s->zstream.avail_out = len;
3158 s->zstream.next_out = buf;
3159 while (s->zstream.avail_out > 0) {
3160 if (s->zstream.avail_in == 0) {
3161 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3162 return -1;
3163 clen = qemu_get_be16(s->f);
3164 if (clen > IOBUF_SIZE)
3165 return -1;
3166 qemu_get_buffer(s->f, s->buf, clen);
3167 s->zstream.avail_in = clen;
3168 s->zstream.next_in = s->buf;
3170 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3171 if (ret != Z_OK && ret != Z_STREAM_END) {
3172 return -1;
3175 return 0;
3178 static void ram_decompress_close(RamDecompressState *s)
3180 inflateEnd(&s->zstream);
3183 #define RAM_SAVE_FLAG_FULL 0x01
3184 #define RAM_SAVE_FLAG_COMPRESS 0x02
3185 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3186 #define RAM_SAVE_FLAG_PAGE 0x08
3187 #define RAM_SAVE_FLAG_EOS 0x10
3189 static int is_dup_page(uint8_t *page, uint8_t ch)
3191 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3192 uint32_t *array = (uint32_t *)page;
3193 int i;
3195 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3196 if (array[i] != val)
3197 return 0;
3200 return 1;
3203 static int ram_save_block(QEMUFile *f)
3205 static ram_addr_t current_addr = 0;
3206 ram_addr_t saved_addr = current_addr;
3207 ram_addr_t addr = 0;
3208 int found = 0;
3210 while (addr < last_ram_offset) {
3211 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3212 uint8_t *p;
3214 cpu_physical_memory_reset_dirty(current_addr,
3215 current_addr + TARGET_PAGE_SIZE,
3216 MIGRATION_DIRTY_FLAG);
3218 p = qemu_get_ram_ptr(current_addr);
3220 if (is_dup_page(p, *p)) {
3221 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3222 qemu_put_byte(f, *p);
3223 } else {
3224 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3225 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3228 found = 1;
3229 break;
3231 addr += TARGET_PAGE_SIZE;
3232 current_addr = (saved_addr + addr) % last_ram_offset;
3235 return found;
3238 static ram_addr_t ram_save_threshold = 10;
3240 static ram_addr_t ram_save_remaining(void)
3242 ram_addr_t addr;
3243 ram_addr_t count = 0;
3245 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3246 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3247 count++;
3250 return count;
3253 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3255 ram_addr_t addr;
3257 if (stage == 1) {
3258 /* Make sure all dirty bits are set */
3259 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3260 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3261 cpu_physical_memory_set_dirty(addr);
3264 /* Enable dirty memory tracking */
3265 cpu_physical_memory_set_dirty_tracking(1);
3267 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3270 while (!qemu_file_rate_limit(f)) {
3271 int ret;
3273 ret = ram_save_block(f);
3274 if (ret == 0) /* no more blocks */
3275 break;
3278 /* try transferring iterative blocks of memory */
3280 if (stage == 3) {
3282 /* flush all remaining blocks regardless of rate limiting */
3283 while (ram_save_block(f) != 0);
3284 cpu_physical_memory_set_dirty_tracking(0);
3287 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3289 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3292 static int ram_load_dead(QEMUFile *f, void *opaque)
3294 RamDecompressState s1, *s = &s1;
3295 uint8_t buf[10];
3296 ram_addr_t i;
3298 if (ram_decompress_open(s, f) < 0)
3299 return -EINVAL;
3300 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3301 if (ram_decompress_buf(s, buf, 1) < 0) {
3302 fprintf(stderr, "Error while reading ram block header\n");
3303 goto error;
3305 if (buf[0] == 0) {
3306 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3307 BDRV_HASH_BLOCK_SIZE) < 0) {
3308 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3309 goto error;
3311 } else {
3312 error:
3313 printf("Error block header\n");
3314 return -EINVAL;
3317 ram_decompress_close(s);
3319 return 0;
3322 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3324 ram_addr_t addr;
3325 int flags;
3327 if (version_id == 1)
3328 return ram_load_v1(f, opaque);
3330 if (version_id == 2) {
3331 if (qemu_get_be32(f) != last_ram_offset)
3332 return -EINVAL;
3333 return ram_load_dead(f, opaque);
3336 if (version_id != 3)
3337 return -EINVAL;
3339 do {
3340 addr = qemu_get_be64(f);
3342 flags = addr & ~TARGET_PAGE_MASK;
3343 addr &= TARGET_PAGE_MASK;
3345 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3346 if (addr != last_ram_offset)
3347 return -EINVAL;
3350 if (flags & RAM_SAVE_FLAG_FULL) {
3351 if (ram_load_dead(f, opaque) < 0)
3352 return -EINVAL;
3355 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3356 uint8_t ch = qemu_get_byte(f);
3357 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3358 } else if (flags & RAM_SAVE_FLAG_PAGE)
3359 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3360 } while (!(flags & RAM_SAVE_FLAG_EOS));
3362 return 0;
3365 void qemu_service_io(void)
3367 qemu_notify_event();
3370 /***********************************************************/
3371 /* bottom halves (can be seen as timers which expire ASAP) */
3373 struct QEMUBH {
3374 QEMUBHFunc *cb;
3375 void *opaque;
3376 int scheduled;
3377 int idle;
3378 int deleted;
3379 QEMUBH *next;
3382 static QEMUBH *first_bh = NULL;
3384 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3386 QEMUBH *bh;
3387 bh = qemu_mallocz(sizeof(QEMUBH));
3388 bh->cb = cb;
3389 bh->opaque = opaque;
3390 bh->next = first_bh;
3391 first_bh = bh;
3392 return bh;
3395 int qemu_bh_poll(void)
3397 QEMUBH *bh, **bhp;
3398 int ret;
3400 ret = 0;
3401 for (bh = first_bh; bh; bh = bh->next) {
3402 if (!bh->deleted && bh->scheduled) {
3403 bh->scheduled = 0;
3404 if (!bh->idle)
3405 ret = 1;
3406 bh->idle = 0;
3407 bh->cb(bh->opaque);
3411 /* remove deleted bhs */
3412 bhp = &first_bh;
3413 while (*bhp) {
3414 bh = *bhp;
3415 if (bh->deleted) {
3416 *bhp = bh->next;
3417 qemu_free(bh);
3418 } else
3419 bhp = &bh->next;
3422 return ret;
3425 void qemu_bh_schedule_idle(QEMUBH *bh)
3427 if (bh->scheduled)
3428 return;
3429 bh->scheduled = 1;
3430 bh->idle = 1;
3433 void qemu_bh_schedule(QEMUBH *bh)
3435 if (bh->scheduled)
3436 return;
3437 bh->scheduled = 1;
3438 bh->idle = 0;
3439 /* stop the currently executing CPU to execute the BH ASAP */
3440 qemu_notify_event();
3443 void qemu_bh_cancel(QEMUBH *bh)
3445 bh->scheduled = 0;
3448 void qemu_bh_delete(QEMUBH *bh)
3450 bh->scheduled = 0;
3451 bh->deleted = 1;
3454 static void qemu_bh_update_timeout(int *timeout)
3456 QEMUBH *bh;
3458 for (bh = first_bh; bh; bh = bh->next) {
3459 if (!bh->deleted && bh->scheduled) {
3460 if (bh->idle) {
3461 /* idle bottom halves will be polled at least
3462 * every 10ms */
3463 *timeout = MIN(10, *timeout);
3464 } else {
3465 /* non-idle bottom halves will be executed
3466 * immediately */
3467 *timeout = 0;
3468 break;
3474 /***********************************************************/
3475 /* machine registration */
3477 static QEMUMachine *first_machine = NULL;
3478 QEMUMachine *current_machine = NULL;
3480 int qemu_register_machine(QEMUMachine *m)
3482 QEMUMachine **pm;
3483 pm = &first_machine;
3484 while (*pm != NULL)
3485 pm = &(*pm)->next;
3486 m->next = NULL;
3487 *pm = m;
3488 return 0;
3491 static QEMUMachine *find_machine(const char *name)
3493 QEMUMachine *m;
3495 for(m = first_machine; m != NULL; m = m->next) {
3496 if (!strcmp(m->name, name))
3497 return m;
3499 return NULL;
3502 /***********************************************************/
