4 * Copyright (C) 2006-2008 Qumranet Technologies
6 * Licensed under the terms of the GNU GPL version 2 or higher.
9 #include "config-host.h"
15 #include "qemu-common.h"
22 #include "libkvm-all.h"
26 #include <sys/utsname.h>
27 #include <sys/syscall.h>
29 #include <sys/ioctl.h>
35 #define EXPECTED_KVM_API_VERSION 12
37 #if EXPECTED_KVM_API_VERSION != KVM_API_VERSION
38 #error libkvm: userspace and kernel version mismatch
44 int kvm_pit_reinject
= 1;
46 kvm_context_t kvm_context
;
48 pthread_mutex_t qemu_mutex
= PTHREAD_MUTEX_INITIALIZER
;
49 pthread_cond_t qemu_vcpu_cond
= PTHREAD_COND_INITIALIZER
;
50 pthread_cond_t qemu_system_cond
= PTHREAD_COND_INITIALIZER
;
51 pthread_cond_t qemu_pause_cond
= PTHREAD_COND_INITIALIZER
;
52 pthread_cond_t qemu_work_cond
= PTHREAD_COND_INITIALIZER
;
53 __thread CPUState
*current_env
;
55 static int qemu_system_ready
;
57 #define SIG_IPI (SIGRTMIN+4)
60 static int io_thread_fd
= -1;
61 static int io_thread_sigfd
= -1;
63 static CPUState
*kvm_debug_cpu_requested
;
65 static uint64_t phys_ram_size
;
67 /* The list of ioperm_data */
68 static LIST_HEAD(, ioperm_data
) ioperm_head
;
70 //#define DEBUG_MEMREG
72 #define DPRINTF(fmt, args...) \
73 do { fprintf(stderr, "%s:%d " fmt , __func__, __LINE__, ##args); } while (0)
75 #define DPRINTF(fmt, args...) do {} while (0)
78 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
80 int kvm_abi
= EXPECTED_KVM_API_VERSION
;
83 #ifdef KVM_CAP_SET_GUEST_DEBUG
84 static int kvm_debug(void *opaque
, void *data
,
85 struct kvm_debug_exit_arch
*arch_info
)
87 int handle
= kvm_arch_debug(arch_info
);
91 kvm_debug_cpu_requested
= env
;
92 env
->kvm_cpu_state
.stopped
= 1;
98 static int kvm_inb(void *opaque
, uint16_t addr
, uint8_t *data
)
100 *data
= cpu_inb(0, addr
);
104 static int kvm_inw(void *opaque
, uint16_t addr
, uint16_t *data
)
106 *data
= cpu_inw(0, addr
);
110 static int kvm_inl(void *opaque
, uint16_t addr
, uint32_t *data
)
112 *data
= cpu_inl(0, addr
);
116 #define PM_IO_BASE 0xb000
118 static int kvm_outb(void *opaque
, uint16_t addr
, uint8_t data
)
123 cpu_outb(0, 0xb3, 0);
130 x
= cpu_inw(0, PM_IO_BASE
+ 4);
132 cpu_outw(0, PM_IO_BASE
+ 4, x
);
139 x
= cpu_inw(0, PM_IO_BASE
+ 4);
141 cpu_outw(0, PM_IO_BASE
+ 4, x
);
149 cpu_outb(0, addr
, data
);
153 static int kvm_outw(void *opaque
, uint16_t addr
, uint16_t data
)
155 cpu_outw(0, addr
, data
);
159 static int kvm_outl(void *opaque
, uint16_t addr
, uint32_t data
)
161 cpu_outl(0, addr
, data
);
165 int kvm_mmio_read(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
167 cpu_physical_memory_rw(addr
, data
, len
, 0);
171 int kvm_mmio_write(void *opaque
, uint64_t addr
, uint8_t *data
, int len
)
173 cpu_physical_memory_rw(addr
, data
, len
, 1);
177 static int handle_unhandled(kvm_context_t kvm
, kvm_vcpu_context_t vcpu
,
180 fprintf(stderr
, "kvm: unhandled exit %"PRIx64
"\n", reason
);
185 static inline void set_gsi(kvm_context_t kvm
, unsigned int gsi
)
187 uint32_t *bitmap
= kvm
->used_gsi_bitmap
;
189 if (gsi
< kvm
->max_gsi
)
190 bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
192 DPRINTF("Invalid GSI %d\n");
195 static inline void clear_gsi(kvm_context_t kvm
, unsigned int gsi
)
197 uint32_t *bitmap
= kvm
->used_gsi_bitmap
;
199 if (gsi
< kvm
->max_gsi
)
200 bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
202 DPRINTF("Invalid GSI %d\n");
206 unsigned long phys_addr
;
208 unsigned long userspace_addr
;
213 struct slot_info slots
[KVM_MAX_NUM_MEM_REGIONS
];
215 static void init_slots(void)
219 for (i
= 0; i
< KVM_MAX_NUM_MEM_REGIONS
; ++i
)
223 static int get_free_slot(kvm_context_t kvm
)
228 #if defined(KVM_CAP_SET_TSS_ADDR) && !defined(__s390__)
229 tss_ext
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_SET_TSS_ADDR
);
235 * on older kernels where the set tss ioctl is not supprted we must save
236 * slot 0 to hold the extended memory, as the vmx will use the last 3
237 * pages of this slot.
244 for (; i
< KVM_MAX_NUM_MEM_REGIONS
; ++i
)
250 static void register_slot(int slot
, unsigned long phys_addr
, unsigned long len
,
251 unsigned long userspace_addr
, unsigned flags
)
253 slots
[slot
].phys_addr
= phys_addr
;
254 slots
[slot
].len
= len
;
255 slots
[slot
].userspace_addr
= userspace_addr
;
256 slots
[slot
].flags
= flags
;
259 static void free_slot(int slot
)
262 slots
[slot
].logging_count
= 0;
265 static int get_slot(unsigned long phys_addr
)
269 for (i
= 0; i
< KVM_MAX_NUM_MEM_REGIONS
; ++i
) {
270 if (slots
[i
].len
&& slots
[i
].phys_addr
<= phys_addr
&&
271 (slots
[i
].phys_addr
+ slots
[i
].len
-1) >= phys_addr
)
277 /* Returns -1 if this slot is not totally contained on any other,
278 * and the number of the slot otherwise */
279 static int get_container_slot(uint64_t phys_addr
, unsigned long size
)
283 for (i
= 0; i
< KVM_MAX_NUM_MEM_REGIONS
; ++i
)
284 if (slots
[i
].len
&& slots
[i
].phys_addr
<= phys_addr
&&
285 (slots
[i
].phys_addr
+ slots
[i
].len
) >= phys_addr
+ size
)
290 int kvm_is_containing_region(kvm_context_t kvm
, unsigned long phys_addr
, unsigned long size
)
292 int slot
= get_container_slot(phys_addr
, size
);
299 * dirty pages logging control
301 static int kvm_dirty_pages_log_change(kvm_context_t kvm
,
302 unsigned long phys_addr
,
307 int slot
= get_slot(phys_addr
);
310 fprintf(stderr
, "BUG: %s: invalid parameters\n", __FUNCTION__
);
314 flags
= (slots
[slot
].flags
& ~mask
) | flags
;
315 if (flags
== slots
[slot
].flags
)
317 slots
[slot
].flags
= flags
;
320 struct kvm_userspace_memory_region mem
= {
322 .memory_size
= slots
[slot
].len
,
323 .guest_phys_addr
= slots
[slot
].phys_addr
,
324 .userspace_addr
= slots
[slot
].userspace_addr
,
325 .flags
= slots
[slot
].flags
,
329 DPRINTF("slot %d start %llx len %llx flags %x\n",
334 r
= ioctl(kvm
->vm_fd
, KVM_SET_USER_MEMORY_REGION
, &mem
);
336 fprintf(stderr
, "%s: %m\n", __FUNCTION__
);
341 static int kvm_dirty_pages_log_change_all(kvm_context_t kvm
,
342 int (*change
)(kvm_context_t kvm
,
348 for (i
=r
=0; i
<KVM_MAX_NUM_MEM_REGIONS
&& r
==0; i
++) {
350 r
= change(kvm
, slots
[i
].phys_addr
, slots
[i
].len
);
355 int kvm_dirty_pages_log_enable_slot(kvm_context_t kvm
,
359 int slot
= get_slot(phys_addr
);
361 DPRINTF("start %"PRIx64
" len %"PRIx64
"\n", phys_addr
, len
);
363 fprintf(stderr
, "BUG: %s: invalid parameters\n", __func__
);
367 if (slots
[slot
].logging_count
++)
370 return kvm_dirty_pages_log_change(kvm
, slots
[slot
].phys_addr
,
371 KVM_MEM_LOG_DIRTY_PAGES
,
372 KVM_MEM_LOG_DIRTY_PAGES
);
375 int kvm_dirty_pages_log_disable_slot(kvm_context_t kvm
,
379 int slot
= get_slot(phys_addr
);
382 fprintf(stderr
, "BUG: %s: invalid parameters\n", __func__
);
386 if (--slots
[slot
].logging_count
)
389 return kvm_dirty_pages_log_change(kvm
, slots
[slot
].phys_addr
,
391 KVM_MEM_LOG_DIRTY_PAGES
);
395 * Enable dirty page logging for all memory regions
397 int kvm_dirty_pages_log_enable_all(kvm_context_t kvm
)
399 if (kvm
->dirty_pages_log_all
)
401 kvm
->dirty_pages_log_all
= 1;
402 return kvm_dirty_pages_log_change_all(kvm
,
403 kvm_dirty_pages_log_enable_slot
);
407 * Enable dirty page logging only for memory regions that were created with
408 * dirty logging enabled (disable for all other memory regions).
