2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
32 #define DPRINTF(fmt, ...) \
33 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
35 #define DPRINTF(fmt, ...) do {} while (0)
39 * Registers of hardware timer in sun4m.
41 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 * are zero. Bit 31 is 1 when count has been reached.
48 * Per-CPU timers interrupt local CPU, system timer uses normal
55 typedef struct SLAVIO_TIMERState
{
59 uint32_t count
, counthigh
, reached
;
63 struct SLAVIO_TIMERState
*master
;
67 struct SLAVIO_TIMERState
*slave
[MAX_CPUS
];
71 #define SYS_TIMER_SIZE 0x14
72 #define CPU_TIMER_SIZE 0x10
74 #define SYS_TIMER_OFFSET 0x10000ULL
75 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
78 #define TIMER_COUNTER 1
79 #define TIMER_COUNTER_NORST 2
80 #define TIMER_STATUS 3
83 #define TIMER_COUNT_MASK32 0xfffffe00
84 #define TIMER_LIMIT_MASK32 0x7fffffff
85 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
86 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
87 #define TIMER_REACHED 0x80000000
88 #define TIMER_PERIOD 500ULL // 500ns
89 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
90 #define PERIODS_TO_LIMIT(l) ((l) << 9)
92 static int slavio_timer_is_user(SLAVIO_TIMERState
*s
)
94 return s
->master
&& (s
->master
->slave_mode
& (1 << s
->slave_index
));
97 // Update count, set irq, update expire_time
98 // Convert from ptimer countdown units
99 static void slavio_timer_get_out(SLAVIO_TIMERState
*s
)
101 uint64_t count
, limit
;
103 if (s
->limit
== 0) /* free-run processor or system counter */
104 limit
= TIMER_MAX_COUNT32
;
109 count
= limit
- PERIODS_TO_LIMIT(ptimer_get_count(s
->timer
));
113 DPRINTF("get_out: limit %" PRIx64
" count %x%08x\n", s
->limit
,
114 s
->counthigh
, s
->count
);
115 s
->count
= count
& TIMER_COUNT_MASK32
;
116 s
->counthigh
= count
>> 32;
120 static void slavio_timer_irq(void *opaque
)
122 SLAVIO_TIMERState
*s
= opaque
;
124 slavio_timer_get_out(s
);
125 DPRINTF("callback: count %x%08x\n", s
->counthigh
, s
->count
);
126 s
->reached
= TIMER_REACHED
;
127 if (!slavio_timer_is_user(s
))
128 qemu_irq_raise(s
->irq
);
131 static uint32_t slavio_timer_mem_readl(void *opaque
, target_phys_addr_t addr
)
133 SLAVIO_TIMERState
*s
= opaque
;
139 // read limit (system counter mode) or read most signifying
140 // part of counter (user mode)
141 if (slavio_timer_is_user(s
)) {
142 // read user timer MSW
143 slavio_timer_get_out(s
);
144 ret
= s
->counthigh
| s
->reached
;
148 qemu_irq_lower(s
->irq
);
150 ret
= s
->limit
& TIMER_LIMIT_MASK32
;
154 // read counter and reached bit (system mode) or read lsbits
155 // of counter (user mode)
156 slavio_timer_get_out(s
);
157 if (slavio_timer_is_user(s
)) // read user timer LSW
158 ret
= s
->count
& TIMER_MAX_COUNT64
;
160 ret
= (s
->count
& TIMER_MAX_COUNT32
) | s
->reached
;
163 // only available in processor counter/timer
164 // read start/stop status
168 // only available in system counter
169 // read user/system mode
173 DPRINTF("invalid read address " TARGET_FMT_plx
"\n", addr
);
177 DPRINTF("read " TARGET_FMT_plx
" = %08x\n", addr
, ret
);
182 static void slavio_timer_mem_writel(void *opaque
, target_phys_addr_t addr
,
185 SLAVIO_TIMERState
*s
= opaque
;
188 DPRINTF("write " TARGET_FMT_plx
" %08x\n", addr
, val
