Disable recv notifications until avail buffers exhausted
[qemu-kvm/fedora.git] / fpu / softfloat-native.c
blobe58551f331fdf6ed1465d94fb503b046643f5ba2
1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
3 #include "softfloat.h"
4 #include <math.h>
6 void set_float_rounding_mode(int val STATUS_PARAM)
8 STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10 fpsetround(val);
11 #elif defined(__arm__)
12 /* nothing to do */
13 #else
14 fesetround(val);
15 #endif
18 #ifdef FLOATX80
19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
21 STATUS(floatx80_rounding_precision) = val;
23 #endif
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d) ((int32_t)rint(d))
27 #define llrint(d) ((int64_t)rint(d))
28 #define lrintf(f) ((int32_t)rint(f))
29 #define llrintf(f) ((int64_t)rint(f))
30 #define sqrtf(f) ((float)sqrt(f))
31 #define remainderf(fa, fb) ((float)remainder(fa, fb))
32 #define rintf(f) ((float)rint(f))
33 #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34 extern long double rintl(long double);
35 extern long double scalbnl(long double, int);
37 long long
38 llrintl(long double x) {
39 return ((long long) rintl(x));
42 long
43 lrintl(long double x) {
44 return ((long) rintl(x));
47 long double
48 ldexpl(long double x, int n) {
49 return (scalbnl(x, n));
51 #endif
52 #endif
54 #if defined(__powerpc__)
56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
57 double qemu_rint(double x)
59 double y = 4503599627370496.0;
60 if (fabs(x) >= y)
61 return x;
62 if (x < 0)
63 y = -y;
64 y = (x + y) - y;
65 if (y == 0.0)
66 y = copysign(y, x);
67 return y;
70 #define rint qemu_rint
71 #endif
73 /*----------------------------------------------------------------------------
74 | Software IEC/IEEE integer-to-floating-point conversion routines.
75 *----------------------------------------------------------------------------*/
76 float32 int32_to_float32(int v STATUS_PARAM)
78 return (float32)v;
81 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
83 return (float32)v;
86 float64 int32_to_float64(int v STATUS_PARAM)
88 return (float64)v;
91 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
93 return (float64)v;
96 #ifdef FLOATX80
97 floatx80 int32_to_floatx80(int v STATUS_PARAM)
99 return (floatx80)v;
101 #endif
102 float32 int64_to_float32( int64_t v STATUS_PARAM)
104 return (float32)v;
106 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
108 return (float32)v;
110 float64 int64_to_float64( int64_t v STATUS_PARAM)
112 return (float64)v;
114 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
116 return (float64)v;
118 #ifdef FLOATX80
119 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
121 return (floatx80)v;
123 #endif
125 /* XXX: this code implements the x86 behaviour, not the IEEE one. */
126 #if HOST_LONG_BITS == 32
127 static inline int long_to_int32(long a)
129 return a;
131 #else
132 static inline int long_to_int32(long a)
134 if (a != (int32_t)a)
135 a = 0x80000000;
136 return a;
138 #endif
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE single-precision conversion routines.
142 *----------------------------------------------------------------------------*/
143 int float32_to_int32( float32 a STATUS_PARAM)
145 return long_to_int32(lrintf(a));
147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
149 return (int)a;
151 int64_t float32_to_int64( float32 a STATUS_PARAM)
153 return llrintf(a);
156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
158 return (int64_t)a;
161 float64 float32_to_float64( float32 a STATUS_PARAM)
163 return a;
165 #ifdef FLOATX80
166 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
168 return a;
170 #endif
172 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
174 int64_t v;
175 unsigned int res;
177 v = llrintf(a);
178 if (v < 0) {
179 res = 0;
180 } else if (v > 0xffffffff) {
181 res = 0xffffffff;
182 } else {
183 res = v;
185 return res;
187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
189 int64_t v;
190 unsigned int res;
192 v = (int64_t)a;
193 if (v < 0) {
194 res = 0;
195 } else if (v > 0xffffffff) {
196 res = 0xffffffff;
197 } else {
198 res = v;
200 return res;
203 /*----------------------------------------------------------------------------
204 | Software IEC/IEEE single-precision operations.
205 *----------------------------------------------------------------------------*/
206 float32 float32_round_to_int( float32 a STATUS_PARAM)
208 return rintf(a);
211 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
213 return remainderf(a, b);
216 float32 float32_sqrt( float32 a STATUS_PARAM)
218 return sqrtf(a);
220 int float32_compare( float32 a, float32 b STATUS_PARAM )
222 if (a < b) {
223 return -1;
224 } else if (a == b) {
225 return 0;
226 } else if (a > b) {
227 return 1;
228 } else {
229 return 2;
232 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
234 if (isless(a, b)) {
235 return -1;
236 } else if (a == b) {
237 return 0;
238 } else if (isgreater(a, b)) {
239 return 1;
240 } else {
241 return 2;
244 int float32_is_signaling_nan( float32 a1)
246 float32u u;
247 uint32_t a;
248 u.f = a1;
249 a = u.i;
250 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
253 /*----------------------------------------------------------------------------
254 | Software IEC/IEEE double-precision conversion routines.