410 int kvm_dirty_pages_log_reset(kvm_context_t kvm
)
412 if (!kvm
->dirty_pages_log_all
)
414 kvm
->dirty_pages_log_all
= 0;
415 return kvm_dirty_pages_log_change_all(kvm
,
416 kvm_dirty_pages_log_disable_slot
);
420 kvm_context_t
kvm_init(void *opaque
)
426 fd
= open("/dev/kvm", O_RDWR
);
428 perror("open /dev/kvm");
431 r
= ioctl(fd
, KVM_GET_API_VERSION
, 0);
433 fprintf(stderr
, "kvm kernel version too old: "
434 "KVM_GET_API_VERSION ioctl not supported\n");
437 if (r
< EXPECTED_KVM_API_VERSION
) {
438 fprintf(stderr
, "kvm kernel version too old: "
439 "We expect API version %d or newer, but got "
441 EXPECTED_KVM_API_VERSION
, r
);
444 if (r
> EXPECTED_KVM_API_VERSION
) {
445 fprintf(stderr
, "kvm userspace version too old\n");
449 kvm_page_size
= getpagesize();
450 kvm
= malloc(sizeof(*kvm
));
453 memset(kvm
, 0, sizeof(*kvm
));
456 kvm
->opaque
= opaque
;
457 kvm
->dirty_pages_log_all
= 0;
458 kvm
->no_irqchip_creation
= 0;
459 kvm
->no_pit_creation
= 0;
461 gsi_count
= kvm_get_gsi_count(kvm
);
465 /* Round up so we can search ints using ffs */
466 gsi_bits
= ALIGN(gsi_count
, 32);
467 kvm
->used_gsi_bitmap
= malloc(gsi_bits
/ 8);
468 if (!kvm
->used_gsi_bitmap
)
470 memset(kvm
->used_gsi_bitmap
, 0, gsi_bits
/ 8);
471 kvm
->max_gsi
= gsi_bits
;
473 /* Mark any over-allocated bits as already in use */
474 for (i
= gsi_count
; i
< gsi_bits
; i
++)
484 void kvm_finalize(kvm_context_t kvm
)
487 if (kvm->vcpu_fd[0] != -1)
488 close(kvm->vcpu_fd[0]);
489 if (kvm->vm_fd != -1)
496 void kvm_disable_irqchip_creation(kvm_context_t kvm
)
498 kvm
->no_irqchip_creation
= 1;
501 void kvm_disable_pit_creation(kvm_context_t kvm
)
503 kvm
->no_pit_creation
= 1;
506 kvm_vcpu_context_t
kvm_create_vcpu(kvm_context_t kvm
, int id
)
510 kvm_vcpu_context_t vcpu_ctx
= malloc(sizeof(struct kvm_vcpu_context
));
520 r
= ioctl(kvm
->vm_fd
, KVM_CREATE_VCPU
, id
);
522 fprintf(stderr
, "kvm_create_vcpu: %m\n");
526 mmap_size
= ioctl(kvm
->fd
, KVM_GET_VCPU_MMAP_SIZE
, 0);
527 if (mmap_size
== -1) {
528 fprintf(stderr
, "get vcpu mmap size: %m\n");
531 vcpu_ctx
->run
= mmap(NULL
, mmap_size
, PROT_READ
|PROT_WRITE
, MAP_SHARED
,
533 if (vcpu_ctx
->run
== MAP_FAILED
) {
534 fprintf(stderr
, "mmap vcpu area: %m\n");
545 static int kvm_set_boot_vcpu_id(kvm_context_t kvm
, uint32_t id
)
547 #ifdef KVM_CAP_SET_BOOT_CPU_ID
548 int r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_SET_BOOT_CPU_ID
);
550 return ioctl(kvm
->vm_fd
, KVM_SET_BOOT_CPU_ID
, id
);
557 int kvm_create_vm(kvm_context_t kvm
)
561 #ifdef KVM_CAP_IRQ_ROUTING
562 kvm
->irq_routes
= malloc(sizeof(*kvm
->irq_routes
));
563 if (!kvm
->irq_routes
)
565 memset(kvm
->irq_routes
, 0, sizeof(*kvm
->irq_routes
));
566 kvm
->nr_allocated_irq_routes
= 0;
569 fd
= ioctl(fd
, KVM_CREATE_VM
, 0);
571 fprintf(stderr
, "kvm_create_vm: %m\n");
578 static int kvm_create_default_phys_mem(kvm_context_t kvm
,
579 unsigned long phys_mem_bytes
,
582 #ifdef KVM_CAP_USER_MEMORY
583 int r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_USER_MEMORY
);
586 fprintf(stderr
, "Hypervisor too old: KVM_CAP_USER_MEMORY extension not supported\n");
588 #error Hypervisor too old: KVM_CAP_USER_MEMORY extension not supported
593 int kvm_check_extension(kvm_context_t kvm
, int ext
)
597 ret
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, ext
);
603 void kvm_create_irqchip(kvm_context_t kvm
)
607 kvm
->irqchip_in_kernel
= 0;
608 #ifdef KVM_CAP_IRQCHIP
609 if (!kvm
->no_irqchip_creation
) {
610 r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_IRQCHIP
);
611 if (r
> 0) { /* kernel irqchip supported */
612 r
= ioctl(kvm
->vm_fd
, KVM_CREATE_IRQCHIP
);
614 kvm
->irqchip_inject_ioctl
= KVM_IRQ_LINE
;
615 #if defined(KVM_CAP_IRQ_INJECT_STATUS) && defined(KVM_IRQ_LINE_STATUS)
616 r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
,
617 KVM_CAP_IRQ_INJECT_STATUS
);
619 kvm
->irqchip_inject_ioctl
= KVM_IRQ_LINE_STATUS
;
621 kvm
->irqchip_in_kernel
= 1;
624 fprintf(stderr
, "Create kernel PIC irqchip failed\n");
630 int kvm_create(kvm_context_t kvm
, unsigned long phys_mem_bytes
, void **vm_mem
)
634 r
= kvm_create_vm(kvm
);
637 r
= kvm_arch_create(kvm
, phys_mem_bytes
, vm_mem
);
641 r
= kvm_create_default_phys_mem(kvm
, phys_mem_bytes
, vm_mem
);
644 kvm_create_irqchip(kvm
);
650 int kvm_register_phys_mem(kvm_context_t kvm
,
651 unsigned long phys_start
, void *userspace_addr
,
652 unsigned long len
, int log
)
655 struct kvm_userspace_memory_region memory
= {
657 .guest_phys_addr
= phys_start
,
658 .userspace_addr
= (unsigned long)(intptr_t)userspace_addr
,
659 .flags
= log
? KVM_MEM_LOG_DIRTY_PAGES
: 0,
663 memory
.slot
= get_free_slot(kvm
);
664 DPRINTF("memory: gpa: %llx, size: %llx, uaddr: %llx, slot: %x, flags: %lx\n",
665 memory
.guest_phys_addr
, memory
.memory_size
,
666 memory
.userspace_addr
, memory
.slot
, memory
.flags
);
667 r
= ioctl(kvm
->vm_fd
, KVM_SET_USER_MEMORY_REGION
, &memory
);
669 fprintf(stderr
, "create_userspace_phys_mem: %s\n", strerror(errno
));
672 register_slot(memory
.slot
, memory
.guest_phys_addr
, memory
.memory_size
,
673 memory
.userspace_addr
, memory
.flags
);
678 /* destroy/free a whole slot.
