Merge commit '413fb2412d' into stable-0.11
[qemu-kvm/fedora.git] / kvm-all.c
blobb4b5a35f4f25ace810a4bc561942507467a03a7c
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 #ifdef KVM_UPSTREAM
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
33 //#define DEBUG_KVM
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
43 typedef struct KVMSlot
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
52 typedef struct kvm_dirty_log KVMDirtyLog;
54 int kvm_allowed = 0;
56 struct KVMState
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
69 static KVMState *kvm_state;
71 static KVMSlot *kvm_alloc_slot(KVMState *s)
73 int i;
75 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
76 /* KVM private memory slots */
77 if (i >= 8 && i < 12)
78 continue;
79 if (s->slots[i].memory_size == 0)
80 return &s->slots[i];
83 fprintf(stderr, "%s: no free slot available\n", __func__);
84 abort();
87 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
88 target_phys_addr_t start_addr,
89 target_phys_addr_t end_addr)
91 int i;
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 KVMSlot *mem = &s->slots[i];
96 if (start_addr == mem->start_addr &&
97 end_addr == mem->start_addr + mem->memory_size) {
98 return mem;
102 return NULL;
106 * Find overlapping slot with lowest start address
108 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
109 target_phys_addr_t start_addr,
110 target_phys_addr_t end_addr)
112 KVMSlot *found = NULL;
113 int i;
115 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
116 KVMSlot *mem = &s->slots[i];
118 if (mem->memory_size == 0 ||
119 (found && found->start_addr < mem->start_addr)) {
120 continue;
123 if (end_addr > mem->start_addr &&
124 start_addr < mem->start_addr + mem->memory_size) {
125 found = mem;
129 return found;
132 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
134 struct kvm_userspace_memory_region mem;
136 mem.slot = slot->slot;
137 mem.guest_phys_addr = slot->start_addr;
138 mem.memory_size = slot->memory_size;
139 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
140 mem.flags = slot->flags;
141 if (s->migration_log) {
142 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
144 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147 static void kvm_reset_vcpu(void *opaque)
149 CPUState *env = opaque;
151 if (kvm_arch_put_registers(env)) {
152 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
153 abort();
157 int kvm_init_vcpu(CPUState *env)
159 KVMState *s = kvm_state;
160 long mmap_size;
161 int ret;
163 dprintf("kvm_init_vcpu\n");
165 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
166 if (ret < 0) {
167 dprintf("kvm_create_vcpu failed\n");
168 goto err;
171 env->kvm_fd = ret;
172 env->kvm_state = s;
174 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
175 if (mmap_size < 0) {
176 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
177 goto err;
180 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
181 env->kvm_fd, 0);
182 if (env->kvm_run == MAP_FAILED) {
183 ret = -errno;
184 dprintf("mmap'ing vcpu state failed\n");
185 goto err;
188 ret = kvm_arch_init_vcpu(env);
189 if (ret == 0) {
190 qemu_register_reset(kvm_reset_vcpu, env);
191 ret = kvm_arch_put_registers(env);
193 err:
194 return ret;
197 int kvm_put_mp_state(CPUState *env)
199 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
201 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
204 int kvm_get_mp_state(CPUState *env)
206 struct kvm_mp_state mp_state;
207 int ret;
209 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
210 if (ret < 0) {
211 return ret;
213 env->mp_state = mp_state.mp_state;
214 return 0;
218 * dirty pages logging control
220 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
221 ram_addr_t size, int flags, int mask)
223 KVMState *s = kvm_state;
224 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
225 int old_flags;
227 if (mem == NULL) {
228 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
229 TARGET_FMT_plx "\n", __func__, phys_addr,
230 phys_addr + size - 1);
231 return -EINVAL;
234 old_flags = mem->flags;
236 flags = (mem->flags & ~mask) | flags;
237 mem->flags = flags;
239 /* If nothing changed effectively, no need to issue ioctl */
240 if (s->migration_log) {
241 flags |= KVM_MEM_LOG_DIRTY_PAGES;
243 if (flags == old_flags) {
244 return 0;
247 return kvm_set_user_memory_region(s, mem);
250 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
252 return kvm_dirty_pages_log_change(phys_addr, size,
253 KVM_MEM_LOG_DIRTY_PAGES,
254 KVM_MEM_LOG_DIRTY_PAGES);
257 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
259 return kvm_dirty_pages_log_change(phys_addr, size,
261 KVM_MEM_LOG_DIRTY_PAGES);
264 int kvm_set_migration_log(int enable)
266 KVMState *s = kvm_state;
267 KVMSlot *mem;
268 int i, err;
270 s->migration_log = enable;
272 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
273 mem = &s->slots[i];
275 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
276 continue;
278 err = kvm_set_user_memory_region(s, mem);
279 if (err) {
280 return err;
283 return 0;
287 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
288 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
289 * This means all bits are set to dirty.
