4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
28 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
29 #define PAGE_SIZE TARGET_PAGE_SIZE
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #define dprintf(fmt, ...) \
41 typedef struct KVMSlot
43 target_phys_addr_t start_addr
;
44 ram_addr_t memory_size
;
45 ram_addr_t phys_offset
;
50 typedef struct kvm_dirty_log KVMDirtyLog
;
60 int broken_set_mem_region
;
61 #ifdef KVM_CAP_SET_GUEST_DEBUG
62 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
66 static KVMState
*kvm_state
;
68 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
72 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
73 /* KVM private memory slots */
76 if (s
->slots
[i
].memory_size
== 0)
80 fprintf(stderr
, "%s: no free slot available\n", __func__
);
84 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
85 target_phys_addr_t start_addr
,
86 target_phys_addr_t end_addr
)
90 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
91 KVMSlot
*mem
= &s
->slots
[i
];
93 if (start_addr
== mem
->start_addr
&&
94 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
103 * Find overlapping slot with lowest start address
105 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
106 target_phys_addr_t start_addr
,
107 target_phys_addr_t end_addr
)
109 KVMSlot
*found
= NULL
;
112 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
113 KVMSlot
*mem
= &s
->slots
[i
];
115 if (mem
->memory_size
== 0 ||
116 (found
&& found
->start_addr
< mem
->start_addr
)) {
120 if (end_addr
> mem
->start_addr
&&
121 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
129 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
131 struct kvm_userspace_memory_region mem
;
133 mem
.slot
= slot
->slot
;
134 mem
.guest_phys_addr
= slot
->start_addr
;
135 mem
.memory_size
= slot
->memory_size
;
136 mem
.userspace_addr
= (unsigned long)qemu_get_ram_ptr(slot
->phys_offset
);
137 mem
.flags
= slot
->flags
;
139 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
143 int kvm_init_vcpu(CPUState
*env
)
145 KVMState
*s
= kvm_state
;
149 dprintf("kvm_init_vcpu\n");
151 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
153 dprintf("kvm_create_vcpu failed\n");
160 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
162 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
166 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
168 if (env
->kvm_run
== MAP_FAILED
) {
170 dprintf("mmap'ing vcpu state failed\n");
174 ret
= kvm_arch_init_vcpu(env
);
180 int kvm_sync_vcpus(void)
184 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
187 ret
= kvm_arch_put_registers(env
);
196 * dirty pages logging control
198 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
199 ram_addr_t size
, unsigned flags
,
202 KVMState
*s
= kvm_state
;
203 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
205 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
206 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
207 phys_addr
+ size
- 1);
211 flags
= (mem
->flags
& ~mask
) | flags
;
212 /* Nothing changed, no need to issue ioctl */
213 if (flags
== mem
->flags
)
218 return kvm_set_user_memory_region(s
, mem
);
221 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
223 return kvm_dirty_pages_log_change(phys_addr
, size
,
224 KVM_MEM_LOG_DIRTY_PAGES
,
225 KVM_MEM_LOG_DIRTY_PAGES
);
228 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
230 return kvm_dirty_pages_log_change(phys_addr
, size
,
232 KVM_MEM_LOG_DIRTY_PAGES
);
236 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
237 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
238 * This means all bits are set to dirty.
240 * @start_add: start of logged region.
241 * @end_addr: end of logged region.