679 * phys_start, len and slot are the params passed to kvm_create_phys_mem()
681 void kvm_destroy_phys_mem(kvm_context_t kvm
, unsigned long phys_start
,
686 struct kvm_userspace_memory_region memory
= {
688 .guest_phys_addr
= phys_start
,
693 slot
= get_slot(phys_start
);
695 if ((slot
>= KVM_MAX_NUM_MEM_REGIONS
) || (slot
== -1)) {
696 fprintf(stderr
, "BUG: %s: invalid parameters (slot=%d)\n",
700 if (phys_start
!= slots
[slot
].phys_addr
) {
702 "WARNING: %s: phys_start is 0x%lx expecting 0x%lx\n",
703 __FUNCTION__
, phys_start
, slots
[slot
].phys_addr
);
704 phys_start
= slots
[slot
].phys_addr
;
708 DPRINTF("slot %d start %llx len %llx flags %x\n",
710 memory
.guest_phys_addr
,
713 r
= ioctl(kvm
->vm_fd
, KVM_SET_USER_MEMORY_REGION
, &memory
);
715 fprintf(stderr
, "destroy_userspace_phys_mem: %s",
720 free_slot(memory
.slot
);
723 void kvm_unregister_memory_area(kvm_context_t kvm
, uint64_t phys_addr
, unsigned long size
)
726 int slot
= get_container_slot(phys_addr
, size
);
729 DPRINTF("Unregistering memory region %llx (%lx)\n", phys_addr
, size
);
730 kvm_destroy_phys_mem(kvm
, phys_addr
, size
);
735 static int kvm_get_map(kvm_context_t kvm
, int ioctl_num
, int slot
, void *buf
)
738 struct kvm_dirty_log log
= {
742 log
.dirty_bitmap
= buf
;
744 r
= ioctl(kvm
->vm_fd
, ioctl_num
, &log
);
750 int kvm_get_dirty_pages(kvm_context_t kvm
, unsigned long phys_addr
, void *buf
)
754 slot
= get_slot(phys_addr
);
755 return kvm_get_map(kvm
, KVM_GET_DIRTY_LOG
, slot
, buf
);
758 int kvm_get_dirty_pages_range(kvm_context_t kvm
, unsigned long phys_addr
,
759 unsigned long len
, void *opaque
,
760 int (*cb
)(unsigned long start
, unsigned long len
,
761 void*bitmap
, void *opaque
))
765 unsigned long end_addr
= phys_addr
+ len
;
768 for (i
= 0; i
< KVM_MAX_NUM_MEM_REGIONS
; ++i
) {
769 if ((slots
[i
].len
&& (uint64_t)slots
[i
].phys_addr
>= phys_addr
)
770 && ((uint64_t)slots
[i
].phys_addr
+ slots
[i
].len
<= end_addr
)) {
771 buf
= qemu_malloc((slots
[i
].len
/ 4096 + 7) / 8 + 2);
772 r
= kvm_get_map(kvm
, KVM_GET_DIRTY_LOG
, i
, buf
);
777 r
= cb(slots
[i
].phys_addr
, slots
[i
].len
, buf
, opaque
);
786 #ifdef KVM_CAP_IRQCHIP
788 int kvm_set_irq_level(kvm_context_t kvm
, int irq
, int level
, int *status
)
790 struct kvm_irq_level event
;
793 if (!kvm
->irqchip_in_kernel
)
797 r
= ioctl(kvm
->vm_fd
, kvm
->irqchip_inject_ioctl
, &event
);
799 perror("kvm_set_irq_level");
802 #ifdef KVM_CAP_IRQ_INJECT_STATUS
803 *status
= (kvm
->irqchip_inject_ioctl
== KVM_IRQ_LINE
) ?