3503 /* main execution loop */
3505 static void gui_update(void *opaque)
3507 uint64_t interval = GUI_REFRESH_INTERVAL;
3508 DisplayState *ds = opaque;
3509 DisplayChangeListener *dcl = ds->listeners;
3511 dpy_refresh(ds);
3513 while (dcl != NULL) {
3514 if (dcl->gui_timer_interval &&
3515 dcl->gui_timer_interval < interval)
3516 interval = dcl->gui_timer_interval;
3517 dcl = dcl->next;
3519 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3522 static void nographic_update(void *opaque)
3524 uint64_t interval = GUI_REFRESH_INTERVAL;
3526 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3529 struct vm_change_state_entry {
3530 VMChangeStateHandler *cb;
3531 void *opaque;
3532 LIST_ENTRY (vm_change_state_entry) entries;
3535 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3537 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3538 void *opaque)
3540 VMChangeStateEntry *e;
3542 e = qemu_mallocz(sizeof (*e));
3544 e->cb = cb;
3545 e->opaque = opaque;
3546 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3547 return e;
3550 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3552 LIST_REMOVE (e, entries);
3553 qemu_free (e);
3556 static void vm_state_notify(int running, int reason)
3558 VMChangeStateEntry *e;
3560 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3561 e->cb(e->opaque, running, reason);
3565 static void resume_all_vcpus(void);
3566 static void pause_all_vcpus(void);
3568 void vm_start(void)
3570 if (!vm_running) {
3571 cpu_enable_ticks();
3572 vm_running = 1;
3573 vm_state_notify(1, 0);
3574 qemu_rearm_alarm_timer(alarm_timer);
3575 resume_all_vcpus();
3579 /* reset/shutdown handler */
3581 typedef struct QEMUResetEntry {
3582 QEMUResetHandler *func;
3583 void *opaque;
3584 struct QEMUResetEntry *next;
3585 } QEMUResetEntry;
3587 static QEMUResetEntry *first_reset_entry;
3588 static int reset_requested;
3589 static int shutdown_requested;
3590 static int powerdown_requested;
3591 static int debug_requested;
3592 static int vmstop_requested;
3594 int qemu_shutdown_requested(void)
3596 int r = shutdown_requested;
3597 shutdown_requested = 0;
3598 return r;
3601 int qemu_reset_requested(void)
3603 int r = reset_requested;
3604 reset_requested = 0;
3605 return r;
3608 int qemu_powerdown_requested(void)
3610 int r = powerdown_requested;
3611 powerdown_requested = 0;
3612 return r;
3615 static int qemu_debug_requested(void)
3617 int r = debug_requested;
3618 debug_requested = 0;
3619 return r;
3622 static int qemu_vmstop_requested(void)
3624 int r = vmstop_requested;
3625 vmstop_requested = 0;
3626 return r;
3629 static void do_vm_stop(int reason)
3631 if (vm_running) {
3632 cpu_disable_ticks();
3633 vm_running = 0;
3634 pause_all_vcpus();
3635 vm_state_notify(0, reason);
3639 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3641 QEMUResetEntry **pre, *re;
3643 pre = &first_reset_entry;
3644 while (*pre != NULL)
3645 pre = &(*pre)->next;
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3647 re->func = func;
3648 re->opaque = opaque;
3649 re->next = NULL;
3650 *pre = re;
3653 void qemu_system_reset(void)
3655 QEMUResetEntry *re;
3657 /* reset all devices */
3658 for(re = first_reset_entry; re != NULL; re = re->next) {
3659 re->func(re->opaque);
3661 if (kvm_enabled())
3662 kvm_sync_vcpus();
3665 void qemu_system_reset_request(void)
3667 if (no_reboot) {
3668 shutdown_requested = 1;
3669 } else {
3670 reset_requested = 1;
3672 qemu_notify_event();
3675 void qemu_system_shutdown_request(void)
3677 shutdown_requested = 1;
3678 qemu_notify_event();
3681 void qemu_system_powerdown_request(void)
3683 powerdown_requested = 1;
3684 qemu_notify_event();
3687 #ifdef CONFIG_IOTHREAD
3688 static void qemu_system_vmstop_request(int reason)
3690 vmstop_requested = reason;
3691 qemu_notify_event();
3693 #endif
3695 #ifndef _WIN32
3696 static int io_thread_fd = -1;
3698 static void qemu_event_increment(void)
3700 static const char byte = 0;
3702 if (io_thread_fd == -1)
3703 return;
3705 write(io_thread_fd, &byte, sizeof(byte));
3708 static void qemu_event_read(void *opaque)
3710 int fd = (unsigned long)opaque;
3711 ssize_t len;
3713 /* Drain the notify pipe */
3714 do {
3715 char buffer[512];
3716 len = read(fd, buffer, sizeof(buffer));
3717 } while ((len == -1 && errno == EINTR) || len > 0);
3720 static int qemu_event_init(void)
3722 int err;
3723 int fds[2];
3725 err = pipe(fds);
3726 if (err == -1)
3727 return -errno;
3729 err = fcntl_setfl(fds[0], O_NONBLOCK);
3730 if (err < 0)
3731 goto fail;
3733 err = fcntl_setfl(fds[1], O_NONBLOCK);
3734 if (err < 0)
3735 goto fail;
3737 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3738 (void *)(unsigned long)fds[0]);
3740 io_thread_fd = fds[1];
3741 return 0;
3743 fail:
3744 close(fds[0]);
3745 close(fds[1]);
3746 return err;
3748 #else
3749 HANDLE qemu_event_handle;
3751 static void dummy_event_handler(void *opaque)
3755 static int qemu_event_init(void)
3757 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3758 if (!qemu_event_handle) {
3759 perror("Failed CreateEvent");
3760 return -1;
3762 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3763 return 0;
3766 static void qemu_event_increment(void)
3768 SetEvent(qemu_event_handle);
3770 #endif
3772 static int cpu_can_run(CPUState *env)
3774 if (env->stop)
3775 return 0;
3776 if (env->stopped)
3777 return 0;
3778 return 1;
3781 #ifndef CONFIG_IOTHREAD
3782 static int qemu_init_main_loop(void)
3784 return qemu_event_init();
3787 void qemu_init_vcpu(void *_env)
3789 CPUState *env = _env;
3791 if (kvm_enabled())
3792 kvm_init_vcpu(env);
3793 return;
3796 int qemu_cpu_self(void *env)
3798 return 1;
3801 static void resume_all_vcpus(void)
3805 static void pause_all_vcpus(void)
3809 void qemu_cpu_kick(void *env)
3811 return;
3814 void qemu_notify_event(void)
3816 CPUState *env = cpu_single_env;
3818 if (env) {
3819 cpu_exit(env);
3820 #ifdef USE_KQEMU
3821 if (env->kqemu_enabled)
3822 kqemu_cpu_interrupt(env);
3823 #endif
3827 #define qemu_mutex_lock_iothread() do { } while (0)
3828 #define qemu_mutex_unlock_iothread() do { } while (0)
3830 void vm_stop(int reason)
3832 do_vm_stop(reason);
3835 #else /* CONFIG_IOTHREAD */
3837 #include "qemu-thread.h"
3839 QemuMutex qemu_global_mutex;
3840 static QemuMutex qemu_fair_mutex;
3842 static QemuThread io_thread;
3844 static QemuThread *tcg_cpu_thread;
3845 static QemuCond *tcg_halt_cond;
3847 static int qemu_system_ready;
3848 /* cpu creation */
3849 static QemuCond qemu_cpu_cond;
3850 /* system init */
3851 static QemuCond qemu_system_cond;
3852 static QemuCond qemu_pause_cond;
3854 static void block_io_signals(void);
3855 static void unblock_io_signals(void);
3856 static int tcg_has_work(void);
3858 static int qemu_init_main_loop(void)
3860 int ret;
3862 ret = qemu_event_init();
3863 if (ret)
3864 return ret;
3866 qemu_cond_init(&qemu_pause_cond);
3867 qemu_mutex_init(&qemu_fair_mutex);
3868 qemu_mutex_init(&qemu_global_mutex);
3869 qemu_mutex_lock(&qemu_global_mutex);
3871 unblock_io_signals();
3872 qemu_thread_self(&io_thread);
3874 return 0;
3877 static void qemu_wait_io_event(CPUState *env)
3879 while (!tcg_has_work())
3880 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3882 qemu_mutex_unlock(&qemu_global_mutex);
3885 * Users of qemu_global_mutex can be starved, having no chance
3886 * to acquire it since this path will get to it first.
3887 * So use another lock to provide fairness.