243 void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
244 target_phys_addr_t end_addr
)
246 KVMState
*s
= kvm_state
;
248 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, start_addr
, end_addr
);
249 unsigned long alloc_size
;
251 target_phys_addr_t phys_addr
= start_addr
;
253 dprintf("sync addr: " TARGET_FMT_lx
" into %lx\n", start_addr
,
256 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
257 TARGET_FMT_plx
"\n", __func__
, phys_addr
, end_addr
- 1);
261 alloc_size
= mem
->memory_size
>> TARGET_PAGE_BITS
/ sizeof(d
.dirty_bitmap
);
262 d
.dirty_bitmap
= qemu_mallocz(alloc_size
);
265 dprintf("slot %d, phys_addr %llx, uaddr: %llx\n",
266 d
.slot
, mem
->start_addr
, mem
->phys_offset
);
268 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
269 dprintf("ioctl failed %d\n", errno
);
273 phys_addr
= start_addr
;
274 for (addr
= mem
->phys_offset
; phys_addr
< end_addr
; phys_addr
+= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
275 unsigned long *bitmap
= (unsigned long *)d
.dirty_bitmap
;
276 unsigned nr
= (phys_addr
- start_addr
) >> TARGET_PAGE_BITS
;
277 unsigned word
= nr
/ (sizeof(*bitmap
) * 8);
278 unsigned bit
= nr
% (sizeof(*bitmap
) * 8);
279 if ((bitmap
[word
] >> bit
) & 1)
280 cpu_physical_memory_set_dirty(addr
);
283 qemu_free(d
.dirty_bitmap
);
286 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
289 #ifdef KVM_CAP_COALESCED_MMIO
290 KVMState
*s
= kvm_state
;
292 if (s
->coalesced_mmio
) {
293 struct kvm_coalesced_mmio_zone zone
;
298 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
305 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
308 #ifdef KVM_CAP_COALESCED_MMIO
309 KVMState
*s
= kvm_state
;
311 if (s
->coalesced_mmio
) {
312 struct kvm_coalesced_mmio_zone zone
;
317 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
324 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
328 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
336 int kvm_init(int smp_cpus
)
343 fprintf(stderr
, "No SMP KVM support, use '-smp 1'\n");
347 s
= qemu_mallocz(sizeof(KVMState
));
349 #ifdef KVM_CAP_SET_GUEST_DEBUG
350 TAILQ_INIT(&s
->kvm_sw_breakpoints
);
352 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
353 s
->slots
[i
].slot
= i
;
356 s
->fd
= open("/dev/kvm", O_RDWR
);
358 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
363 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
364 if (ret
< KVM_API_VERSION
) {
367 fprintf(stderr
, "kvm version too old\n");
371 if (ret
> KVM_API_VERSION
) {
373 fprintf(stderr
, "kvm version not supported\n");
377 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
381 /* initially, KVM allocated its own memory and we had to jump through
382 * hooks to make phys_ram_base point to this. Modern versions of KVM
383 * just use a user allocated buffer so we can use regular pages
384 * unmodified. Make sure we have a sufficiently modern version of KVM.
386 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
388 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n");
392 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
393 * destroyed properly. Since we rely on this capability, refuse to work
394 * with any kernel without this capability. */
395 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
399 "KVM kernel module broken (DESTROY_MEMORY_REGION)\n"
400 "Please upgrade to at least kvm-81.\n");
404 #ifdef KVM_CAP_COALESCED_MMIO
405 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
407 s
->coalesced_mmio
= 0;
410 s
->broken_set_mem_region
= 1;
411 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
412 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
414 s
->broken_set_mem_region
= 0;
418 ret
= kvm_arch_init(s
, smp_cpus
);
438 static int kvm_handle_io(CPUState
*env
, uint16_t port
, void *data
,
439 int direction