813 int kvm_get_irqchip(kvm_context_t kvm
, struct kvm_irqchip
*chip
)
817 if (!kvm
->irqchip_in_kernel
)
819 r
= ioctl(kvm
->vm_fd
, KVM_GET_IRQCHIP
, chip
);
822 perror("kvm_get_irqchip\n");
827 int kvm_set_irqchip(kvm_context_t kvm
, struct kvm_irqchip
*chip
)
831 if (!kvm
->irqchip_in_kernel
)
833 r
= ioctl(kvm
->vm_fd
, KVM_SET_IRQCHIP
, chip
);
836 perror("kvm_set_irqchip\n");
843 static int handle_io(kvm_vcpu_context_t vcpu
)
845 struct kvm_run
*run
= vcpu
->run
;
846 kvm_context_t kvm
= vcpu
->kvm
;
847 uint16_t addr
= run
->io
.port
;
850 void *p
= (void *)run
+ run
->io
.data_offset
;
852 for (i
= 0; i
< run
->io
.count
; ++i
) {
853 switch (run
->io
.direction
) {
855 switch (run
->io
.size
) {
857 r
= kvm_inb(kvm
->opaque
, addr
, p
);
860 r
= kvm_inw(kvm
->opaque
, addr
, p
);
863 r
= kvm_inl(kvm
->opaque
, addr
, p
);
866 fprintf(stderr
, "bad I/O size %d\n", run
->io
.size
);
870 case KVM_EXIT_IO_OUT
:
871 switch (run
->io
.size
) {
873 r
= kvm_outb(kvm
->opaque
, addr
,
877 r
= kvm_outw(kvm
->opaque
, addr
,
881 r
= kvm_outl(kvm
->opaque
, addr
,
885 fprintf(stderr
, "bad I/O size %d\n", run
->io
.size
);
890 fprintf(stderr
, "bad I/O direction %d\n", run
->io
.direction
);
900 int handle_debug(kvm_vcpu_context_t vcpu
, void *env
)
902 #ifdef KVM_CAP_SET_GUEST_DEBUG
903 struct kvm_run
*run
= vcpu
->run
;
904 kvm_context_t kvm
= vcpu
->kvm
;
906 return kvm_debug(kvm
->opaque
, env
, &run
->debug
.arch
);
912 int kvm_get_regs(kvm_vcpu_context_t vcpu
, struct kvm_regs
*regs
)
914 return ioctl(vcpu
->fd
, KVM_GET_REGS
, regs
);
917 int kvm_set_regs(kvm_vcpu_context_t vcpu
, struct kvm_regs
*regs
)
919 return ioctl(vcpu
->fd
, KVM_SET_REGS
, regs
);
922 int kvm_get_fpu(kvm_vcpu_context_t vcpu
, struct kvm_fpu
*fpu
)
924 return ioctl(vcpu
->fd
, KVM_GET_FPU
, fpu
);
927 int kvm_set_fpu(kvm_vcpu_context_t vcpu
, struct kvm_fpu
*fpu
)
929 return ioctl(vcpu
->fd
, KVM_SET_FPU
, fpu
);
932 int kvm_get_sregs(kvm_vcpu_context_t vcpu
, struct kvm_sregs
*sregs
)
934 return ioctl(vcpu
->fd
, KVM_GET_SREGS
, sregs
);
937 int kvm_set_sregs(kvm_vcpu_context_t vcpu
, struct kvm_sregs
*sregs
)
939 return ioctl(vcpu
->fd
, KVM_SET_SREGS
, sregs
);
942 #ifdef KVM_CAP_MP_STATE
943 int kvm_get_mpstate(kvm_vcpu_context_t vcpu
, struct kvm_mp_state
*mp_state
)
947 r
= ioctl(vcpu
->kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_MP_STATE
);
949 return ioctl(vcpu
->fd
, KVM_GET_MP_STATE
, mp_state
);
953 int kvm_set_mpstate(kvm_vcpu_context_t vcpu
, struct kvm_mp_state
*mp_state
)
957 r
= ioctl(vcpu
->kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_MP_STATE
);
959 return ioctl(vcpu
->fd
, KVM_SET_MP_STATE
, mp_state
);
964 static int handle_mmio(kvm_vcpu_context_t vcpu
)
966 unsigned long addr
= vcpu
->run
->mmio
.phys_addr
;
967 kvm_context_t kvm
= vcpu
->kvm
;
968 struct kvm_run
*kvm_run
= vcpu
->run
;
969 void *data
= kvm_run
->mmio
.data
;
971 /* hack: Red Hat 7.1 generates these weird accesses. */
972 if ((addr
> 0xa0000-4 && addr
<= 0xa0000) && kvm_run
->mmio
.len
== 3)
975 if (kvm_run
->mmio
.is_write
)
976 return kvm_mmio_write(kvm
->opaque
, addr
, data
,
979 return kvm_mmio_read(kvm
->opaque
, addr
, data
,
983 int handle_io_window(kvm_context_t kvm
)
988 int handle_halt(kvm_vcpu_context_t vcpu
)
990 return kvm_arch_halt(vcpu
->kvm
->opaque
, vcpu
);
993 int handle_shutdown(kvm_context_t kvm
, CPUState
*env
)
995 /* stop the current vcpu from going back to guest mode */
996 env
->kvm_cpu_state
.stopped
= 1;
998 qemu_system_reset_request();
1002 static inline void push_nmi(kvm_context_t kvm
)
1004 #ifdef KVM_CAP_USER_NMI
1005 kvm_arch_push_nmi(kvm
->opaque
);
1006 #endif /* KVM_CAP_USER_NMI */
1009 void post_kvm_run(kvm_context_t kvm
, CPUState
*env
)
1011 pthread_mutex_lock(&qemu_mutex
);
1012 kvm_arch_post_kvm_run(kvm
->opaque
, env
);
1015 int pre_kvm_run(kvm_context_t kvm
, CPUState
*env
)
1017 kvm_arch_pre_kvm_run(kvm
->opaque
, env
);
1019 if (env
->exit_request
)
1021 pthread_mutex_unlock(&qemu_mutex
);
1025 int kvm_get_interrupt_flag(kvm_vcpu_context_t vcpu
)
1027 return vcpu
->run
->if_flag
;
1030 int kvm_is_ready_for_interrupt_injection(kvm_vcpu_context_t vcpu
)
1032 return vcpu
->run
->ready_for_interrupt_injection
;
1035 int kvm_run(kvm_vcpu_context_t vcpu
, void *env
)
1039 struct kvm_run
*run
= vcpu
->run
;
1040 kvm_context_t kvm
= vcpu
->kvm
;
1044 #if !defined(__s390__)
1045 if (!kvm
->irqchip_in_kernel
)
1046 run
->request_interrupt_window
= kvm_arch_try_push_interrupts(env
);
1048 r
= pre_kvm_run(kvm
, env
);
1051 r
= ioctl(fd
, KVM_RUN
, 0);
1053 if (r
== -1 && errno
!= EINTR
&& errno
!= EAGAIN
) {
1055 post_kvm_run(kvm
, env
);
1056 fprintf(stderr
, "kvm_run: %s\n", strerror(-r
));
1060 post_kvm_run(kvm
, env
);
1062 #if defined(KVM_CAP_COALESCED_MMIO)
1063 if (kvm
->coalesced_mmio
) {
1064 struct kvm_coalesced_mmio_ring
*ring
= (void *)run
+
1065 kvm
->coalesced_mmio
* PAGE_SIZE
;
1066 while (ring
->first
!= ring
->last
) {
1067 kvm_mmio_write(kvm
->opaque
,
1068 ring
->coalesced_mmio
[ring
->first
].phys_addr
,
1069 &ring
->coalesced_mmio
[ring
->first
].data
[0],
1070 ring
->coalesced_mmio
[ring
->first
].len
);
1072 ring
->first
= (ring
->first
+ 1) %
1073 KVM_COALESCED_MMIO_MAX
;
1078 #if !defined(__s390__)
1080 r
= handle_io_window(kvm
);
1085 switch (run
->exit_reason
) {
1086 case KVM_EXIT_UNKNOWN
:
1087 r
= handle_unhandled(kvm
, vcpu
,
1088 run
->hw
.hardware_exit_reason
);
1090 case KVM_EXIT_FAIL_ENTRY
:
1091 r
= handle_unhandled(kvm
, vcpu
,
1092 run
->fail_entry
.hardware_entry_failure_reason
);
1094 case KVM_EXIT_EXCEPTION
:
1095 fprintf(stderr
, "exception %d (%x)\n",
1097 run
->ex
.error_code
);
1098 kvm_show_regs(vcpu
);
1099 kvm_show_code(vcpu
);
1103 r
= handle_io(vcpu
);
1105 case KVM_EXIT_DEBUG
:
1106 r
= handle_debug(vcpu
, env
);
1109 r
= handle_mmio(vcpu