3889 qemu_mutex_lock(&qemu_fair_mutex);
3890 qemu_mutex_unlock(&qemu_fair_mutex);
3892 qemu_mutex_lock(&qemu_global_mutex);
3893 if (env->stop) {
3894 env->stop = 0;
3895 env->stopped = 1;
3896 qemu_cond_signal(&qemu_pause_cond);
3900 static int qemu_cpu_exec(CPUState *env);
3902 static void *kvm_cpu_thread_fn(void *arg)
3904 CPUState *env = arg;
3906 block_io_signals();
3907 qemu_thread_self(env->thread);
3909 /* signal CPU creation */
3910 qemu_mutex_lock(&qemu_global_mutex);
3911 env->created = 1;
3912 qemu_cond_signal(&qemu_cpu_cond);
3914 /* and wait for machine initialization */
3915 while (!qemu_system_ready)
3916 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3918 while (1) {
3919 if (cpu_can_run(env))
3920 qemu_cpu_exec(env);
3921 qemu_wait_io_event(env);
3924 return NULL;
3927 static void tcg_cpu_exec(void);
3929 static void *tcg_cpu_thread_fn(void *arg)
3931 CPUState *env = arg;
3933 block_io_signals();
3934 qemu_thread_self(env->thread);
3936 /* signal CPU creation */
3937 qemu_mutex_lock(&qemu_global_mutex);
3938 for (env = first_cpu; env != NULL; env = env->next_cpu)
3939 env->created = 1;
3940 qemu_cond_signal(&qemu_cpu_cond);
3942 /* and wait for machine initialization */
3943 while (!qemu_system_ready)
3944 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3946 while (1) {
3947 tcg_cpu_exec();
3948 qemu_wait_io_event(cur_cpu);
3951 return NULL;
3954 void qemu_cpu_kick(void *_env)
3956 CPUState *env = _env;
3957 qemu_cond_broadcast(env->halt_cond);
3958 if (kvm_enabled())
3959 qemu_thread_signal(env->thread, SIGUSR1);
3962 int qemu_cpu_self(void *env)
3964 return (cpu_single_env != NULL);
3967 static void cpu_signal(int sig)
3969 if (cpu_single_env)
3970 cpu_exit(cpu_single_env);
3973 static void block_io_signals(void)
3975 sigset_t set;
3976 struct sigaction sigact;
3978 sigemptyset(&set);
3979 sigaddset(&set, SIGUSR2);
3980 sigaddset(&set, SIGIO);
3981 sigaddset(&set, SIGALRM);
3982 pthread_sigmask(SIG_BLOCK, &set, NULL);
3984 sigemptyset(&set);
3985 sigaddset(&set, SIGUSR1);
3986 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3988 memset(&sigact, 0, sizeof(sigact));
3989 sigact.sa_handler = cpu_signal;
3990 sigaction(SIGUSR1, &sigact, NULL);
3993 static void unblock_io_signals(void)
3995 sigset_t set;
3997 sigemptyset(&set);
3998 sigaddset(&set, SIGUSR2);
3999 sigaddset(&set, SIGIO);
4000 sigaddset(&set, SIGALRM);
4001 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4003 sigemptyset(&set);
4004 sigaddset(&set, SIGUSR1);
4005 pthread_sigmask(SIG_BLOCK, &set, NULL);
4008 static void qemu_signal_lock(unsigned int msecs)
4010 qemu_mutex_lock(&qemu_fair_mutex);
4012 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4013 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4014 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4015 break;
4017 qemu_mutex_unlock(&qemu_fair_mutex);
4020 static void qemu_mutex_lock_iothread(void)
4022 if (kvm_enabled()) {
4023 qemu_mutex_lock(&qemu_fair_mutex);
4024 qemu_mutex_lock(&qemu_global_mutex);
4025 qemu_mutex_unlock(&qemu_fair_mutex);
4026 } else
4027 qemu_signal_lock(100);
4030 static void qemu_mutex_unlock_iothread(void)
4032 qemu_mutex_unlock(&qemu_global_mutex);
4035 static int all_vcpus_paused(void)
4037 CPUState *penv = first_cpu;
4039 while (penv) {
4040 if (!penv->stopped)
4041 return 0;
4042 penv = (CPUState *)penv->next_cpu;
4045 return 1;
4048 static void pause_all_vcpus(void)
4050 CPUState *penv = first_cpu;
4052 while (penv) {
4053 penv->stop = 1;
4054 qemu_thread_signal(penv->thread, SIGUSR1);
4055 qemu_cpu_kick(penv);
4056 penv = (CPUState *)penv->next_cpu;
4059 while (!all_vcpus_paused()) {
4060 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4061 penv = first_cpu;
4062 while (penv) {
4063 qemu_thread_signal(penv->thread, SIGUSR1);
4064 penv = (CPUState *)penv->next_cpu;
4069 static void resume_all_vcpus(void)
4071 CPUState *penv = first_cpu;
4073 while (penv) {
4074 penv->stop = 0;
4075 penv->stopped = 0;
4076 qemu_thread_signal(penv->thread, SIGUSR1);
4077 qemu_cpu_kick(penv);
4078 penv = (CPUState *)penv->next_cpu;
4082 static void tcg_init_vcpu(void *_env)
4084 CPUState *env = _env;
4085 /* share a single thread for all cpus with TCG */
4086 if (!tcg_cpu_thread) {
4087 env->thread = qemu_mallocz(sizeof(QemuThread));
4088 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4089 qemu_cond_init(env->halt_cond);
4090 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4091 while (env->created == 0)
4092 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4093 tcg_cpu_thread = env->thread;
4094 tcg_halt_cond = env->halt_cond;
4095 } else {
4096 env->thread = tcg_cpu_thread;
4097 env->halt_cond = tcg_halt_cond;
4101 static void kvm_start_vcpu(CPUState *env)
4103 kvm_init_vcpu(env);
4104 env->thread = qemu_mallocz(sizeof(QemuThread));
4105 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4106 qemu_cond_init(env->halt_cond);
4107 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4108 while (env->created == 0)
4109 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4112 void qemu_init_vcpu(void *_env)
4114 CPUState *env = _env;
4116 if (kvm_enabled())
4117 kvm_start_vcpu(env);
4118 else
4119 tcg_init_vcpu(env);
4122 void qemu_notify_event(void)
4124 qemu_event_increment();
4127 void vm_stop(int reason)
4129 QemuThread me;
4130 qemu_thread_self(&me);
4132 if (!qemu_thread_equal(&me, &io_thread)) {
4133 qemu_system_vmstop_request(reason);
4135 * FIXME: should not return to device code in case
4136 * vm_stop() has been requested.
4138 if (cpu_single_env) {
4139 cpu_exit(cpu_single_env);
4140 cpu_single_env->stop = 1;
4142 return;
4144 do_vm_stop(reason);
4147 #endif
4150 #ifdef _WIN32
4151 static void host_main_loop_wait(int *timeout)
4153 int ret, ret2, i;
4154 PollingEntry *pe;
4157 /* XXX: need to suppress polling by better using win32 events */
4158 ret = 0;
4159 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4160 ret |= pe->func(pe->opaque);
4162 if (ret == 0) {
4163 int err;
4164 WaitObjects *w = &wait_objects;
4166 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4167 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4168 if (w->func[ret - WAIT_OBJECT_0])
4169 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4171 /* Check for additional signaled events */
4172 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4174 /* Check if event is signaled */
4175 ret2 = WaitForSingleObject(w->events[i], 0);
4176 if(ret2 == WAIT_OBJECT_0) {
4177 if (w->func[i])
4178 w->func[i](w->opaque[i]);
4179 } else if (ret2 == WAIT_TIMEOUT) {
4180 } else {
4181 err = GetLastError();
4182 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4185 } else if (ret == WAIT_TIMEOUT) {
4186 } else {
4187 err = GetLastError();
4188 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4192 *timeout = 0;
4194 #else
4195 static void host_main_loop_wait(int *timeout)
4198 #endif
4200 void main_loop_wait(int timeout)
4202 IOHandlerRecord *ioh;
4203 fd_set rfds, wfds, xfds;
4204 int ret, nfds;
4205 struct timeval tv;
4207 qemu_bh_update_timeout(&timeout);
4209 host_main_loop_wait(&timeout);
4211 /* poll any events */
4212 /* XXX: separate device handlers from system ones */
4213 nfds = -1;
4214 FD_ZERO(&rfds);
4215 FD_ZERO(&wfds);
4216 FD_ZERO(&xfds);
4217 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4218 if (ioh->deleted)
4219 continue;
4220 if (ioh->fd_read &&
4221 (!ioh->fd_read_poll ||
4222 ioh->fd_read_poll(ioh->opaque) != 0)) {
4223 FD_SET(ioh->fd, &rfds);
4224 if (ioh->fd > nfds)
4225 nfds = ioh->fd;
4227 if (ioh->fd_write) {
4228 FD_SET(ioh->fd, &wfds);
4229 if (ioh->fd > nfds)
4230 nfds = ioh->fd;
4234 tv.tv_sec = timeout / 1000;
4235 tv.tv_usec = (timeout % 1000) * 1000;
4237 #if defined(CONFIG_SLIRP)
4238 if (slirp_is_inited()) {
4239 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4241 #endif
4242 qemu_mutex_unlock_iothread();
4243 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4244 qemu_mutex_lock_iothread();
4245 if (ret > 0) {
4246 IOHandlerRecord **pioh;
4248 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4249 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4250 ioh->fd_read(ioh->opaque);
4252 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4253 ioh->fd_write(ioh->opaque);
4257 /* remove deleted IO handlers */
4258 pioh = &first_io_handler;
4259 while (*pioh) {
4260 ioh = *pioh;
4261 if (ioh->deleted) {
4262 *pioh = ioh->next;
4263 qemu_free(ioh);
4264 } else
4265 pioh = &ioh->next;
4268 #if defined(CONFIG_SLIRP)
4269 if (slirp_is_inited()) {
4270 if (ret < 0) {
4271 FD_ZERO(&rfds);
4272 FD_ZERO(&wfds);
4273 FD_ZERO(&xfds);
4275 slirp_select_poll(&rfds, &wfds, &xfds);
4277 #endif
4279 /* rearm timer, if not periodic */
4280 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4281 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4282 qemu_rearm_alarm_timer(alarm_timer);
4285 /* vm time timers */
4286 if (vm_running) {
4287 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4288 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4289 qemu_get_clock(vm_clock));
4292 /* real time timers */
4293 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4294 qemu_get_clock(rt_clock));
4296 /* Check bottom-halves last in case any of the earlier events triggered
4297 them. */
4298 qemu_bh_poll();
4302 static int qemu_cpu_exec(CPUState *env)
4304 int ret;
4305 #ifdef CONFIG_PROFILER
4306 int64_t ti;
4307 #endif
4309 #ifdef CONFIG_PROFILER
4310 ti = profile_getclock();
4311 #endif
4312 if (use_icount) {
4313 int64_t count;
4314 int decr;
4315 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4316 env->icount_decr.u16.low = 0;
4317 env->icount_extra = 0;
4318 count = qemu_next_deadline();
4319 count = (count + (1 << icount_time_shift) - 1)
4320 >> icount_time_shift;
4321 qemu_icount += count;
4322 decr = (count > 0xffff) ? 0xffff : count;
4323 count -= decr;
4324 env->icount_decr.u16.low = decr;
4325 env->icount_extra = count;
4327 ret = cpu_exec(env);
4328 #ifdef CONFIG_PROFILER
4329 qemu_time += profile_getclock() - ti;
4330 #endif
4331 if (use_icount) {
4332 /* Fold pending instructions back into the
4333 instruction counter, and clear the interrupt flag. */
4334 qemu_icount -= (env->icount_decr.u16.low
4335 + env->icount_extra);
4336 env->icount_decr.u32 = 0;
4337 env->icount_extra = 0;
4339 return ret;
4342 static void tcg_cpu_exec(void)
4344 int ret = 0;
4346 if (next_cpu == NULL)
4347 next_cpu = first_cpu;
4348 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4349 CPUState *env = cur_cpu = next_cpu;
4351 if (!vm_running)
4352 break;
4353 if (timer_alarm_pending) {
4354 timer_alarm_pending = 0;
4355 break;
4357 if (cpu_can_run(env))
4358 ret = qemu_cpu_exec(env);
4359 if (ret == EXCP_DEBUG) {
4360 gdb_set_stop_cpu(env);
4361 debug_requested = 1;
4362 break;
4367 static int cpu_has_work(CPUState *env)
4369 if (env->stop)
4370 return 1;
4371 if (env->stopped)
4372 return 0;
4373 if (!env->halted)
4374 return 1;
4375 if (qemu_cpu_has_work(env))
4376 return 1;
4377 return 0;
4380 static int tcg_has_work(void)
4382 CPUState *env;
4384 for (env = first_cpu; env != NULL; env = env->next_cpu)
4385 if (cpu_has_work(env))
4386 return 1;
4387 return 0;
4390 static int qemu_calculate_timeout(void)
4392 int timeout;
4394 if (!vm_running)
4395 timeout = 5000;
4396 else if (tcg_has_work())
4397 timeout = 0;
4398 else if (!use_icount)
4399 timeout = 5000;
4400 else {
4401 /* XXX: use timeout computed from timers */
4402 int64_t add;
4403 int64_t delta;
4404 /* Advance virtual time to the next event. */
4405 if (use_icount == 1) {
4406 /* When not using an adaptive execution frequency
4407 we tend to get badly out of sync with real time,
4408 so just delay for a reasonable amount of time. */
4409 delta = 0;
4410 } else {
4411 delta = cpu_get_icount() - cpu_get_clock();
4413 if (delta > 0) {
4414 /* If virtual time is ahead of real time then just
4415 wait for IO. */
4416 timeout = (delta / 1000000) + 1;
4417 } else {
4418 /* Wait for either IO to occur or the next
4419 timer event. */
4420 add = qemu_next_deadline();
4421 /* We advance the timer before checking for IO.