, int size
, uint32_t count
)
444 for (i
= 0; i
< count
; i
++) {
445 if (direction
== KVM_EXIT_IO_IN
) {
448 stb_p(ptr
, cpu_inb(env
, port
));
451 stw_p(ptr
, cpu_inw(env
, port
));
454 stl_p(ptr
, cpu_inl(env
, port
));
460 cpu_outb(env
, port
, ldub_p(ptr
));
463 cpu_outw(env
, port
, lduw_p(ptr
));
466 cpu_outl(env
, port
, ldl_p(ptr
));
477 static void kvm_run_coalesced_mmio(CPUState
*env
, struct kvm_run
*run
)
479 #ifdef KVM_CAP_COALESCED_MMIO
480 KVMState
*s
= kvm_state
;
481 if (s
->coalesced_mmio
) {
482 struct kvm_coalesced_mmio_ring
*ring
;
484 ring
= (void *)run
+ (s
->coalesced_mmio
* TARGET_PAGE_SIZE
);
485 while (ring
->first
!= ring
->last
) {
486 struct kvm_coalesced_mmio
*ent
;
488 ent
= &ring
->coalesced_mmio
[ring
->first
];
490 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
491 /* FIXME smp_wmb() */
492 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
498 int kvm_cpu_exec(CPUState
*env
)
500 struct kvm_run
*run
= env
->kvm_run
;
503 dprintf("kvm_cpu_exec()\n");
506 kvm_arch_pre_run(env
, run
);
508 if (env
->exit_request
) {
509 dprintf("interrupt exit requested\n");
514 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
515 kvm_arch_post_run(env
, run
);
517 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
518 dprintf("io window exit\n");
524 dprintf("kvm run failed %s\n", strerror(-ret
));
528 kvm_run_coalesced_mmio(env
, run
);
530 ret
= 0; /* exit loop */
531 switch (run
->exit_reason
) {
533 dprintf("handle_io\n");
534 ret
= kvm_handle_io(env
, run
->io
.port
,
535 (uint8_t *)run
+ run
->io
.data_offset
,
541 dprintf("handle_mmio\n");
542 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
548 case KVM_EXIT_IRQ_WINDOW_OPEN
:
549 dprintf("irq_window_open\n");
551 case KVM_EXIT_SHUTDOWN
:
552 dprintf("shutdown\n");
553 qemu_system_reset_request();
556 case KVM_EXIT_UNKNOWN
:
557 dprintf("kvm_exit_unknown\n");
559 case KVM_EXIT_FAIL_ENTRY
:
560 dprintf("kvm_exit_fail_entry\n");
562 case KVM_EXIT_EXCEPTION
:
563 dprintf("kvm_exit_exception\n");
566 dprintf("kvm_exit_debug\n");
567 #ifdef KVM_CAP_SET_GUEST_DEBUG
568 if (kvm_arch_debug(&run
->debug
.arch
)) {
569 gdb_set_stop_cpu(env
);
571 env
->exception_index
= EXCP_DEBUG
;
574 /* re-enter, this exception was guest-internal */
576 #endif /* KVM_CAP_SET_GUEST_DEBUG */
579 dprintf("kvm_arch_handle_exit\n");
580 ret
= kvm_arch_handle_exit(env
, run
);
585 if (env
->exit_request
) {
586 env
->exit_request
= 0;
587 env
->exception_index
= EXCP_INTERRUPT
;
593 void kvm_set_phys_mem(target_phys_addr_t start_addr
,
595 ram_addr_t phys_offset
)
597 KVMState
*s
= kvm_state
;
598 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
602 if (start_addr
& ~TARGET_PAGE_MASK
) {
603 if (flags
>= IO_MEM_UNASSIGNED
) {
604 if (!kvm_lookup_overlapping_slot(s
, start_addr
,
605 start_addr
+ size
)) {
608 fprintf(stderr
, "Unaligned split of a KVM memory slot\n");
610 fprintf(stderr
, "Only page-aligned memory slots supported\n");
615 /* KVM does not support read-only slots */
616 phys_offset
&= ~IO_MEM_ROM
;
619 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
624 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
625 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
626 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
627 /* The new slot fits into the existing one and comes with
628 * identical parameters - nothing to be done. */
634 /* unregister the overlapping slot */
635 mem
->memory_size
= 0;
636 err
= kvm_set_user_memory_region(s
, mem
);
638 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
639 __func__
, strerror(-err
));
643 /* Workaround for older KVM versions: we can't join slots, even not by
644 * unregistering the previous ones and then registering the larger
645 * slot. We have to maintain the existing fragmentation. Sigh.