);
1112 r
= handle_halt(vcpu
);
1114 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1116 case KVM_EXIT_SHUTDOWN
:
1117 r
= handle_shutdown(kvm
, env
);
1119 #if defined(__s390__)
1120 case KVM_EXIT_S390_SIEIC
:
1121 r
= kvm_s390_handle_intercept(kvm
, vcpu
,
1124 case KVM_EXIT_S390_RESET
:
1125 r
= kvm_s390_handle_reset(kvm
, vcpu
, run
);
1129 if (kvm_arch_run(vcpu
)) {
1130 fprintf(stderr
, "unhandled vm exit: 0x%x\n",
1132 kvm_show_regs(vcpu
);
1144 int kvm_inject_irq(kvm_vcpu_context_t vcpu
, unsigned irq
)
1146 struct kvm_interrupt intr
;
1149 return ioctl(vcpu
->fd
, KVM_INTERRUPT
, &intr
);
1152 #ifdef KVM_CAP_SET_GUEST_DEBUG
1153 int kvm_set_guest_debug(kvm_vcpu_context_t vcpu
, struct kvm_guest_debug
*dbg
)
1155 return ioctl(vcpu
->fd
, KVM_SET_GUEST_DEBUG
, dbg
);
1159 int kvm_set_signal_mask(kvm_vcpu_context_t vcpu
, const sigset_t
*sigset
)
1161 struct kvm_signal_mask
*sigmask
;
1165 r
= ioctl(vcpu
->fd
, KVM_SET_SIGNAL_MASK
, NULL
);
1170 sigmask
= malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1175 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1176 r
= ioctl(vcpu
->fd
, KVM_SET_SIGNAL_MASK
, sigmask
);
1183 int kvm_irqchip_in_kernel(kvm_context_t kvm
)
1185 return kvm
->irqchip_in_kernel
;
1188 int kvm_pit_in_kernel(kvm_context_t kvm
)
1190 return kvm
->pit_in_kernel
;
1193 int kvm_has_sync_mmu(void)
1196 #ifdef KVM_CAP_SYNC_MMU
1197 r
= ioctl(kvm_context
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_SYNC_MMU
);
1202 int kvm_inject_nmi(kvm_vcpu_context_t vcpu
)
1204 #ifdef KVM_CAP_USER_NMI
1205 return ioctl(vcpu
->fd
, KVM_NMI
);
1211 int kvm_init_coalesced_mmio(kvm_context_t kvm
)
1214 kvm
->coalesced_mmio
= 0;
1215 #ifdef KVM_CAP_COALESCED_MMIO
1216 r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_COALESCED_MMIO
);
1218 kvm
->coalesced_mmio
= r
;
1225 int kvm_coalesce_mmio_region(target_phys_addr_t addr
, ram_addr_t size
)
1227 #ifdef KVM_CAP_COALESCED_MMIO
1228 kvm_context_t kvm
= kvm_context
;
1229 struct kvm_coalesced_mmio_zone zone
;
1232 if (kvm
->coalesced_mmio
) {
1237 r
= ioctl(kvm
->vm_fd
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
1239 perror("kvm_register_coalesced_mmio_zone");
1248 int kvm_uncoalesce_mmio_region(target_phys_addr_t addr
, ram_addr_t size
)
1250 #ifdef KVM_CAP_COALESCED_MMIO
1251 kvm_context_t kvm
= kvm_context
;
1252 struct kvm_coalesced_mmio_zone zone
;
1255 if (kvm
->coalesced_mmio
) {
1260 r
= ioctl(kvm
->vm_fd
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
1262 perror("kvm_unregister_coalesced_mmio_zone");
1265 DPRINTF("Unregistered coalesced mmio region for %llx (%lx)\n", addr
, size
);
1272 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1273 int kvm_assign_pci_device(kvm_context_t kvm
,
1274 struct kvm_assigned_pci_dev
*assigned_dev
)
1278 ret
= ioctl(kvm
->vm_fd
, KVM_ASSIGN_PCI_DEVICE
, assigned_dev
);
1285 static int kvm_old_assign_irq(kvm_context_t kvm
,
1286 struct kvm_assigned_irq
*assigned_irq
)
1290 ret
= ioctl(kvm
->vm_fd
, KVM_ASSIGN_IRQ
, assigned_irq
);
1297 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
1298 int kvm_assign_irq(kvm_context_t kvm
,
1299 struct kvm_assigned_irq
*assigned_irq
)
1303 ret
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_ASSIGN_DEV_IRQ
);
1305 ret
= ioctl(kvm
->vm_fd
, KVM_ASSIGN_DEV_IRQ
, assigned_irq
);
1311 return kvm_old_assign_irq(kvm
, assigned_irq
);
1314 int kvm_deassign_irq(kvm_context_t kvm
,
1315 struct kvm_assigned_irq
*assigned_irq
)
1319 ret
= ioctl(kvm
->vm_fd
, KVM_DEASSIGN_DEV_IRQ
, assigned_irq
);
1326 int kvm_assign_irq(kvm_context_t kvm
,
1327 struct kvm_assigned_irq
*assigned_irq
)
1329 return kvm_old_assign_irq(kvm
, assigned_irq
);
1334 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1335 int kvm_deassign_pci_device(kvm_context_t kvm
,
1336 struct kvm_assigned_pci_dev
*assigned_dev
)
1340 ret
= ioctl(kvm
->vm_fd
, KVM_DEASSIGN_PCI_DEVICE
, assigned_dev
);
1348 int kvm_destroy_memory_region_works(kvm_context_t kvm
)
1352 #ifdef KVM_CAP_DESTROY_MEMORY_REGION_WORKS
1353 ret
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
,
1354 KVM_CAP_DESTROY_MEMORY_REGION_WORKS
);
1361 int kvm_reinject_control(kvm_context_t kvm
, int pit_reinject
)
1363 #ifdef KVM_CAP_REINJECT_CONTROL
1365 struct kvm_reinject_control control
;
1367 control
.pit_reinject
= pit_reinject
;
1369 r
= ioctl(kvm
->fd
, KVM_CHECK_EXTENSION
, KVM_CAP_REINJECT_CONTROL
);
1371 r
= ioctl(kvm
->vm_fd
, KVM_REINJECT_CONTROL
, &control
);
1380 int kvm_has_gsi_routing(kvm_context_t kvm
)
1384 #ifdef KVM_CAP_IRQ_ROUTING
1385 r
= kvm_check_extension(kvm
, KVM_CAP_IRQ_ROUTING
);
1390 int kvm_get_gsi_count(kvm_context_t kvm
)
1392 #ifdef KVM_CAP_IRQ_ROUTING
1393 return kvm_check_extension(kvm
, KVM_CAP_IRQ_ROUTING
);
1399 int kvm_clear_gsi_routes(kvm_context_t kvm
)
1401 #ifdef KVM_CAP_IRQ_ROUTING
1402 kvm
->irq_routes
->nr
= 0;
1409 int kvm_add_routing_entry(kvm_context_t kvm
,
1410 struct kvm_irq_routing_entry
* entry
)
1412 #ifdef KVM_CAP_IRQ_ROUTING
1413 struct kvm_irq_routing
*z
;
1414 struct kvm_irq_routing_entry
*new;
1417 if (kvm
->irq_routes
->nr
== kvm
->nr_allocated_irq_routes
) {
1418 n
= kvm
->nr_allocated_irq_routes
* 2;
1421 size
= sizeof(struct kvm_irq_routing
);
1422 size
+= n
* sizeof(*new);
1423 z
= realloc(kvm
->irq_routes
, size
);
1426 kvm
->nr_allocated_irq_routes
= n
;
1427 kvm
->irq_routes
= z
;
1429 n
= kvm
->irq_routes
->nr
++;
1430 new = &kvm
->irq_routes
->entries
[n
];
1431 memset(new, 0, sizeof(*new));
1432 new->gsi
= entry
->gsi
;
1433 new->type
= entry
->type
;
1434 new->flags
= entry
->flags
;
1437 set_gsi(kvm
, entry
->gsi
);
1445 int kvm_add_irq_route(kvm_context_t kvm
, int gsi
, int irqchip
, int pin
)
1447 #ifdef KVM_CAP_IRQ_ROUTING
1448 struct kvm_irq_routing_entry e
;
1451 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1453 e