4422 Limit the amount we advance so that early IO
4423 activity won't get the guest too far ahead. */
4424 if (add > 10000000)
4425 add = 10000000;
4426 delta += add;
4427 add = (add + (1 << icount_time_shift) - 1)
4428 >> icount_time_shift;
4429 qemu_icount += add;
4430 timeout = delta / 1000000;
4431 if (timeout < 0)
4432 timeout = 0;
4436 return timeout;
4439 static int vm_can_run(void)
4441 if (powerdown_requested)
4442 return 0;
4443 if (reset_requested)
4444 return 0;
4445 if (shutdown_requested)
4446 return 0;
4447 if (debug_requested)
4448 return 0;
4449 return 1;
4452 static void main_loop(void)
4454 int r;
4456 #ifdef CONFIG_IOTHREAD
4457 qemu_system_ready = 1;
4458 qemu_cond_broadcast(&qemu_system_cond);
4459 #endif
4461 for (;;) {
4462 do {
4463 #ifdef CONFIG_PROFILER
4464 int64_t ti;
4465 #endif
4466 #ifndef CONFIG_IOTHREAD
4467 tcg_cpu_exec();
4468 #endif
4469 #ifdef CONFIG_PROFILER
4470 ti = profile_getclock();
4471 #endif
4472 #ifdef CONFIG_IOTHREAD
4473 main_loop_wait(1000);
4474 #else
4475 main_loop_wait(qemu_calculate_timeout());
4476 #endif
4477 #ifdef CONFIG_PROFILER
4478 dev_time += profile_getclock() - ti;
4479 #endif
4480 } while (vm_can_run());
4482 if (qemu_debug_requested())
4483 vm_stop(EXCP_DEBUG);
4484 if (qemu_shutdown_requested()) {
4485 if (no_shutdown) {
4486 vm_stop(0);
4487 no_shutdown = 0;
4488 } else
4489 break;
4491 if (qemu_reset_requested()) {
4492 pause_all_vcpus();
4493 qemu_system_reset();
4494 resume_all_vcpus();
4496 if (qemu_powerdown_requested())
4497 qemu_system_powerdown();
4498 if ((r = qemu_vmstop_requested()))
4499 vm_stop(r);
4501 pause_all_vcpus();
4504 static void version(void)
4506 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4509 static void help(int exitcode)
4511 version();
4512 printf("usage: %s [options] [disk_image]\n"
4513 "\n"
4514 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4515 "\n"
4516 #define DEF(option, opt_arg, opt_enum, opt_help) \
4517 opt_help
4518 #define DEFHEADING(text) stringify(text) "\n"
4519 #include "qemu-options.h"
4520 #undef DEF
4521 #undef DEFHEADING
4522 #undef GEN_DOCS
4523 "\n"
4524 "During emulation, the following keys are useful:\n"
4525 "ctrl-alt-f toggle full screen\n"
4526 "ctrl-alt-n switch to virtual console 'n'\n"
4527 "ctrl-alt toggle mouse and keyboard grab\n"
4528 "\n"
4529 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4531 "qemu",
4532 DEFAULT_RAM_SIZE,
4533 #ifndef _WIN32
4534 DEFAULT_NETWORK_SCRIPT,
4535 DEFAULT_NETWORK_DOWN_SCRIPT,
4536 #endif
4537 DEFAULT_GDBSTUB_PORT,
4538 "/tmp/qemu.log");
4539 exit(exitcode);
4542 #define HAS_ARG 0x0001
4544 enum {
4545 #define DEF(option, opt_arg, opt_enum, opt_help) \
4546 opt_enum,
4547 #define DEFHEADING(text)
4548 #include "qemu-options.h"
4549 #undef DEF
4550 #undef DEFHEADING
4551 #undef GEN_DOCS
4554 typedef struct QEMUOption {
4555 const char *name;
4556 int flags;
4557 int index;
4558 } QEMUOption;
4560 static const QEMUOption qemu_options[] = {
4561 { "h", 0, QEMU_OPTION_h },
4562 #define DEF(option, opt_arg, opt_enum, opt_help) \
4563 { option, opt_arg, opt_enum },
4564 #define DEFHEADING(text)
4565 #include "qemu-options.h"
4566 #undef DEF
4567 #undef DEFHEADING
4568 #undef GEN_DOCS
4569 { NULL },
4572 #ifdef HAS_AUDIO
4573 struct soundhw soundhw[] = {
4574 #ifdef HAS_AUDIO_CHOICE
4575 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4577 "pcspk",
4578 "PC speaker",
4581 { .init_isa = pcspk_audio_init }
4583 #endif
4585 #ifdef CONFIG_SB16
4587 "sb16",
4588 "Creative Sound Blaster 16",
4591 { .init_isa = SB16_init }
4593 #endif
4595 #ifdef CONFIG_CS4231A
4597 "cs4231a",
4598 "CS4231A",
4601 { .init_isa = cs4231a_init }
4603 #endif
4605 #ifdef CONFIG_ADLIB
4607 "adlib",
4608 #ifdef HAS_YMF262
4609 "Yamaha YMF262 (OPL3)",
4610 #else
4611 "Yamaha YM3812 (OPL2)",
4612 #endif
4615 { .init_isa = Adlib_init }
4617 #endif
4619 #ifdef CONFIG_GUS
4621 "gus",
4622 "Gravis Ultrasound GF1",
4625 { .init_isa = GUS_init }
4627 #endif
4629 #ifdef CONFIG_AC97
4631 "ac97",
4632 "Intel 82801AA AC97 Audio",
4635 { .init_pci = ac97_init }
4637 #endif
4639 #ifdef CONFIG_ES1370
4641 "es1370",
4642 "ENSONIQ AudioPCI ES1370",
4645 { .init_pci = es1370_init }
4647 #endif
4649 #endif /* HAS_AUDIO_CHOICE */
4651 { NULL, NULL, 0, 0, { NULL } }
4654 static void select_soundhw (const char *optarg)
4656 struct soundhw *c;
4658 if (*optarg == '?') {
4659 show_valid_cards:
4661 printf ("Valid sound card names (comma separated):\n");
4662 for (c = soundhw; c->name; ++c) {
4663 printf ("%-11s %s\n", c->name, c->descr);
4665 printf ("\n-soundhw all will enable all of the above\n");
4666 exit (*optarg != '?');
4668 else {
4669 size_t l;
4670 const char *p;
4671 char *e;
4672 int bad_card = 0;
4674 if (!strcmp (optarg, "all")) {
4675 for (c = soundhw; c->name; ++c) {
4676 c->enabled = 1;
4678 return;
4681 p = optarg;
4682 while (*p) {
4683 e = strchr (p, ',');
4684 l = !e ? strlen (p) : (size_t) (e - p);
4686 for (c = soundhw; c->name; ++c) {
4687 if (!strncmp (c->name, p, l)) {
4688 c->enabled = 1;
4689 break;
4693 if (!c->name) {
4694 if (l > 80) {
4695 fprintf (stderr,
4696 "Unknown sound card name (too big to show)\n");
4698 else {
4699 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4700 (int) l, p);
4702 bad_card = 1;
4704 p += l + (e != NULL);
4707 if (bad_card)
4708 goto show_valid_cards;
4711 #endif
4713 static void select_vgahw (const char *p)
4715 const char *opts;
4717 cirrus_vga_enabled = 0;
4718 std_vga_enabled = 0;
4719 vmsvga_enabled = 0;
4720 xenfb_enabled = 0;
4721 if (strstart(p, "std", &opts)) {
4722 std_vga_enabled = 1;
4723 } else if (strstart(p, "cirrus", &opts)) {
4724 cirrus_vga_enabled = 1;
4725 } else if (strstart(p, "vmware", &opts)) {
4726 vmsvga_enabled = 1;
4727 } else if (strstart(p, "xenfb", &opts)) {
4728 xenfb_enabled = 1;
4729 } else if (!strstart(p, "none", &opts)) {
4730 invalid_vga:
4731 fprintf(stderr, "Unknown vga type: %s\n", p);
4732 exit(1);
4734 while (*opts) {
4735 const char *nextopt;
4737 if (strstart(opts, ",retrace=", &nextopt)) {
4738 opts = nextopt;
4739 if (strstart(opts, "dumb", &nextopt))
4740 vga_retrace_method = VGA_RETRACE_DUMB;
4741 else if (strstart(opts, "precise", &nextopt))
4742 vga_retrace_method = VGA_RETRACE_PRECISE;
4743 else goto invalid_vga;
4744 } else goto invalid_vga;
4745 opts = nextopt;
4749 #ifdef _WIN32
4750 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4752 exit(STATUS_CONTROL_C_EXIT);
4753 return TRUE;
4755 #endif
4757 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4759 int ret;
4761 if(strlen(str) != 36)
4762 return -1;
4764 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4765 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4766 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4768 if(ret != 16)
4769 return -1;
4771 #ifdef TARGET_I386
4772 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4773 #endif
4775 return 0;
4778 #define MAX_NET_CLIENTS 32
4780 #ifndef _WIN32
4782 static void termsig_handler(int signal)