291 * @start_add: start of logged region.
292 * @end_addr: end of logged region.
294 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
295 target_phys_addr_t end_addr)
297 KVMState *s = kvm_state;
298 unsigned long size, allocated_size = 0;
299 target_phys_addr_t phys_addr;
300 ram_addr_t addr;
301 KVMDirtyLog d;
302 KVMSlot *mem;
303 int ret = 0;
305 d.dirty_bitmap = NULL;
306 while (start_addr < end_addr) {
307 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
308 if (mem == NULL) {
309 break;
312 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
313 if (!d.dirty_bitmap) {
314 d.dirty_bitmap = qemu_malloc(size);
315 } else if (size > allocated_size) {
316 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
318 allocated_size = size;
319 memset(d.dirty_bitmap, 0, allocated_size);
321 d.slot = mem->slot;
323 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
324 dprintf("ioctl failed %d\n", errno);
325 ret = -1;
326 break;
329 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
330 phys_addr < mem->start_addr + mem->memory_size;
331 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
332 unsigned long *bitmap = (unsigned long *)d.dirty_bitmap;
333 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
334 unsigned word = nr / (sizeof(*bitmap) * 8);
335 unsigned bit = nr % (sizeof(*bitmap) * 8);
337 if ((bitmap[word] >> bit) & 1) {
338 cpu_physical_memory_set_dirty(addr);
341 start_addr = phys_addr;
343 qemu_free(d.dirty_bitmap);
345 return ret;
348 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
350 int ret = -ENOSYS;
351 #ifdef KVM_CAP_COALESCED_MMIO
352 KVMState *s = kvm_state;
354 if (s->coalesced_mmio) {
355 struct kvm_coalesced_mmio_zone zone;
357 zone.addr = start;
358 zone.size = size;
360 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
362 #endif
364 return ret;
367 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
369 int ret = -ENOSYS;
370 #ifdef KVM_CAP_COALESCED_MMIO
371 KVMState *s = kvm_state;
373 if (s->coalesced_mmio) {
374 struct kvm_coalesced_mmio_zone zone;
376 zone.addr = start;
377 zone.size = size;
379 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
381 #endif
383 return ret;
386 #endif
387 int kvm_check_extension(KVMState *s, unsigned int extension)
389 int ret;
391 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
392 if (ret < 0) {
393 ret = 0;
396 return ret;
398 #ifdef KVM_UPSTREAM
400 int kvm_init(int smp_cpus)
402 static const char upgrade_note[] =
403 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
404 "(see http://sourceforge.net/projects/kvm).\n";
405 KVMState *s;
406 int ret;
407 int i;
409 if (smp_cpus > 1) {
410 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
411 return -EINVAL;
414 s = qemu_mallocz(sizeof(KVMState));
416 #ifdef KVM_CAP_SET_GUEST_DEBUG
417 TAILQ_INIT(&s->kvm_sw_breakpoints);
418 #endif
419 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
420 s->slots[i].slot = i;
422 s->vmfd = -1;
423 s->fd = open("/dev/kvm", O_RDWR);
424 if (s->fd == -1) {
425 fprintf(stderr, "Could not access KVM kernel module: %m\n");
426 ret = -errno;
427 goto err;
430 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
431 if (ret < KVM_API_VERSION) {
432 if (ret > 0)
433 ret = -EINVAL;
434 fprintf(stderr, "kvm version too old\n");
435 goto err;
438 if (ret > KVM_API_VERSION) {
439 ret = -EINVAL;
440 fprintf(stderr, "kvm version not supported\n");
441 goto err;
444 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
445 if (s->vmfd < 0)
446 goto err;
448 /* initially, KVM allocated its own memory and we had to jump through
449 * hooks to make phys_ram_base point to this. Modern versions of KVM
450 * just use a user allocated buffer so we can use regular pages
451 * unmodified. Make sure we have a sufficiently modern version of KVM.