255 *----------------------------------------------------------------------------*/
256 int float64_to_int32( float64 a STATUS_PARAM)
258 return long_to_int32(lrint(a));
260 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
262 return (int)a;
264 int64_t float64_to_int64( float64 a STATUS_PARAM)
266 return llrint(a);
268 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
270 return (int64_t)a;
272 float32 float64_to_float32( float64 a STATUS_PARAM)
274 return a;
276 #ifdef FLOATX80
277 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
279 return a;
281 #endif
282 #ifdef FLOAT128
283 float128 float64_to_float128( float64 a STATUS_PARAM)
285 return a;
287 #endif
289 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
291 int64_t v;
292 unsigned int res;
294 v = llrint(a);
295 if (v < 0) {
296 res = 0;
297 } else if (v > 0xffffffff) {
298 res = 0xffffffff;
299 } else {
300 res = v;
302 return res;
304 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
306 int64_t v;
307 unsigned int res;
309 v = (int64_t)a;
310 if (v < 0) {
311 res = 0;
312 } else if (v > 0xffffffff) {
313 res = 0xffffffff;
314 } else {
315 res = v;
317 return res;
319 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
321 int64_t v;
323 v = llrint(a + (float64)INT64_MIN);
325 return v - INT64_MIN;
327 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
329 int64_t v;
331 v = (int64_t)(a + (float64)INT64_MIN);
333 return v - INT64_MIN;
336 /*----------------------------------------------------------------------------
337 | Software IEC/IEEE double-precision operations.
338 *----------------------------------------------------------------------------*/
339 #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
340 static inline float64 trunc(float64 x)
342 return x < 0 ? -floor(-x) : floor(x);
344 #endif
345 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
347 return trunc(a);
350 float64 float64_round_to_int( float64 a STATUS_PARAM )
352 #if defined(__arm__)
353 switch(STATUS(float_rounding_mode)) {
354 default:
355 case float_round_nearest_even:
356 asm("rndd %0, %1" : "=f" (a) : "f"(a));
357 break;
358 case float_round_down:
359 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
360 break;
361 case float_round_up:
362 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
363 break;
364 case float_round_to_zero:
365 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
366 break;
368 #else
369 return rint(a);
370 #endif
373 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
375 return remainder(a, b);
378 float64 float64_sqrt( float64 a STATUS_PARAM)
380 return sqrt(a);
382 int float64_compare( float64 a, float64 b STATUS_PARAM )
384 if (a < b) {
385 return -1;
386 } else if (a == b) {
387 return 0;
388 } else if (a > b) {
389 return 1;
390 } else {
391 return 2;
394 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
396 if (isless(a, b)) {
397 return -1;
398 } else if (a == b) {
399 return 0;
400 } else if (isgreater(a, b)) {
401 return 1;
402 } else {
403 return 2;
406 int float64_is_signaling_nan( float64 a1)
408 float64u u;
409 uint64_t a;
410 u.f = a1;
411 a = u.i;
412 return
413 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
414 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
418 int float64_is_nan( float64 a1 )
420 float64u u;
421 uint64_t a;
422 u.f = a1;
423 a = u.i;
425 return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
429 #ifdef FLOATX80
431 /*----------------------------------------------------------------------------
432 | Software IEC/IEEE extended double-precision conversion routines.
433 *----------------------------------------------------------------------------*/
434 int floatx80_to_int32( floatx80 a STATUS_PARAM)
436 return long_to_int32(lrintl(a));
438 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
440 return (int)a;
442 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
444 return llrintl(a);
446 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
448 return (int64_t)a;
450 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
452 return a;
454 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
456 return a;
459 /*----------------------------------------------------------------------------
460 | Software IEC/IEEE extended double-precision operations.
461 *----------------------------------------------------------------------------*/
462 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
464 return rintl(a);
466 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
468 return remainderl(a, b);
470 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
472 return sqrtl(a);
474 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
476 if (a < b) {
477 return -1;
478 } else if (a == b) {
479 return 0;
480 } else if (a > b) {
481 return 1;
482 } else {
483 return 2;
486 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
488 if (isless(a, b)) {
489 return -1;
490 } else if (a == b) {
491 return 0;
492 } else if (isgreater(a, b)) {
493 return 1;
494 } else {
495 return 2;
498 int floatx80_is_signaling_nan( floatx80 a1)
500 floatx80u u;
501 u.f = a1;
502 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
505 #endif