4784 qemu_system_shutdown_request();
4787 static void termsig_setup(void)
4789 struct sigaction act;
4791 memset(&act, 0, sizeof(act));
4792 act.sa_handler = termsig_handler;
4793 sigaction(SIGINT, &act, NULL);
4794 sigaction(SIGHUP, &act, NULL);
4795 sigaction(SIGTERM, &act, NULL);
4798 #endif
4800 int main(int argc, char **argv, char **envp)
4802 const char *gdbstub_dev = NULL;
4803 uint32_t boot_devices_bitmap = 0;
4804 int i;
4805 int snapshot, linux_boot, net_boot;
4806 const char *initrd_filename;
4807 const char *kernel_filename, *kernel_cmdline;
4808 const char *boot_devices = "";
4809 DisplayState *ds;
4810 DisplayChangeListener *dcl;
4811 int cyls, heads, secs, translation;
4812 const char *net_clients[MAX_NET_CLIENTS];
4813 int nb_net_clients;
4814 const char *bt_opts[MAX_BT_CMDLINE];
4815 int nb_bt_opts;
4816 int hda_index;
4817 int optind;
4818 const char *r, *optarg;
4819 CharDriverState *monitor_hd = NULL;
4820 const char *monitor_device;
4821 const char *serial_devices[MAX_SERIAL_PORTS];
4822 int serial_device_index;
4823 const char *parallel_devices[MAX_PARALLEL_PORTS];
4824 int parallel_device_index;
4825 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4826 int virtio_console_index;
4827 const char *loadvm = NULL;
4828 QEMUMachine *machine;
4829 const char *cpu_model;
4830 const char *usb_devices[MAX_USB_CMDLINE];
4831 int usb_devices_index;
4832 #ifndef _WIN32
4833 int fds[2];
4834 #endif
4835 int tb_size;
4836 const char *pid_file = NULL;
4837 const char *incoming = NULL;
4838 #ifndef _WIN32
4839 int fd = 0;
4840 struct passwd *pwd = NULL;
4841 const char *chroot_dir = NULL;
4842 const char *run_as = NULL;
4843 #endif
4844 CPUState *env;
4846 qemu_cache_utils_init(envp);
4848 LIST_INIT (&vm_change_state_head);
4849 #ifndef _WIN32
4851 struct sigaction act;
4852 sigfillset(&act.sa_mask);
4853 act.sa_flags = 0;
4854 act.sa_handler = SIG_IGN;
4855 sigaction(SIGPIPE, &act, NULL);
4857 #else
4858 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4859 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4860 QEMU to run on a single CPU */
4862 HANDLE h;
4863 DWORD mask, smask;
4864 int i;
4865 h = GetCurrentProcess();
4866 if (GetProcessAffinityMask(h, &mask, &smask)) {
4867 for(i = 0; i < 32; i++) {
4868 if (mask & (1 << i))
4869 break;
4871 if (i != 32) {
4872 mask = 1 << i;
4873 SetProcessAffinityMask(h, mask);
4877 #endif
4879 register_machines();
4880 machine = first_machine;
4881 cpu_model = NULL;
4882 initrd_filename = NULL;
4883 ram_size = 0;
4884 snapshot = 0;
4885 nographic = 0;
4886 curses = 0;
4887 kernel_filename = NULL;
4888 kernel_cmdline = "";
4889 cyls = heads = secs = 0;
4890 translation = BIOS_ATA_TRANSLATION_AUTO;
4891 monitor_device = "vc:80Cx24C";
4893 serial_devices[0] = "vc:80Cx24C";
4894 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4895 serial_devices[i] = NULL;
4896 serial_device_index = 0;
4898 parallel_devices[0] = "vc:80Cx24C";
4899 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4900 parallel_devices[i] = NULL;
4901 parallel_device_index = 0;
4903 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4904 virtio_consoles[i] = NULL;
4905 virtio_console_index = 0;
4907 for (i = 0; i < MAX_NODES; i++) {
4908 node_mem[i] = 0;
4909 node_cpumask[i] = 0;
4912 usb_devices_index = 0;
4914 nb_net_clients = 0;
4915 nb_bt_opts = 0;
4916 nb_drives = 0;
4917 nb_drives_opt = 0;
4918 nb_numa_nodes = 0;
4919 hda_index = -1;
4921 nb_nics = 0;
4923 tb_size = 0;
4924 autostart= 1;
4926 register_watchdogs();
4928 optind = 1;
4929 for(;;) {
4930 if (optind >= argc)
4931 break;
4932 r = argv[optind];
4933 if (r[0] != '-') {
4934 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4935 } else {
4936 const QEMUOption *popt;
4938 optind++;
4939 /* Treat --foo the same as -foo. */
4940 if (r[1] == '-')
4941 r++;
4942 popt = qemu_options;
4943 for(;;) {
4944 if (!popt->name) {
4945 fprintf(stderr, "%s: invalid option -- '%s'\n",
4946 argv[0], r);
4947 exit(1);
4949 if (!strcmp(popt->name, r + 1))
4950 break;
4951 popt++;
4953 if (popt->flags & HAS_ARG) {
4954 if (optind >= argc) {
4955 fprintf(stderr, "%s: option '%s' requires an argument\n",
4956 argv[0], r);
4957 exit(1);
4959 optarg = argv[optind++];
4960 } else {
4961 optarg = NULL;
4964 switch(popt->index) {
4965 case QEMU_OPTION_M:
4966 machine = find_machine(optarg);
4967 if (!machine) {
4968 QEMUMachine *m;
4969 printf("Supported machines are:\n");
4970 for(m = first_machine; m != NULL; m = m->next) {
4971 printf("%-10s %s%s\n",
4972 m->name, m->desc,
4973 m == first_machine ? " (default)" : "");
4975 exit(*optarg != '?');
4977 break;
4978 case QEMU_OPTION_cpu:
4979 /* hw initialization will check this */
4980 if (*optarg == '?') {
4981 /* XXX: implement xxx_cpu_list for targets that still miss it */
4982 #if defined(cpu_list)
4983 cpu_list(stdout, &fprintf);
4984 #endif
4985 exit(0);
4986 } else {
4987 cpu_model = optarg;
4989 break;
4990 case QEMU_OPTION_initrd:
4991 initrd_filename = optarg;
4992 break;
4993 case QEMU_OPTION_hda:
4994 if (cyls == 0)
4995 hda_index = drive_add(optarg, HD_ALIAS, 0);
4996 else
4997 hda_index = drive_add(optarg, HD_ALIAS
4998 ",cyls=%d,heads=%d,secs=%d%s",
4999 0, cyls, heads, secs,
5000 translation == BIOS_ATA_TRANSLATION_LBA ?
5001 ",trans=lba" :
5002 translation == BIOS_ATA_TRANSLATION_NONE ?
5003 ",trans=none" : "");
5004 break;
5005 case QEMU_OPTION_hdb:
5006 case QEMU_OPTION_hdc:
5007 case QEMU_OPTION_hdd:
5008 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5009 break;
5010 case QEMU_OPTION_drive:
5011 drive_add(NULL, "%s", optarg);
5012 break;
5013 case QEMU_OPTION_mtdblock:
5014 drive_add(optarg, MTD_ALIAS);
5015 break;
5016 case QEMU_OPTION_sd:
5017 drive_add(optarg, SD_ALIAS);
5018 break;
5019 case QEMU_OPTION_pflash:
5020 drive_add(optarg, PFLASH_ALIAS);
5021 break;
5022 case QEMU_OPTION_snapshot:
5023 snapshot = 1;
5024 break;
5025 case QEMU_OPTION_hdachs:
5027 const char *p;
5028 p = optarg;
5029 cyls = strtol(p, (char **)&p, 0);
5030 if (cyls < 1 || cyls > 16383)
5031 goto chs_fail;
5032 if (*p != ',')
5033 goto chs_fail;
5034 p++;
5035 heads = strtol(p, (char **)&p, 0);
5036 if (heads < 1 || heads > 16)
5037 goto chs_fail;
5038 if (*p != ',')
5039 goto chs_fail;
5040 p++;
5041 secs = strtol(p, (char **)&p, 0);
5042 if (secs < 1 || secs > 63)
5043 goto chs_fail;
5044 if (*p == ',') {
5045 p++;
5046 if (!strcmp(p, "none"))
5047 translation = BIOS_ATA_TRANSLATION_NONE;
5048 else if (!strcmp(p, "lba"))
5049 translation = BIOS_ATA_TRANSLATION_LBA;
5050 else if (!strcmp(p, "auto"))
5051 translation = BIOS_ATA_TRANSLATION_AUTO;
5052 else
5053 goto chs_fail;
5054 } else if (*p != '\0') {
5055 chs_fail:
5056 fprintf(stderr, "qemu: invalid physical CHS format\n");
5057 exit(1);
5059 if (hda_index != -1)
5060 snprintf(drives_opt[hda_index].opt,
5061 sizeof(drives_opt[hda_index].opt),
5062 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5063 0, cyls, heads, secs,
5064 translation == BIOS_ATA_TRANSLATION_LBA ?