453 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
454 ret = -EINVAL;
455 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
456 upgrade_note);
457 goto err;
460 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
461 * destroyed properly. Since we rely on this capability, refuse to work
462 * with any kernel without this capability. */
463 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
464 ret = -EINVAL;
466 fprintf(stderr,
467 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
468 upgrade_note);
469 goto err;
472 #ifdef KVM_CAP_COALESCED_MMIO
473 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
474 #else
475 s->coalesced_mmio = 0;
476 #endif
478 s->broken_set_mem_region = 1;
479 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
480 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
481 if (ret > 0) {
482 s->broken_set_mem_region = 0;
484 #endif
486 ret = kvm_arch_init(s, smp_cpus);
487 if (ret < 0)
488 goto err;
490 kvm_state = s;
492 return 0;
494 err:
495 if (s) {
496 if (s->vmfd != -1)
497 close(s->vmfd);
498 if (s->fd != -1)
499 close(s->fd);
501 qemu_free(s);
503 return ret;
506 static int kvm_handle_io(CPUState *env, uint16_t port, void *data,
507 int direction, int size, uint32_t count)
509 int i;
510 uint8_t *ptr = data;
512 for (i = 0; i < count; i++) {
513 if (direction == KVM_EXIT_IO_IN) {
514 switch (size) {
515 case 1:
516 stb_p(ptr, cpu_inb(env, port));
517 break;
518 case 2:
519 stw_p(ptr, cpu_inw(env, port));
520 break;
521 case 4:
522 stl_p(ptr, cpu_inl(env, port));
523 break;
525 } else {
526 switch (size) {
527 case 1:
528 cpu_outb(env, port, ldub_p(ptr));
529 break;
530 case 2:
531 cpu_outw(env, port, lduw_p(ptr));
532 break;
533 case 4:
534 cpu_outl(env, port, ldl_p(ptr));
535 break;
539 ptr += size;
542 return 1;
545 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
547 #ifdef KVM_CAP_COALESCED_MMIO
548 KVMState *s = kvm_state;
549 if (s->coalesced_mmio) {
550 struct kvm_coalesced_mmio_ring *ring;
552 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
553 while (ring->first != ring->last) {
554 struct kvm_coalesced_mmio *ent;
556 ent = &ring->coalesced_mmio[ring->first];
558 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
559 /* FIXME smp_wmb() */
560 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
563 #endif
566 int kvm_cpu_exec(CPUState *env)
568 struct kvm_run *run = env->kvm_run;
569 int ret;
571 dprintf("kvm_cpu_exec()\n");
573 do {
574 if (env->exit_request) {
575 dprintf("interrupt exit requested\n");
576 ret = 0;
577 break;
580 kvm_arch_pre_run(env, run);
581 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
582 kvm_arch_post_run(env, run);
584 if (ret == -EINTR || ret == -EAGAIN) {
585 dprintf("io window exit\n");
586 ret = 0;
587 break;
590 if (ret < 0) {
591 dprintf("kvm run failed %s\n", strerror(-ret));
592 abort();
595 kvm_run_coalesced_mmio(env, run);
597 ret = 0; /* exit loop */
598 switch (run->exit_reason) {
599 case KVM_EXIT_IO:
600 dprintf("handle_io\n");
601 ret = kvm_handle_io(env, run->io.port,
602 (uint8_t *)run + run->io.data_offset,
603 run->io.direction,
604 run->io.size,
605 run->io.count);
606 break;
607 case KVM_EXIT_MMIO:
608 dprintf("handle_mmio\n");
609 cpu_physical_memory_rw(run->mmio.phys_addr,
610 run->mmio.data,
611 run->mmio.len,
612 run->mmio.is_write);
613 ret = 1;
614 break;
615 case KVM_EXIT_IRQ_WINDOW_OPEN:
616 dprintf("irq_window_open\n");
617 break;
618 case KVM_EXIT_SHUTDOWN:
619 dprintf("shutdown\n");
620 qemu_system_reset_request();
621 ret = 1;
622 break;
623 case KVM_EXIT_UNKNOWN:
624 dprintf("kvm_exit_unknown\n");
625 break;
626 case KVM_EXIT_FAIL_ENTRY:
627 dprintf("kvm_exit_fail_entry\n");
628 break;
629 case KVM_EXIT_EXCEPTION:
630 dprintf("kvm_exit_exception\n");
631 break;
632 case KVM_EXIT_DEBUG:
633 dprintf("kvm_exit_debug\n");
634 #ifdef KVM_CAP_SET_GUEST_DEBUG
635 if (kvm_arch_debug(&run->debug.arch)) {
636 gdb_set_stop_cpu(env);
637 vm_stop(EXCP_DEBUG);
638 env->exception_index = EXCP_DEBUG;
639 return 0;
641 /* re-enter, this exception was guest-internal */
642 ret = 1;
643 #endif /* KVM_CAP_SET_GUEST_DEBUG */