.u
.irqchip
.irqchip
= irqchip
;
1454 e
.u
.irqchip
.pin
= pin
;
1455 return kvm_add_routing_entry(kvm
, &e
);
1461 int kvm_del_routing_entry(kvm_context_t kvm
,
1462 struct kvm_irq_routing_entry
* entry
)
1464 #ifdef KVM_CAP_IRQ_ROUTING
1465 struct kvm_irq_routing_entry
*e
, *p
;
1466 int i
, gsi
, found
= 0;
1470 for (i
= 0; i
< kvm
->irq_routes
->nr
; ++i
) {
1471 e
= &kvm
->irq_routes
->entries
[i
];
1472 if (e
->type
== entry
->type
1476 case KVM_IRQ_ROUTING_IRQCHIP
: {
1477 if (e
->u
.irqchip
.irqchip
==
1478 entry
->u
.irqchip
.irqchip
1479 && e
->u
.irqchip
.pin
==
1480 entry
->u
.irqchip
.pin
) {
1481 p
= &kvm
->irq_routes
->
1482 entries
[--kvm
->irq_routes
->nr
];
1488 case KVM_IRQ_ROUTING_MSI
: {
1489 if (e
->u
.msi
.address_lo
==
1490 entry
->u
.msi
.address_lo
1491 && e
->u
.msi
.address_hi
==
1492 entry
->u
.msi
.address_hi
1493 && e
->u
.msi
.data
== entry
->u
.msi
.data
) {
1494 p
= &kvm
->irq_routes
->
1495 entries
[--kvm
->irq_routes
->nr
];
1505 /* If there are no other users of this GSI
1506 * mark it available in the bitmap */
1507 for (i
= 0; i
< kvm
->irq_routes
->nr
; i
++) {
1508 e
= &kvm
->irq_routes
->entries
[i
];
1512 if (i
== kvm
->irq_routes
->nr
)
1513 clear_gsi(kvm
, gsi
);
1525 int kvm_update_routing_entry(kvm_context_t kvm
,
1526 struct kvm_irq_routing_entry
* entry
,
1527 struct kvm_irq_routing_entry
* newentry
)
1529 #ifdef KVM_CAP_IRQ_ROUTING
1530 struct kvm_irq_routing_entry
*e
;
1533 if (entry
->gsi
!= newentry
->gsi
||
1534 entry
->type
!= newentry
->type
) {
1538 for (i
= 0; i
< kvm
->irq_routes
->nr
; ++i
) {
1539 e
= &kvm
->irq_routes
->entries
[i
];
1540 if (e
->type
!= entry
->type
|| e
->gsi
!= entry
->gsi
) {
1544 case KVM_IRQ_ROUTING_IRQCHIP
:
1545 if (e
->u
.irqchip
.irqchip
== entry
->u
.irqchip
.irqchip
&&
1546 e
->u
.irqchip
.pin
== entry
->u
.irqchip
.pin
) {
1547 memcpy(&e
->u
.irqchip
, &entry
->u
.irqchip
, sizeof e
->u
.irqchip
);
1551 case KVM_IRQ_ROUTING_MSI
:
1552 if (e
->u
.msi
.address_lo
== entry
->u
.msi
.address_lo
&&
1553 e
->u
.msi
.address_hi
== entry
->u
.msi
.address_hi
&&
1554 e
->u
.msi
.data
== entry
->u
.msi
.data
) {
1555 memcpy(&e
->u
.msi
, &entry
->u
.msi
, sizeof e
->u
.msi
);
1569 int kvm_del_irq_route(kvm_context_t kvm
, int gsi
, int irqchip
, int pin
)
1571 #ifdef KVM_CAP_IRQ_ROUTING
1572 struct kvm_irq_routing_entry e
;
1575 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1577 e
.u
.irqchip
.irqchip
= irqchip
;
1578 e
.u
.irqchip
.pin
= pin
;
1579 return kvm_del_routing_entry(kvm
, &e
);
1585 int kvm_commit_irq_routes(kvm_context_t kvm
)
1587 #ifdef KVM_CAP_IRQ_ROUTING
1590 kvm
->irq_routes
->flags
= 0;
1591 r
= ioctl(kvm
->vm_fd
, KVM_SET_GSI_ROUTING
, kvm
->irq_routes
);
1600 int kvm_get_irq_route_gsi(kvm_context_t kvm
)
1603 uint32_t *buf
= kvm
->used_gsi_bitmap
;
1605 /* Return the lowest unused GSI in the bitmap */
1606 for (i
= 0; i
< kvm
->max_gsi
/ 32; i
++) {
1611 return bit
- 1 + i
* 32;
1617 #ifdef KVM_CAP_DEVICE_MSIX
1618 int kvm_assign_set_msix_nr(kvm_context_t kvm
,
1619 struct kvm_assigned_msix_nr
*msix_nr
)
1623 ret
= ioctl(kvm
->vm_fd
, KVM_ASSIGN_SET_MSIX_NR
, msix_nr
);
1630 int kvm_assign_set_msix_entry(kvm_context_t kvm
,
1631 struct kvm_assigned_msix_entry
*entry
)
1635 ret
= ioctl(kvm
->vm_fd
, KVM_ASSIGN_SET_MSIX_ENTRY
, entry
);
1643 #if defined(KVM_CAP_IRQFD) && defined(CONFIG_eventfd)
1645 #include <sys/eventfd.h>
1647 static int _kvm_irqfd(kvm_context_t kvm
, int fd
, int gsi
, int flags
)
1650 struct kvm_irqfd data
= {
1656 r
= ioctl(kvm
->vm_fd
, KVM_IRQFD
, &data
);
1662 int kvm_irqfd(kvm_context_t kvm
, int gsi
, int flags
)
1667 if (!kvm_check_extension(kvm
, KVM_CAP_IRQFD
))
1674 r
= _kvm_irqfd(kvm
, fd
, gsi
, 0);
1683 #else /* KVM_CAP_IRQFD */
1685 int kvm_irqfd(kvm_context_t kvm
, int gsi
, int flags
)
1690 #endif /* KVM_CAP_IRQFD */
1691 static inline unsigned long kvm_get_thread_id(void)
1693 return syscall(SYS_gettid
);
1696 static void qemu_cond_wait(pthread_cond_t
*cond
)
1698 CPUState
*env
= cpu_single_env
;
1699 static const struct timespec ts
= {
1704 pthread_cond_timedwait(cond
, &qemu_mutex
, &ts
);
1705 cpu_single_env
= env
;
1708 static void sig_ipi_handler(int n
)
1712 static void on_vcpu(CPUState
*env
, void (*func
)(void *data
), void *data
)
1714 struct qemu_work_item wi
;
1716 if (env
== current_env
) {
1723 if (!env
->kvm_cpu_state
.queued_work_first
)
1724 env
->kvm_cpu_state
.queued_work_first
= &wi
;
1726 env
->kvm_cpu_state
.queued_work_last
->next
= &wi
;
1727 env
->kvm_cpu_state
.queued_work_last
= &wi
;
1731 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
1733 qemu_cond_wait(&qemu_work_cond
);
1736 static void inject_interrupt(void *data
)
1738 cpu_interrupt(current_env
, (long)data
);
1741 void kvm_inject_interrupt(CPUState
*env
, int mask
)
1743 on_vcpu(env
, inject_interrupt
, (void *)(long)mask
);
1746 void kvm_update_interrupt_request(CPUState
*env
)
1751 if (!current_env
|| !current_env
->kvm_cpu_state
.created
)
1754 * Testing for created here is really redundant
1756 if (current_env
&& current_env
->kvm_cpu_state
.created
&&
1757 env
!= current_env
&& !env
->kvm_cpu_state
.signalled
)
1761 env
->kvm_cpu_state
.signalled
= 1;
1762 if (env
->kvm_cpu_state
.thread
)
1763 pthread_kill(env
->kvm_cpu_state
.thread
, SIG_IPI
);
1768 static void kvm_do_load_registers(void *_env
)
1770 CPUState
*env
= _env
;
1772 kvm_arch_load_regs(env
);
1775 void kvm_load_registers(CPUState
*env
)
1777 if (kvm_enabled() && qemu_system_ready
)
1778 on_vcpu(env
, kvm_do_load_registers
, env
);
1781 static void kvm_do_save_registers(void *_env
)
1783 CPUState
*env
= _env
;
1785 kvm_arch_save_regs(env
);
1788 void kvm_save_registers(CPUState
*env
)
1791 on_vcpu(env
, kvm_do_save_registers
, env
);
1794 static void kvm_do_load_mpstate(void *_env
)
1796 CPUState