5065 ",trans=lba" :
5066 translation == BIOS_ATA_TRANSLATION_NONE ?
5067 ",trans=none" : "");
5069 break;
5070 case QEMU_OPTION_numa:
5071 if (nb_numa_nodes >= MAX_NODES) {
5072 fprintf(stderr, "qemu: too many NUMA nodes\n");
5073 exit(1);
5075 numa_add(optarg);
5076 break;
5077 case QEMU_OPTION_nographic:
5078 nographic = 1;
5079 break;
5080 #ifdef CONFIG_CURSES
5081 case QEMU_OPTION_curses:
5082 curses = 1;
5083 break;
5084 #endif
5085 case QEMU_OPTION_portrait:
5086 graphic_rotate = 1;
5087 break;
5088 case QEMU_OPTION_kernel:
5089 kernel_filename = optarg;
5090 break;
5091 case QEMU_OPTION_append:
5092 kernel_cmdline = optarg;
5093 break;
5094 case QEMU_OPTION_cdrom:
5095 drive_add(optarg, CDROM_ALIAS);
5096 break;
5097 case QEMU_OPTION_boot:
5098 boot_devices = optarg;
5099 /* We just do some generic consistency checks */
5101 /* Could easily be extended to 64 devices if needed */
5102 const char *p;
5104 boot_devices_bitmap = 0;
5105 for (p = boot_devices; *p != '\0'; p++) {
5106 /* Allowed boot devices are:
5107 * a b : floppy disk drives
5108 * c ... f : IDE disk drives
5109 * g ... m : machine implementation dependant drives
5110 * n ... p : network devices
5111 * It's up to each machine implementation to check
5112 * if the given boot devices match the actual hardware
5113 * implementation and firmware features.
5115 if (*p < 'a' || *p > 'q') {
5116 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5117 exit(1);
5119 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5120 fprintf(stderr,
5121 "Boot device '%c' was given twice\n",*p);
5122 exit(1);
5124 boot_devices_bitmap |= 1 << (*p - 'a');
5127 break;
5128 case QEMU_OPTION_fda:
5129 case QEMU_OPTION_fdb:
5130 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5131 break;
5132 #ifdef TARGET_I386
5133 case QEMU_OPTION_no_fd_bootchk:
5134 fd_bootchk = 0;
5135 break;
5136 #endif
5137 case QEMU_OPTION_net:
5138 if (nb_net_clients >= MAX_NET_CLIENTS) {
5139 fprintf(stderr, "qemu: too many network clients\n");
5140 exit(1);
5142 net_clients[nb_net_clients] = optarg;
5143 nb_net_clients++;
5144 break;
5145 #ifdef CONFIG_SLIRP
5146 case QEMU_OPTION_tftp:
5147 tftp_prefix = optarg;
5148 break;
5149 case QEMU_OPTION_bootp:
5150 bootp_filename = optarg;
5151 break;
5152 #ifndef _WIN32
5153 case QEMU_OPTION_smb:
5154 net_slirp_smb(optarg);
5155 break;
5156 #endif
5157 case QEMU_OPTION_redir:
5158 net_slirp_redir(NULL, optarg);
5159 break;
5160 #endif
5161 case QEMU_OPTION_bt:
5162 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5163 fprintf(stderr, "qemu: too many bluetooth options\n");
5164 exit(1);
5166 bt_opts[nb_bt_opts++] = optarg;
5167 break;
5168 #ifdef HAS_AUDIO
5169 case QEMU_OPTION_audio_help:
5170 AUD_help ();
5171 exit (0);
5172 break;
5173 case QEMU_OPTION_soundhw:
5174 select_soundhw (optarg);
5175 break;
5176 #endif
5177 case QEMU_OPTION_h:
5178 help(0);
5179 break;
5180 case QEMU_OPTION_version:
5181 version();
5182 exit(0);
5183 break;
5184 case QEMU_OPTION_m: {
5185 uint64_t value;
5186 char *ptr;
5188 value = strtoul(optarg, &ptr, 10);
5189 switch (*ptr) {
5190 case 0: case 'M': case 'm':
5191 value <<= 20;
5192 break;
5193 case 'G': case 'g':
5194 value <<= 30;
5195 break;
5196 default:
5197 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5198 exit(1);
5201 /* On 32-bit hosts, QEMU is limited by virtual address space */
5202 if (value > (2047 << 20)
5203 #ifndef CONFIG_KQEMU
5204 && HOST_LONG_BITS == 32
5205 #endif
5207 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5208 exit(1);
5210 if (value != (uint64_t)(ram_addr_t)value) {
5211 fprintf(stderr, "qemu: ram size too large\n");
5212 exit(1);
5214 ram_size = value;
5215 break;
5217 case QEMU_OPTION_d:
5219 int mask;
5220 const CPULogItem *item;
5222 mask = cpu_str_to_log_mask(optarg);
5223 if (!mask) {
5224 printf("Log items (comma separated):\n");
5225 for(item = cpu_log_items; item->mask != 0; item++) {
5226 printf("%-10s %s\n", item->name, item->help);
5228 exit(1);
5230 cpu_set_log(mask);
5232 break;
5233 case QEMU_OPTION_s:
5234 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5235 break;
5236 case QEMU_OPTION_gdb:
5237 gdbstub_dev = optarg;
5238 break;
5239 case QEMU_OPTION_L:
5240 bios_dir = optarg;
5241 break;
5242 case QEMU_OPTION_bios:
5243 bios_name = optarg;
5244 break;
5245 case QEMU_OPTION_singlestep:
5246 singlestep = 1;
5247 break;
5248 case QEMU_OPTION_S:
5249 autostart = 0;
5250 break;
5251 #ifndef _WIN32
5252 case QEMU_OPTION_k:
5253 keyboard_layout = optarg;
5254 break;
5255 #endif
5256 case QEMU_OPTION_localtime:
5257 rtc_utc = 0;
5258 break;
5259 case QEMU_OPTION_vga:
5260 select_vgahw (optarg);
5261 break;
5262 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5263 case QEMU_OPTION_g:
5265 const char *p;
5266 int w, h, depth;
5267 p = optarg;
5268 w = strtol(p, (char **)&p, 10);
5269 if (w <= 0) {
5270 graphic_error:
5271 fprintf(stderr, "qemu: invalid resolution or depth\n");
5272 exit(1);
5274 if (*p != 'x')
5275 goto graphic_error;
5276 p++;
5277 h = strtol(p, (char **)&p, 10);
5278 if (h <= 0)
5279 goto graphic_error;
5280 if (*p == 'x') {
5281 p++;
5282 depth = strtol(p, (char **)&p, 10);
5283 if (depth != 8 && depth != 15 && depth != 16 &&
5284 depth != 24 && depth != 32)
5285 goto graphic_error;
5286 } else if (*p == '\0') {
5287 depth = graphic_depth;
5288 } else {
5289 goto graphic_error;
5292 graphic_width = w;
5293 graphic_height = h;
5294 graphic_depth = depth;
5296 break;
5297 #endif
5298 case QEMU_OPTION_echr:
5300 char *r;
5301 term_escape_char = strtol(optarg, &r, 0);
5302 if (r == optarg)
5303 printf("Bad argument to echr\n");
5304 break;
5306 case QEMU_OPTION_monitor:
5307 monitor_device = optarg;
5308 break;
5309 case QEMU_OPTION_serial:
5310 if (serial_device_index >= MAX_SERIAL_PORTS) {
5311 fprintf(stderr, "qemu: too many serial ports\n");
5312 exit(1);
5314 serial_devices[serial_device_index] = optarg;
5315 serial_device_index++;
5316 break;
5317 case QEMU_OPTION_watchdog:
5318 i = select_watchdog(optarg);
5319 if (i > 0)
5320 exit (i == 1 ? 1 : 0);
5321 break;
5322 case QEMU_OPTION_watchdog_action:
5323 if (select_watchdog_action(optarg) == -1) {
5324 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5325 exit(1);
5327 break;
5328 case QEMU_OPTION_virtiocon:
5329 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5330 fprintf(stderr, "qemu: too many virtio consoles\n");
5331 exit(1);
5333 virtio_consoles[virtio_console_index] = optarg;
5334 virtio_console_index++;
5335 break;
5336 case QEMU_OPTION_parallel:
5337 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5338 fprintf(stderr, "qemu: too many parallel ports\n");
5339 exit(1);
5341 parallel_devices[parallel_device_index] = optarg;
5342 parallel_device_index++;
5343 break;
5344 case QEMU_OPTION_loadvm:
5345 loadvm = optarg;
5346 break;
5347 case QEMU_OPTION_full_screen:
5348 full_screen = 1;
5349 break;
5350 #ifdef CONFIG_SDL
5351 case QEMU_OPTION_no_frame:
5352 no_frame = 1;
5353 break;
5354 case QEMU_OPTION_alt_grab:
5355 alt_grab = 1;
5356 break;
5357 case QEMU_OPTION_no_quit:
5358 no_quit = 1;
5359 break;
5360 case QEMU_OPTION_sdl:
5361 sdl = 1;
5362 break;
5363 #endif
5364 case QEMU_OPTION_pidfile:
5365 pid_file = optarg;
5366 break;
5367 #ifdef TARGET_I386
5368 case QEMU_OPTION_win2k_hack:
5369 win2k_install_hack = 1;
5370 break;
5371 case QEMU_OPTION_rtc_td_hack:
5372 rtc_td_hack = 1;
5373 break;
5374 case QEMU_OPTION_acpitable:
5375 if(acpi_table_add(optarg) < 0) {
5376 fprintf(stderr, "Wrong acpi table provided\n");
5377 exit(1);
5379 break;
5380 case QEMU_OPTION_smbios:
5381 if(smbios_entry_add(optarg) < 0) {
5382 fprintf(stderr, "Wrong smbios provided\n");
5383 exit(1);
5385 break;
5386 #endif
5387 #ifdef CONFIG_KQEMU
5388 case QEMU_OPTION_no_kqemu:
5389 kqemu_allowed = 0;
5390 break;
5391 case QEMU_OPTION_kernel_kqemu:
5392 kqemu_allowed = 2;
5393 break;
5394 #endif
5395 #ifdef CONFIG_KVM
5396 case QEMU_OPTION_enable_kvm:
5397 kvm_allowed = 1;
5398 #ifdef CONFIG_KQEMU
5399 kqemu_allowed = 0;
5400 #endif
5401 break;
5402 #endif
5403 case QEMU_OPTION_usb:
5404 usb_enabled = 1;
5405 break;
5406 case QEMU_OPTION_usbdevice:
5407 usb_enabled = 1;
5408 if (usb_devices_index >= MAX_USB_CMDLINE) {
5409 fprintf(stderr, "Too many USB devices\n");
5410 exit(1);
5412 usb_devices[usb_devices_index] = optarg;
5413 usb_devices_index++;
5414 break;
5415 case QEMU_OPTION_smp:
5416 smp_cpus = atoi(optarg);
5417 if (smp_cpus < 1) {
5418 fprintf(stderr, "Invalid number of CPUs\n");
5419 exit(1);
5421 break;
5422 case QEMU_OPTION_vnc:
5423 vnc_display = optarg;
5424 break;
5425 #ifdef TARGET_I386
5426 case QEMU_OPTION_no_acpi:
5427 acpi_enabled = 0;
5428 break;
5429 case QEMU_OPTION_no_hpet:
5430 no_hpet = 1;
5431 break;
5432 #endif
5433 case QEMU_OPTION_no_reboot:
5434 no_reboot = 1;
5435 break;
5436 case QEMU_OPTION_no_shutdown:
5437 no_shutdown = 1;
5438 break;
5439 case QEMU_OPTION_show_cursor:
5440 cursor_hide = 0;
5441 break;
5442 case QEMU_OPTION_uuid:
5443 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5444 fprintf(stderr, "Fail to parse UUID string."