644 break;
645 default:
646 dprintf("kvm_arch_handle_exit\n");
647 ret = kvm_arch_handle_exit(env, run);
648 break;
650 } while (ret > 0);
652 if (env->exit_request) {
653 env->exit_request = 0;
654 env->exception_index = EXCP_INTERRUPT;
657 return ret;
660 void kvm_set_phys_mem(target_phys_addr_t start_addr,
661 ram_addr_t size,
662 ram_addr_t phys_offset)
664 KVMState *s = kvm_state;
665 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
666 KVMSlot *mem, old;
667 int err;
669 if (start_addr & ~TARGET_PAGE_MASK) {
670 if (flags >= IO_MEM_UNASSIGNED) {
671 if (!kvm_lookup_overlapping_slot(s, start_addr,
672 start_addr + size)) {
673 return;
675 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
676 } else {
677 fprintf(stderr, "Only page-aligned memory slots supported\n");
679 abort();
682 /* KVM does not support read-only slots */
683 phys_offset &= ~IO_MEM_ROM;
685 while (1) {
686 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
687 if (!mem) {
688 break;
691 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
692 (start_addr + size <= mem->start_addr + mem->memory_size) &&
693 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
694 /* The new slot fits into the existing one and comes with
695 * identical parameters - nothing to be done. */
696 return;
699 old = *mem;
701 /* unregister the overlapping slot */
702 mem->memory_size = 0;
703 err = kvm_set_user_memory_region(s, mem);
704 if (err) {
705 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
706 __func__, strerror(-err));
707 abort();
710 /* Workaround for older KVM versions: we can't join slots, even not by
711 * unregistering the previous ones and then registering the larger
712 * slot. We have to maintain the existing fragmentation. Sigh.
714 * This workaround assumes that the new slot starts at the same
715 * address as the first existing one. If not or if some overlapping
716 * slot comes around later, we will fail (not seen in practice so far)
717 * - and actually require a recent KVM version. */
718 if (s->broken_set_mem_region &&
719 old.start_addr == start_addr && old.memory_size < size &&
720 flags < IO_MEM_UNASSIGNED) {
721 mem = kvm_alloc_slot(s);
722 mem->memory_size = old.memory_size;
723 mem->start_addr = old.start_addr;
724 mem->phys_offset = old.phys_offset;
725 mem->flags = 0;
727 err = kvm_set_user_memory_region(s, mem);
728 if (err) {
729 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
730 strerror(-err));
731 abort();
734 start_addr += old.memory_size;
735 phys_offset += old.memory_size;
736 size -= old.memory_size;
737 continue;
740 /* register prefix slot */
741 if (old.start_addr < start_addr) {
742 mem = kvm_alloc_slot(s);
743 mem->memory_size = start_addr - old.start_addr;
744 mem->start_addr = old.start_addr;
745 mem->phys_offset = old.phys_offset;
746 mem->flags = 0;
748 err = kvm_set_user_memory_region(s, mem);
749 if (err) {
750 fprintf(stderr, "%s: error registering prefix slot: %s\n",
751 __func__, strerror(-err));
752 abort();
756 /* register suffix slot */
757 if (old.start_addr + old.memory_size > start_addr + size) {
758 ram_addr_t size_delta;
760 mem = kvm_alloc_slot(s);
761 mem->start_addr = start_addr + size;
762 size_delta = mem->start_addr - old.start_addr;
763 mem->memory_size = old.memory_size - size_delta;
764 mem->phys_offset = old.phys_offset + size_delta;
765 mem->flags = 0;
767 err = kvm_set_user_memory_region(s, mem);
768 if (err) {
769 fprintf(stderr, "%s: error registering suffix slot: %s\n",
770 __func__, strerror(-err));
771 abort();
776 /* in case the KVM bug workaround already "consumed" the new slot */
777 if (!size)
778 return;
780 /* KVM does not need to know about this memory */
781 if (flags >= IO_MEM_UNASSIGNED)
782 return;
784 mem = kvm_alloc_slot(s);
785 mem->memory_size = size;
786 mem->start_addr = start_addr;
787 mem->phys_offset = phys_offset;
788 mem->flags = 0;
790 err = kvm_set_user_memory_region(s, mem);
791 if (err) {
792 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
793 strerror(-err));
794 abort();
798 #endif
799 int kvm_ioctl(KVMState *s, int type, ...)