*env
= _env
;
1798 kvm_arch_load_mpstate(env
);
1801 void kvm_load_mpstate(CPUState
*env
)
1803 if (kvm_enabled() && qemu_system_ready
)
1804 on_vcpu(env
, kvm_do_load_mpstate
, env
);
1807 static void kvm_do_save_mpstate(void *_env
)
1809 CPUState
*env
= _env
;
1811 kvm_arch_save_mpstate(env
);
1812 env
->halted
= (env
->mp_state
== KVM_MP_STATE_HALTED
);
1815 void kvm_save_mpstate(CPUState
*env
)
1818 on_vcpu(env
, kvm_do_save_mpstate
, env
);
1821 int kvm_cpu_exec(CPUState
*env
)
1825 r
= kvm_run(env
->kvm_cpu_state
.vcpu_ctx
, env
);
1827 printf("kvm_run returned %d\n", r
);
1834 static int is_cpu_stopped(CPUState
*env
)
1836 return !vm_running
|| env
->kvm_cpu_state
.stopped
;
1839 static void flush_queued_work(CPUState
*env
)
1841 struct qemu_work_item
*wi
;
1843 if (!env
->kvm_cpu_state
.queued_work_first
)
1846 while ((wi
= env
->kvm_cpu_state
.queued_work_first
)) {
1847 env
->kvm_cpu_state
.queued_work_first
= wi
->next
;
1851 env
->kvm_cpu_state
.queued_work_last
= NULL
;
1852 pthread_cond_broadcast(&qemu_work_cond
);
1855 static void kvm_main_loop_wait(CPUState
*env
, int timeout
)
1862 pthread_mutex_unlock(&qemu_mutex
);
1864 ts
.tv_sec
= timeout
/ 1000;
1865 ts
.tv_nsec
= (timeout
% 1000) * 1000000;
1866 sigemptyset(&waitset
);
1867 sigaddset(&waitset
, SIG_IPI
);
1869 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
1872 pthread_mutex_lock(&qemu_mutex
);
1874 if (r
== -1 && !(e
== EAGAIN
|| e
== EINTR
)) {
1875 printf("sigtimedwait: %s\n", strerror(e
));
1879 cpu_single_env
= env
;
1880 flush_queued_work(env
);
1882 if (env
->kvm_cpu_state
.stop
) {
1883 env
->kvm_cpu_state
.stop
= 0;
1884 env
->kvm_cpu_state
.stopped
= 1;
1885 pthread_cond_signal(&qemu_pause_cond
);
1888 env
->kvm_cpu_state
.signalled
= 0;
1891 static int all_threads_paused(void)
1893 CPUState
*penv
= first_cpu
;
1896 if (penv
->kvm_cpu_state
.stop
)
1898 penv
= (CPUState
*)penv
->next_cpu
;
1904 static void pause_all_threads(void)
1906 CPUState
*penv
= first_cpu
;
1909 if (penv
!= cpu_single_env
) {
1910 penv
->kvm_cpu_state
.stop
= 1;
1911 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
1913 penv
->kvm_cpu_state
.stop
= 0;
1914 penv
->kvm_cpu_state
.stopped
= 1;
1917 penv
= (CPUState
*)penv
->next_cpu
;
1920 while (!all_threads_paused())
1921 qemu_cond_wait(&qemu_pause_cond
);
1924 static void resume_all_threads(void)
1926 CPUState
*penv
= first_cpu
;
1928 assert(!cpu_single_env
);
1931 penv
->kvm_cpu_state
.stop
= 0;
1932 penv
->kvm_cpu_state
.stopped
= 0;
1933 pthread_kill(penv
->kvm_cpu_state
.thread
, SIG_IPI
);
1934 penv
= (CPUState
*)penv
->next_cpu
;
1938 static void kvm_vm_state_change_handler(void *context
, int running
, int reason
)
1941 resume_all_threads();
1943 pause_all_threads();
1946 static void setup_kernel_sigmask(CPUState
*env
)
1951 sigaddset(&set
, SIGUSR2
);
1952 sigaddset(&set
, SIGIO
);
1953 sigaddset(&set
, SIGALRM
);
1954 sigprocmask(SIG_BLOCK
, &set
, NULL
);
1956 sigprocmask(SIG_BLOCK
, NULL
, &set
);
1957 sigdelset(&set
, SIG_IPI
);
1959 kvm_set_signal_mask(env
->kvm_cpu_state
.vcpu_ctx
, &set
);
1962 static void qemu_kvm_system_reset(void)
1964 CPUState
*penv
= first_cpu
;
1966 pause_all_threads();
1968 qemu_system_reset();
1971 kvm_arch_cpu_reset(penv
);
1972 penv
= (CPUState
*)penv
->next_cpu
;
1975 resume_all_threads();
1978 static void process_irqchip_events(CPUState
*env
)
1980 kvm_arch_process_irqchip_events(env
);
1981 if (kvm_arch_has_work(env
))
1985 static int kvm_main_loop_cpu(CPUState
*env
)
1987 setup_kernel_sigmask(env
);
1989 pthread_mutex_lock(&qemu_mutex
);
1991 kvm_qemu_init_env(env
);
1993 kvm_tpr_vcpu_start(env
);
1996 cpu_single_env
= env
;
1997 kvm_arch_load_regs(env
);
2000 int run_cpu
= !is_cpu_stopped(env
);
2001 if (run_cpu
&& !kvm_irqchip_in_kernel(kvm_context
)) {
2002 process_irqchip_events(env
);
2003 run_cpu
= !env
->halted
;
2006 kvm_main_loop_wait(env
, 0);
2009 kvm_main_loop_wait(env
, 1000);
2012 pthread_mutex_unlock(&qemu_mutex
);
2016 static void *ap_main_loop(void *_env
)
2018 CPUState
*env
= _env
;
2020 struct ioperm_data
*data
= NULL
;
2023 env
->thread_id
= kvm_get_thread_id();
2024 sigfillset(&signals
);
2025 sigprocmask(SIG_BLOCK
, &signals
, NULL
);
2026 env
->kvm_cpu_state
.vcpu_ctx
= kvm_create_vcpu(kvm_context
, env
->cpu_index
);
2028 #ifdef USE_KVM_DEVICE_ASSIGNMENT
2029 /* do ioperm for io ports of assigned devices */
2030 LIST_FOREACH(data
, &ioperm_head
, entries
)
2031 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
2034 /* signal VCPU creation */
2035 pthread_mutex_lock(&qemu_mutex
);
2036 current_env
->kvm_cpu_state
.created
= 1;
2037 pthread_cond_signal(&qemu_vcpu_cond
);
2039 /* and wait for machine initialization */
2040 while (!qemu_system_ready
)
2041 qemu_cond_wait(&qemu_system_cond
);
2042 pthread_mutex_unlock(&qemu_mutex
);
2044 kvm_main_loop_cpu(env
);
2048 void kvm_init_vcpu(CPUState
*env
)
2050 pthread_create(&env
->kvm_cpu_state
.thread
, NULL
, ap_main_loop
, env
);
2052 while (env
->kvm_cpu_state
.created
== 0)
2053 qemu_cond_wait(&qemu_vcpu_cond
);
2056 int kvm_vcpu_inited(CPUState
*env
)
2058 return env
->kvm_cpu_state
.created
;
2061 int kvm_init_ap(void)
2064 kvm_tpr_opt_setup();
2066 qemu_add_vm_change_state_handler(kvm_vm_state_change_handler
, NULL
);
2068 signal(SIG_IPI
, sig_ipi_handler
);
2072 void qemu_kvm_notify_work(void)
2078 if (io_thread_fd
== -1)
2081 memcpy(buffer
, &value
, sizeof(value
));
2083 while (offset
< 8) {
2086 len
= write(io_thread_fd
, buffer
+ offset
, 8 - offset
);
2087 if (len
== -1 && errno
== EINTR
)
2097 fprintf(stderr
, "failed to notify io thread\n");
2100 /* If we have signalfd, we mask out the signals we want to handle and then
2101 * use signalfd to listen for them. We rely on whatever the current signal
2102 * handler is to dispatch the signals when we receive them.