5445 " Wrong format.\n");
5446 exit(1);
5448 break;
5449 #ifndef _WIN32
5450 case QEMU_OPTION_daemonize:
5451 daemonize = 1;
5452 break;
5453 #endif
5454 case QEMU_OPTION_option_rom:
5455 if (nb_option_roms >= MAX_OPTION_ROMS) {
5456 fprintf(stderr, "Too many option ROMs\n");
5457 exit(1);
5459 option_rom[nb_option_roms] = optarg;
5460 nb_option_roms++;
5461 break;
5462 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5463 case QEMU_OPTION_semihosting:
5464 semihosting_enabled = 1;
5465 break;
5466 #endif
5467 case QEMU_OPTION_name:
5468 qemu_name = optarg;
5469 break;
5470 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5471 case QEMU_OPTION_prom_env:
5472 if (nb_prom_envs >= MAX_PROM_ENVS) {
5473 fprintf(stderr, "Too many prom variables\n");
5474 exit(1);
5476 prom_envs[nb_prom_envs] = optarg;
5477 nb_prom_envs++;
5478 break;
5479 #endif
5480 #ifdef TARGET_ARM
5481 case QEMU_OPTION_old_param:
5482 old_param = 1;
5483 break;
5484 #endif
5485 case QEMU_OPTION_clock:
5486 configure_alarms(optarg);
5487 break;
5488 case QEMU_OPTION_startdate:
5490 struct tm tm;
5491 time_t rtc_start_date;
5492 if (!strcmp(optarg, "now")) {
5493 rtc_date_offset = -1;
5494 } else {
5495 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5496 &tm.tm_year,
5497 &tm.tm_mon,
5498 &tm.tm_mday,
5499 &tm.tm_hour,
5500 &tm.tm_min,
5501 &tm.tm_sec) == 6) {
5502 /* OK */
5503 } else if (sscanf(optarg, "%d-%d-%d",
5504 &tm.tm_year,
5505 &tm.tm_mon,
5506 &tm.tm_mday) == 3) {
5507 tm.tm_hour = 0;
5508 tm.tm_min = 0;
5509 tm.tm_sec = 0;
5510 } else {
5511 goto date_fail;
5513 tm.tm_year -= 1900;
5514 tm.tm_mon--;
5515 rtc_start_date = mktimegm(&tm);
5516 if (rtc_start_date == -1) {
5517 date_fail:
5518 fprintf(stderr, "Invalid date format. Valid format are:\n"
5519 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5520 exit(1);
5522 rtc_date_offset = time(NULL) - rtc_start_date;
5525 break;
5526 case QEMU_OPTION_tb_size:
5527 tb_size = strtol(optarg, NULL, 0);
5528 if (tb_size < 0)
5529 tb_size = 0;
5530 break;
5531 case QEMU_OPTION_icount:
5532 use_icount = 1;
5533 if (strcmp(optarg, "auto") == 0) {
5534 icount_time_shift = -1;
5535 } else {
5536 icount_time_shift = strtol(optarg, NULL, 0);
5538 break;
5539 case QEMU_OPTION_incoming:
5540 incoming = optarg;
5541 break;
5542 #ifndef _WIN32
5543 case QEMU_OPTION_chroot:
5544 chroot_dir = optarg;
5545 break;
5546 case QEMU_OPTION_runas:
5547 run_as = optarg;
5548 break;
5549 #endif
5550 #ifdef CONFIG_XEN
5551 case QEMU_OPTION_xen_domid:
5552 xen_domid = atoi(optarg);
5553 break;
5554 case QEMU_OPTION_xen_create:
5555 xen_mode = XEN_CREATE;
5556 break;
5557 case QEMU_OPTION_xen_attach:
5558 xen_mode = XEN_ATTACH;
5559 break;
5560 #endif
5565 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5566 if (kvm_allowed && kqemu_allowed) {
5567 fprintf(stderr,
5568 "You can not enable both KVM and kqemu at the same time\n");
5569 exit(1);
5571 #endif
5573 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5574 if (smp_cpus > machine->max_cpus) {
5575 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5576 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5577 machine->max_cpus);
5578 exit(1);
5581 if (nographic) {
5582 if (serial_device_index == 0)
5583 serial_devices[0] = "stdio";
5584 if (parallel_device_index == 0)
5585 parallel_devices[0] = "null";
5586 if (strncmp(monitor_device, "vc", 2) == 0)
5587 monitor_device = "stdio";
5590 #ifndef _WIN32
5591 if (daemonize) {
5592 pid_t pid;
5594 if (pipe(fds) == -1)
5595 exit(1);
5597 pid = fork();
5598 if (pid > 0) {
5599 uint8_t status;
5600 ssize_t len;
5602 close(fds[1]);
5604 again:
5605 len = read(fds[0], &status, 1);
5606 if (len == -1 && (errno == EINTR))
5607 goto again;
5609 if (len != 1)
5610 exit(1);
5611 else if (status == 1) {
5612 fprintf(stderr, "Could not acquire pidfile\n");
5613 exit(1);
5614 } else
5615 exit(0);
5616 } else if (pid < 0)
5617 exit(1);
5619 setsid();
5621 pid = fork();
5622 if (pid > 0)
5623 exit(0);
5624 else if (pid < 0)
5625 exit(1);
5627 umask(027);
5629 signal(SIGTSTP, SIG_IGN);
5630 signal(SIGTTOU, SIG_IGN);
5631 signal(SIGTTIN, SIG_IGN);
5634 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5635 if (daemonize) {
5636 uint8_t status = 1;
5637 write(fds[1], &status, 1);
5638 } else
5639 fprintf(stderr, "Could not acquire pid file\n");
5640 exit(1);
5642 #endif
5644 #ifdef CONFIG_KQEMU
5645 if (smp_cpus > 1)
5646 kqemu_allowed = 0;
5647 #endif
5648 if (qemu_init_main_loop()) {
5649 fprintf(stderr, "qemu_init_main_loop failed\n");
5650 exit(1);
5652 linux_boot = (kernel_filename != NULL);
5653 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5655 if (!linux_boot && *kernel_cmdline != '\0') {
5656 fprintf(stderr, "-append only allowed with -kernel option\n");
5657 exit(1);
5660 if (!linux_boot && initrd_filename != NULL) {
5661 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5662 exit(1);
5665 /* boot to floppy or the default cd if no hard disk defined yet */
5666 if (!boot_devices[0]) {
5667 boot_devices = "cad";
5669 setvbuf(stdout, NULL, _IOLBF, 0);
5671 init_timers();
5672 if (init_timer_alarm() < 0) {
5673 fprintf(stderr, "could not initialize alarm timer\n");
5674 exit(1);
5676 if (use_icount && icount_time_shift < 0) {
5677 use_icount = 2;
5678 /* 125MIPS seems a reasonable initial guess at the guest speed.