);
192 if (slavio_timer_is_user(s
)) {
195 // set user counter MSW, reset counter
196 s
->limit
= TIMER_MAX_COUNT64
;
197 s
->counthigh
= val
& (TIMER_MAX_COUNT64
>> 32);
199 count
= ((uint64_t)s
->counthigh
<< 32) | s
->count
;
200 DPRINTF("processor %d user timer set to %016" PRIx64
"\n",
201 s
->slave_index
, count
);
203 ptimer_set_count(s
->timer
, LIMIT_TO_PERIODS(s
->limit
- count
));
205 // set limit, reset counter
206 qemu_irq_lower(s
->irq
);
207 s
->limit
= val
& TIMER_MAX_COUNT32
;
209 if (s
->limit
== 0) /* free-run */
210 ptimer_set_limit(s
->timer
,
211 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32
), 1);
213 ptimer_set_limit(s
->timer
, LIMIT_TO_PERIODS(s
->limit
), 1);
218 if (slavio_timer_is_user(s
)) {
221 // set user counter LSW, reset counter
222 s
->limit
= TIMER_MAX_COUNT64
;
223 s
->count
= val
& TIMER_MAX_COUNT64
;
225 count
= ((uint64_t)s
->counthigh
) << 32 | s
->count
;
226 DPRINTF("processor %d user timer set to %016" PRIx64
"\n",
227 s
->slave_index
, count
);
229 ptimer_set_count(s
->timer
, LIMIT_TO_PERIODS(s
->limit
- count
));
231 DPRINTF("not user timer\n");
233 case TIMER_COUNTER_NORST
:
234 // set limit without resetting counter
235 s
->limit
= val
& TIMER_MAX_COUNT32
;
237 if (s
->limit
== 0) /* free-run */
238 ptimer_set_limit(s
->timer
,
239 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32
), 0);
241 ptimer_set_limit(s
->timer
, LIMIT_TO_PERIODS(s
->limit
), 0);
245 if (slavio_timer_is_user(s
)) {
246 // start/stop user counter
247 if ((val
& 1) && !s
->running
) {
248 DPRINTF("processor %d user timer started\n", s
->slave_index
);
250 ptimer_run(s
->timer
, 0);
252 } else if (!(val
& 1) && s
->running
) {
253 DPRINTF("processor %d user timer stopped\n", s
->slave_index
);
255 ptimer_stop(s
->timer
);
261 if (s
->master
== NULL
) {
264 for (i
= 0; i
< s
->num_slaves
; i
++) {
265 unsigned int processor
= 1 << i
;
267 // check for a change in timer mode for this processor
268 if ((val
& processor
) != (s
->slave_mode
& processor
)) {
269 if (val
& processor
) { // counter -> user timer
270 qemu_irq_lower(s
->slave
[i
]->irq
);
271 // counters are always running
272 ptimer_stop(s
->slave
[i
]->timer
);
273 s
->slave
[i
]->running
= 0;
274 // user timer limit is always the same
275 s
->slave
[i
]->limit
= TIMER_MAX_COUNT64
;
276 ptimer_set_limit(s
->slave
[i
]->timer
,
277 LIMIT_TO_PERIODS(s
->slave
[i
]->limit
),
279 // set this processors user timer bit in config
281 s
->slave_mode
|= processor
;
282 DPRINTF("processor %d changed from counter to user "
283 "timer\n", s
->slave
[i
]->slave_index
);
284 } else { // user timer -> counter
285 // stop the user timer if it is running
286 if (s
->slave
[i
]->running
)
287 ptimer_stop(s
->slave
[i
]->timer
);
289 ptimer_run(s
->slave
[i
]->timer
, 0);
290 s
->slave
[i
]->running
= 1;
291 // clear this processors user timer bit in config
293 s
->slave_mode
&= ~processor
;
294 DPRINTF("processor %d changed from user timer to "
295 "counter\n", s
->slave
[i
]->slave_index
);
300 DPRINTF("not system timer\n");
303 DPRINTF("invalid write address " TARGET_FMT_plx
"\n", addr
);
308 static CPUReadMemoryFunc
*slavio_timer_mem_read
[3] = {
311 slavio_timer_mem_readl
,
314 static CPUWriteMemoryFunc
*slavio_timer_mem_write
[3] = {