801 int ret;
802 void *arg;
803 va_list ap;
805 va_start(ap, type);
806 arg = va_arg(ap, void *);
807 va_end(ap);
809 ret = ioctl(s->fd, type, arg);
810 if (ret == -1)
811 ret = -errno;
813 return ret;
816 int kvm_vm_ioctl(KVMState *s, int type, ...)
818 int ret;
819 void *arg;
820 va_list ap;
822 va_start(ap, type);
823 arg = va_arg(ap, void *);
824 va_end(ap);
826 ret = ioctl(s->vmfd, type, arg);
827 if (ret == -1)
828 ret = -errno;
830 return ret;
833 #ifdef KVM_UPSTREAM
834 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
836 int ret;
837 void *arg;
838 va_list ap;
840 va_start(ap, type);
841 arg = va_arg(ap, void *);
842 va_end(ap);
844 ret = ioctl(env->kvm_fd, type, arg);
845 if (ret == -1)
846 ret = -errno;
848 return ret;
851 int kvm_has_sync_mmu(void)
853 #ifdef KVM_CAP_SYNC_MMU
854 KVMState *s = kvm_state;
856 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
857 #else
858 return 0;
859 #endif
862 void kvm_setup_guest_memory(void *start, size_t size)
864 if (!kvm_has_sync_mmu()) {
865 #ifdef MADV_DONTFORK
866 int ret = madvise(start, size, MADV_DONTFORK);
868 if (ret) {
869 perror("madvice");
870 exit(1);
872 #else
873 fprintf(stderr,
874 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
875 exit(1);
876 #endif
880 #endif /* KVM_UPSTREAM */
882 #ifdef KVM_CAP_SET_GUEST_DEBUG
883 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
884 target_ulong pc)
886 struct kvm_sw_breakpoint *bp;
888 TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
889 if (bp->pc == pc)
890 return bp;
892 return NULL;
895 int kvm_sw_breakpoints_active(CPUState *env)
897 return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
900 #ifdef KVM_UPSTREAM
901 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
903 struct kvm_guest_debug dbg;
905 dbg.control = 0;
906 if (env->singlestep_enabled)
907 dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
909 kvm_arch_update_guest_debug(env, &dbg);
910 dbg.control |= reinject_trap;
912 return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg);
914 #endif
916 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
917 target_ulong len, int type)
919 struct kvm_sw_breakpoint *bp;
920 CPUState *env;
921 int err;
923 if (type == GDB_BREAKPOINT_SW) {
924 bp = kvm_find_sw_breakpoint(current_env, addr);
925 if (bp) {
926 bp->use_count++;
927 return 0;
930 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
931 if (!bp)
932 return -ENOMEM;
934 bp->pc = addr;
935 bp->use_count = 1;
936 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
937 if (err) {
938 free(bp);
939 return err;
942 TAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
943 bp, entry);
944 } else {
945 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
946 if (err)
947 return err;
950 for (env = first_cpu; env != NULL; env = env->next_cpu) {
951 err = kvm_update_guest_debug(env, 0);
952 if (err)
953 return err;
955 return 0;
958 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
959 target_ulong len, int type)
961 struct kvm_sw_breakpoint *bp;
962 CPUState *env;
963 int err;
965 if (type == GDB_BREAKPOINT_SW) {
966 bp = kvm_find_sw_breakpoint(current_env, addr);
967 if (!bp)
968 return -ENOENT;
970 if (bp->use_count > 1) {
971 bp->use_count--;
972 return 0;
975 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
976 if (err)
977 return err;
979 TAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
980 qemu_free(bp);
981 } else {
982 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
983 if (err)
984 return err;
987 for (env = first_cpu; env != NULL; env = env->next_cpu) {
988 err = kvm_update_guest_debug(env, 0);
989 if (err)
990 return err;
992 return 0;
995 void kvm_remove_all_breakpoints(CPUState *current_env)
997 struct kvm_sw_breakpoint *bp, *next;
998 KVMState *s = current_env->kvm_state;
999 CPUState *env;
1001 TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1002 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1003 /* Try harder to find a CPU that currently sees the breakpoint. */
1004 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1005 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1006 break;
1010 kvm_arch_remove_all_hw_breakpoints();
1012 for (env = first_cpu; env != NULL; env = env->next_cpu)
1013 kvm_update_guest_debug(env, 0);
1016 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1018 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1020 return -EINVAL;
1023 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1024 target_ulong len, int type)
1026 return -EINVAL;
1029 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1030 target_ulong len, int type)
1032 return -EINVAL;
1035 void kvm_remove_all_breakpoints(CPUState *current_env)
1038 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1040 #include "qemu-kvm.c"