5679 It will be corrected fairly quickly anyway. */
5680 icount_time_shift = 3;
5681 init_icount_adjust();
5684 #ifdef _WIN32
5685 socket_init();
5686 #endif
5688 /* init network clients */
5689 if (nb_net_clients == 0) {
5690 /* if no clients, we use a default config */
5691 net_clients[nb_net_clients++] = "nic";
5692 #ifdef CONFIG_SLIRP
5693 net_clients[nb_net_clients++] = "user";
5694 #endif
5697 for(i = 0;i < nb_net_clients; i++) {
5698 if (net_client_parse(net_clients[i]) < 0)
5699 exit(1);
5701 net_client_check();
5703 #ifdef TARGET_I386
5704 /* XXX: this should be moved in the PC machine instantiation code */
5705 if (net_boot != 0) {
5706 int netroms = 0;
5707 for (i = 0; i < nb_nics && i < 4; i++) {
5708 const char *model = nd_table[i].model;
5709 char buf[1024];
5710 if (net_boot & (1 << i)) {
5711 if (model == NULL)
5712 model = "ne2k_pci";
5713 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5714 if (get_image_size(buf) > 0) {
5715 if (nb_option_roms >= MAX_OPTION_ROMS) {
5716 fprintf(stderr, "Too many option ROMs\n");
5717 exit(1);
5719 option_rom[nb_option_roms] = strdup(buf);
5720 nb_option_roms++;
5721 netroms++;
5725 if (netroms == 0) {
5726 fprintf(stderr, "No valid PXE rom found for network device\n");
5727 exit(1);
5730 #endif
5732 /* init the bluetooth world */
5733 for (i = 0; i < nb_bt_opts; i++)
5734 if (bt_parse(bt_opts[i]))
5735 exit(1);
5737 /* init the memory */
5738 if (ram_size == 0)
5739 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5741 #ifdef CONFIG_KQEMU
5742 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5743 guest ram allocation. It needs to go away. */
5744 if (kqemu_allowed) {
5745 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5746 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5747 if (!kqemu_phys_ram_base) {
5748 fprintf(stderr, "Could not allocate physical memory\n");
5749 exit(1);
5752 #endif
5754 /* init the dynamic translator */
5755 cpu_exec_init_all(tb_size * 1024 * 1024);
5757 bdrv_init();
5758 dma_helper_init();
5760 /* we always create the cdrom drive, even if no disk is there */
5762 if (nb_drives_opt < MAX_DRIVES)
5763 drive_add(NULL, CDROM_ALIAS);
5765 /* we always create at least one floppy */
5767 if (nb_drives_opt < MAX_DRIVES)
5768 drive_add(NULL, FD_ALIAS, 0);
5770 /* we always create one sd slot, even if no card is in it */
5772 if (nb_drives_opt < MAX_DRIVES)
5773 drive_add(NULL, SD_ALIAS);
5775 /* open the virtual block devices */
5777 for(i = 0; i < nb_drives_opt; i++)
5778 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5779 exit(1);
5781 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5782 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5784 #ifndef _WIN32
5785 /* must be after terminal init, SDL library changes signal handlers */
5786 termsig_setup();
5787 #endif
5789 /* Maintain compatibility with multiple stdio monitors */
5790 if (!strcmp(monitor_device,"stdio")) {
5791 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5792 const char *devname = serial_devices[i];
5793 if (devname && !strcmp(devname,"mon:stdio")) {
5794 monitor_device = NULL;
5795 break;
5796 } else if (devname && !strcmp(devname,"stdio")) {
5797 monitor_device = NULL;
5798 serial_devices[i] = "mon:stdio";
5799 break;
5804 if (nb_numa_nodes > 0) {
5805 int i;
5807 if (nb_numa_nodes > smp_cpus) {
5808 nb_numa_nodes = smp_cpus;
5811 /* If no memory size if given for any node, assume the default case
5812 * and distribute the available memory equally across all nodes
5814 for (i = 0; i < nb_numa_nodes; i++) {
5815 if (node_mem[i] != 0)
5816 break;
5818 if (i == nb_numa_nodes) {
5819 uint64_t usedmem = 0;
5821 /* On Linux, the each node's border has to be 8MB aligned,
5822 * the final node gets the rest.
5824 for (i = 0; i < nb_numa_nodes - 1; i++) {
5825 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5826 usedmem += node_mem[i];
5828 node_mem[i] = ram_size - usedmem;
5831 for (i = 0; i < nb_numa_nodes; i++) {
5832 if (node_cpumask[i] != 0)
5833 break;
5835 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5836 * must cope with this anyway, because there are BIOSes out there in
5837 * real machines which also use this scheme.
5839 if (i == nb_numa_nodes) {
5840 for (i = 0; i < smp_cpus; i++) {
5841 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5846 if (kvm_enabled()) {
5847 int ret;
5849 ret = kvm_init(smp_cpus);
5850 if (ret < 0) {
5851 fprintf(stderr, "failed to initialize KVM\n");
5852 exit(1);
5856 if (monitor_device) {
5857 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5858 if (!monitor_hd) {
5859 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5860 exit(1);
5864 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5865 const char *devname = serial_devices[i];
5866 if (devname && strcmp(devname, "none")) {
5867 char label[32];
5868 snprintf(label, sizeof(label), "serial%d", i);
5869 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5870 if (!serial_hds[i]) {
5871 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5872 devname);
5873 exit(1);
5878 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5879 const char *devname = parallel_devices[i];
5880 if (devname && strcmp(devname, "none")) {
5881 char label[32];
5882 snprintf(label, sizeof(label), "parallel%d", i);
5883 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5884 if (!parallel_hds[i]) {
5885 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5886 devname);
5887 exit(1);
5892 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5893 const char *devname = virtio_consoles[i];
5894 if (devname && strcmp(devname, "none")) {
5895 char label[32];
5896 snprintf(label, sizeof(label), "virtcon%d", i);
5897 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5898 if (!virtcon_hds[i]) {
5899 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5900 devname);
5901 exit(1);
5906 module_call_init(MODULE_INIT_DEVICE);
5908 machine->init(ram_size, boot_devices,
5909 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5912 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5913 for (i = 0; i < nb_numa_nodes; i++) {
5914 if (node_cpumask[i] & (1 << env->cpu_index)) {
5915 env->numa_node = i;
5920 current_machine = machine;
5922 /* Set KVM's vcpu state to qemu's initial CPUState. */
5923 if (kvm_enabled()) {
5924 int ret;
5926 ret = kvm_sync_vcpus();
5927 if (ret < 0) {
5928 fprintf(stderr, "failed to initialize vcpus\n");
5929 exit(1);
5933 /* init USB devices */
5934 if (usb_enabled) {
5935 for(i = 0; i < usb_devices_index; i++) {
5936 if (usb_device_add(usb_devices[i], 0) < 0) {
5937 fprintf(stderr, "Warning: could not add USB device %s\n",
5938 usb_devices[i]);
5943 if (!display_state)
5944 dumb_display_init();
5945 /* just use the first displaystate for the moment */
5946 ds = display_state;
5947 /* terminal init */
5948 if (nographic) {
5949 if (curses) {
5950 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5951 exit(1);
5953 } else {
5954 #if defined(CONFIG_CURSES)
5955 if (curses) {
5956 /* At the moment curses cannot be used with other displays */
5957 curses_display_init(ds, full_screen);
5958 } else
5959 #endif
5961 if (vnc_display != NULL) {
5962 vnc_display_init(ds);
5963 if (vnc_display_open(ds, vnc_display) < 0)
5964 exit(1);
5966 #if defined(CONFIG_SDL)
5967 if (sdl || !vnc_display)
5968 sdl_display_init(ds, full_screen, no_frame);
5969 #elif defined(CONFIG_COCOA)
5970 if (sdl || !vnc_display)
5971 cocoa_display_init(ds, full_screen);
5972 #endif
5975 dpy_resize(ds);
5977 dcl = ds->listeners;
5978 while (dcl != NULL) {
5979 if (dcl->dpy_refresh != NULL) {
5980 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5981 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5983 dcl = dcl->next;
5986 if (nographic || (vnc_display && !sdl)) {
5987 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5988 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5991 text_consoles_set_display(display_state);
5992 qemu_chr_initial_reset();
5994 if (monitor_device && monitor_hd)
5995 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5997 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5998 const char *devname = serial_devices[i];
5999 if (devname && strcmp(devname, "none")) {
6000 char label[32];
6001 snprintf(label, sizeof(label), "serial%d", i);
6002 if (strstart(devname, "vc", 0))
6003 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6007 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6008 const char *devname = parallel_devices[i];
6009 if (devname && strcmp(devname, "none")) {
6010 char label[32];
6011 snprintf(label, sizeof(label), "parallel%d", i);
6012 if (strstart(devname, "vc", 0))
6013 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6017 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6018 const char *devname = virtio_consoles[i];
6019 if (virtcon_hds[i] && devname) {
6020 char label[32];
6021 snprintf(label, sizeof(label), "virtcon%d", i);
6022 if (strstart(devname, "vc", 0))
6023 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6027 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6028 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6029 gdbstub_dev);
6030 exit(1);
6033 if (loadvm)
6034 do_loadvm(cur_mon, loadvm);
6036 if (incoming) {
6037 autostart = 0; /* fixme how to deal with -daemonize */
6038 qemu_start_incoming_migration(incoming);
6041 if (autostart)
6042 vm_start();
6044 #ifndef _WIN32
6045 if (daemonize) {
6046 uint8_t status = 0;
6047 ssize_t len;
6049 again1:
6050 len = write(fds[1], &status, 1);
6051 if (len == -1 && (errno == EINTR))
6052 goto again1;
6054 if (len != 1)
6055 exit(1);
6057 chdir("/");
6058 TFR(fd = open("/dev/null", O_RDWR));
6059 if (fd == -1)
6060 exit(1);
6063 if (run_as) {
6064 pwd = getpwnam(run_as);
6065 if (!pwd) {
6066 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6067 exit(1);
6071 if (chroot_dir) {
6072 if (chroot(chroot_dir) < 0) {
6073 fprintf(stderr, "chroot failed\n");
6074 exit(1);
6076 chdir("/");
6079 if (run_as) {
6080 if (setgid(pwd->pw_gid) < 0) {
6081 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6082 exit(1);
6084 if (setuid(pwd->pw_uid) < 0) {
6085 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6086 exit(1);
6088 if (setuid(0) != -1) {
6089 fprintf(stderr, "Dropping privileges failed\n");
6090 exit(1);
6094 if (daemonize) {
6095 dup2(fd, 0);
6096 dup2(fd, 1);
6097 dup2(fd, 2);
6099 close(fd);
6101 #endif
6103 main_loop();
6104 quit_timers();
6105 net_cleanup();
6107 return 0;