317 slavio_timer_mem_writel
,
320 static void slavio_timer_save(QEMUFile
*f
, void *opaque
)
322 SLAVIO_TIMERState
*s
= opaque
;
324 qemu_put_be64s(f
, &s
->limit
);
325 qemu_put_be32s(f
, &s
->count
);
326 qemu_put_be32s(f
, &s
->counthigh
);
327 qemu_put_be32s(f
, &s
->reached
);
328 qemu_put_be32s(f
, &s
->running
);
330 qemu_put_ptimer(f
, s
->timer
);
333 static int slavio_timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
335 SLAVIO_TIMERState
*s
= opaque
;
340 qemu_get_be64s(f
, &s
->limit
);
341 qemu_get_be32s(f
, &s
->count
);
342 qemu_get_be32s(f
, &s
->counthigh
);
343 qemu_get_be32s(f
, &s
->reached
);
344 qemu_get_be32s(f
, &s
->running
);
346 qemu_get_ptimer(f
, s
->timer
);
351 static void slavio_timer_reset(void *opaque
)
353 SLAVIO_TIMERState
*s
= opaque
;
359 if (!s
->master
|| s
->slave_index
< s
->master
->num_slaves
) {
360 ptimer_set_limit(s
->timer
, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32
), 1);
361 ptimer_run(s
->timer
, 0);
366 static SLAVIO_TIMERState
*slavio_timer_init(target_phys_addr_t addr
,
368 SLAVIO_TIMERState
*master
,
369 uint32_t slave_index
,
374 SLAVIO_TIMERState
*d
;
376 dev
= qdev_create(NULL
, "slavio_timer");
377 qdev_prop_set_uint32(dev
, "slave_index", slave_index
);
378 qdev_prop_set_uint32(dev
, "num_slaves", num_slaves
);
379 qdev_prop_set_ptr(dev
, "master", master
);
381 s
= sysbus_from_qdev(dev
);
382 sysbus_connect_irq(s
, 0, irq
);
383 sysbus_mmio_map(s
, 0, addr
);
385 d
= FROM_SYSBUS(SLAVIO_TIMERState
, s
);
390 static void slavio_timer_init1(SysBusDevice
*dev
)
393 SLAVIO_TIMERState
*s
= FROM_SYSBUS(SLAVIO_TIMERState
, dev
);
396 sysbus_init_irq(dev
, &s
->irq
);
398 if (!s
->master
|| s
->slave_index
< s
->master
->num_slaves
) {
399 bh
= qemu_bh_new(slavio_timer_irq
, s
);
400 s
->timer
= ptimer_init(bh
);
401 ptimer_set_period(s
->timer
, TIMER_PERIOD
);
404 io
= cpu_register_io_memory(slavio_timer_mem_read
, slavio_timer_mem_write
,
407 sysbus_init_mmio(dev
, CPU_TIMER_SIZE
, io
);
409 sysbus_init_mmio(dev
, SYS_TIMER_SIZE
, io
);
412 register_savevm("slavio_timer", -1, 3, slavio_timer_save
,
413 slavio_timer_load
, s
);
414 qemu_register_reset(slavio_timer_reset
, s
);
415 slavio_timer_reset(s
);
418 void slavio_timer_init_all(target_phys_addr_t base
, qemu_irq master_irq
,
419 qemu_irq
*cpu_irqs
, unsigned int num_cpus
)
421 SLAVIO_TIMERState
*master
;
424 master
= slavio_timer_init(base
+ SYS_TIMER_OFFSET
, master_irq
, NULL
, 0,
427 for (i
= 0; i
< MAX_CPUS
; i
++) {
428 master
->slave
[i
] = slavio_timer_init(base
+ (target_phys_addr_t
)
430 cpu_irqs
[i
], master
, i
, 0);
434 static SysBusDeviceInfo slavio_timer_info
= {
435 .init
= slavio_timer_init1
,
436 .qdev
.name
= "slavio_timer",
437 .qdev
.size
= sizeof(SLAVIO_TIMERState
),
438 .qdev
.props
= (Property
[]) {
440 .name
= "num_slaves",
441 .info
= &qdev_prop_uint32
,
442 .offset
= offsetof(SLAVIO_TIMERState
, num_slaves
),
445 .name
= "slave_index",
446 .info
= &qdev_prop_uint32
,
447 .offset
= offsetof(SLAVIO_TIMERState
, slave_index
),
451 .info
= &qdev_prop_ptr
,
452 .offset
= offsetof(SLAVIO_TIMERState
, master
),
454 {/* end of property list */}
458 static void slavio_timer_register_devices(void)
460 sysbus_register_withprop(&slavio_timer_info
);
463 device_init(slavio_timer_register_devices
)