647 * This workaround assumes that the new slot starts at the same
648 * address as the first existing one. If not or if some overlapping
649 * slot comes around later, we will fail (not seen in practice so far)
650 * - and actually require a recent KVM version. */
651 if (s
->broken_set_mem_region
&&
652 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
653 flags
< IO_MEM_UNASSIGNED
) {
654 mem
= kvm_alloc_slot(s
);
655 mem
->memory_size
= old
.memory_size
;
656 mem
->start_addr
= old
.start_addr
;
657 mem
->phys_offset
= old
.phys_offset
;
660 err
= kvm_set_user_memory_region(s
, mem
);
662 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
667 start_addr
+= old
.memory_size
;
668 phys_offset
+= old
.memory_size
;
669 size
-= old
.memory_size
;
673 /* register prefix slot */
674 if (old
.start_addr
< start_addr
) {
675 mem
= kvm_alloc_slot(s
);
676 mem
->memory_size
= start_addr
- old
.start_addr
;
677 mem
->start_addr
= old
.start_addr
;
678 mem
->phys_offset
= old
.phys_offset
;
681 err
= kvm_set_user_memory_region(s
, mem
);
683 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
684 __func__
, strerror(-err
));
689 /* register suffix slot */
690 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
691 ram_addr_t size_delta
;
693 mem
= kvm_alloc_slot(s
);
694 mem
->start_addr
= start_addr
+ size
;
695 size_delta
= mem
->start_addr
- old
.start_addr
;
696 mem
->memory_size
= old
.memory_size
- size_delta
;
697 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
700 err
= kvm_set_user_memory_region(s
, mem
);
702 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
703 __func__
, strerror(-err
));
709 /* in case the KVM bug workaround already "consumed" the new slot */
713 /* KVM does not need to know about this memory */
714 if (flags
>= IO_MEM_UNASSIGNED
)
717 mem
= kvm_alloc_slot(s
);
718 mem
->memory_size
= size
;
719 mem
->start_addr
= start_addr
;
720 mem
->phys_offset
= phys_offset
;
723 err
= kvm_set_user_memory_region(s
, mem
);
725 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
731 int kvm_ioctl(KVMState
*s
, int type
, ...)
738 arg
= va_arg(ap
, void *);
741 ret
= ioctl(s
->fd
, type
, arg
);
748 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
755 arg
= va_arg(ap
, void *);
758 ret
= ioctl(s
->vmfd
, type
, arg
);
765 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
772 arg
= va_arg(ap
, void *);
775 ret
= ioctl(env
->kvm_fd
, type
, arg
);
782 int kvm_has_sync_mmu(void)
784 #ifdef KVM_CAP_SYNC_MMU
785 KVMState
*s
= kvm_state
;
787 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
793 void kvm_setup_guest_memory(void *start
, size_t size
)
795 if (!kvm_has_sync_mmu()) {
797 int ret
= madvise(start
, size
, MADV_DONTFORK
);
805 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
811 #ifdef KVM_CAP_SET_GUEST_DEBUG
812 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
815 struct kvm_sw_breakpoint
*bp
;
817 TAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
824 int kvm_sw_breakpoints_active(CPUState
*env
)
826 return !TAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
829 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
831 struct kvm_guest_debug dbg
;
834 if (env
->singlestep_enabled
)
835 dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
837 kvm_arch_update_guest_debug(env
, &dbg
);
838 dbg
.control
|= reinject_trap
;
840 return kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg
);
843 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
844 target_ulong len
, int type
)
846 struct kvm_sw_breakpoint
*bp
;
850 if (type
== GDB_BREAKPOINT_SW
) {
851 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
857 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
863 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
869 TAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
872 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
877 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
878 err
= kvm_update_guest_debug(env
, 0);
885 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
886 target_ulong len
, int type
)
888 struct kvm_sw_breakpoint
*bp
;
892 if (type
== GDB_BREAKPOINT_SW
) {
893 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
897 if (bp
->use_count
> 1) {
902 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
906 TAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
909 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
914 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
915 err
= kvm_update_guest_debug(env
, 0);
922 void kvm_remove_all_breakpoints(CPUState
*current_env
)
924 struct kvm_sw_breakpoint
*bp
, *next
;
925 KVMState
*s
= current_env
->kvm_state
;
928 TAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
929 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
930 /* Try harder to find a CPU that currently sees the breakpoint. */
931 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
932 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
937 kvm_arch_remove_all_hw_breakpoints();
939 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
940 kvm_update_guest_debug(env
, 0);
943 #else /* !KVM_CAP_SET_GUEST_DEBUG */
945 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
950 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
951 target_ulong len
, int type
)
956 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
957 target_ulong len
, int type
)
962 void kvm_remove_all_breakpoints(CPUState
*current_env
)
965 #endif /* !KVM_CAP_SET_GUEST_DEBUG */