2105 static void sigfd_handler(void *opaque
)
2107 int fd
= (unsigned long)opaque
;
2108 struct qemu_signalfd_siginfo info
;
2109 struct sigaction action
;
2114 len
= read(fd
, &info
, sizeof(info
));
2115 } while (len
== -1 && errno
== EINTR
);
2117 if (len
== -1 && errno
== EAGAIN
)
2120 if (len
!= sizeof(info
)) {
2121 printf("read from sigfd returned %zd: %m\n", len
);
2125 sigaction(info
.ssi_signo
, NULL
, &action
);
2126 if (action
.sa_handler
)
2127 action
.sa_handler(info
.ssi_signo
);
2132 /* Used to break IO thread out of select */
2133 static void io_thread_wakeup(void *opaque
)
2135 int fd
= (unsigned long)opaque
;
2139 while (offset
< 8) {
2142 len
= read(fd
, buffer
+ offset
, 8 - offset
);
2143 if (len
== -1 && errno
== EINTR
)
2153 int kvm_main_loop(void)
2159 io_thread
= pthread_self();
2160 qemu_system_ready
= 1;
2162 if (qemu_eventfd(fds
) == -1) {
2163 fprintf(stderr
, "failed to create eventfd\n");
2167 qemu_set_fd_handler2(fds
[0], NULL
, io_thread_wakeup
, NULL
,
2168 (void *)(unsigned long)fds
[0]);
2170 io_thread_fd
= fds
[1];
2173 sigaddset(&mask
, SIGIO
);
2174 sigaddset(&mask
, SIGALRM
);
2175 sigprocmask(SIG_BLOCK
, &mask
, NULL
);
2177 sigfd
= qemu_signalfd(&mask
);
2179 fprintf(stderr
, "failed to create signalfd\n");
2183 fcntl(sigfd
, F_SETFL
, O_NONBLOCK
);
2185 qemu_set_fd_handler2(sigfd
, NULL
, sigfd_handler
, NULL
,
2186 (void *)(unsigned long)sigfd
);
2188 pthread_cond_broadcast(&qemu_system_cond
);
2190 io_thread_sigfd
= sigfd
;
2191 cpu_single_env
= NULL
;
2194 main_loop_wait(1000);
2195 if (qemu_shutdown_requested()) {
2196 if (qemu_no_shutdown()) {
2200 } else if (qemu_powerdown_requested())
2201 qemu_system_powerdown();
2202 else if (qemu_reset_requested())
2203 qemu_kvm_system_reset();
2204 else if (kvm_debug_cpu_requested
) {
2205 gdb_set_stop_cpu(kvm_debug_cpu_requested
);
2206 vm_stop(EXCP_DEBUG
);
2207 kvm_debug_cpu_requested
= NULL
;
2211 pause_all_threads();
2212 pthread_mutex_unlock(&qemu_mutex
);
2219 /* Try to initialize kvm */
2220 kvm_context
= kvm_init(cpu_single_env
);
2224 pthread_mutex_lock(&qemu_mutex
);
2230 static int destroy_region_works
= 0;
2234 #if !defined(TARGET_I386)
2235 int kvm_arch_init_irq_routing(void)
2241 int kvm_qemu_create_context(void)
2246 kvm_disable_irqchip_creation(kvm_context
);
2249 kvm_disable_pit_creation(kvm_context
);
2251 if (kvm_create(kvm_context
, 0, NULL
) < 0) {
2252 kvm_finalize(kvm_context
);
2255 r
= kvm_arch_qemu_create_context();
2257 kvm_finalize(kvm_context
);
2258 if (kvm_pit
&& !kvm_pit_reinject
) {
2259 if (kvm_reinject_control(kvm_context
, 0)) {
2260 fprintf(stderr
, "failure to disable in-kernel PIT reinjection\n");
2265 destroy_region_works
= kvm_destroy_memory_region_works(kvm_context
);
2268 r
= kvm_arch_init_irq_routing();
2277 static int must_use_aliases_source(target_phys_addr_t addr
)
2279 if (destroy_region_works
)
2281 if (addr
== 0xa0000 || addr
== 0xa8000)
2286 static int must_use_aliases_target(target_phys_addr_t addr
)
2288 if (destroy_region_works
)
2290 if (addr
>= 0xe0000000 && addr
< 0x100000000ull
)
2295 static struct mapping
{
2296 target_phys_addr_t phys
;
2300 static int nr_mappings
;
2302 static struct mapping
*find_ram_mapping(ram_addr_t ram_addr
)
2306 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
2307 if (p
->ram
<= ram_addr
&& ram_addr
< p
->ram
+ p
->len
) {
2314 static struct mapping
*find_mapping(target_phys_addr_t start_addr
)
2318 for (p
= mappings
; p
< mappings
+ nr_mappings
; ++p
) {
2319 if (p
->phys
<= start_addr
&& start_addr
< p
->phys
+ p
->len
) {
2326 static void drop_mapping(target_phys_addr_t start_addr
)
2328 struct mapping
*p
= find_mapping(start_addr
);
2331 *p
= mappings
[--nr_mappings
];
2335 void kvm_set_phys_mem(target_phys_addr_t start_addr
, ram_addr_t size
,
2336 ram_addr_t phys_offset
)
2339 unsigned long area_flags
;
2344 if (start_addr
+ size
> phys_ram_size
) {
2345 phys_ram_size
= start_addr
+ size
;
2348 phys_offset
&= ~IO_MEM_ROM
;
2349 area_flags
= phys_offset
& ~TARGET_PAGE_MASK
;
2351 if (area_flags
!= IO_MEM_RAM
) {
2353 if (must_use_aliases_source(start_addr
)) {
2354 kvm_destroy_memory_alias(kvm_context
, start_addr
);
2357 if (must_use_aliases_target(start_addr
))
2361 p
= find_mapping(start_addr
);
2363 kvm_unregister_memory_area(kvm_context
, p
->phys
, p
->len
);
2364 drop_mapping(p
->phys
);
2366 start_addr
+= TARGET_PAGE_SIZE
;
2367 if (size
> TARGET_PAGE_SIZE
) {
2368 size
-= TARGET_PAGE_SIZE
;
2376 r
= kvm_is_containing_region(kvm_context
, start_addr
, size
);
2380 if (area_flags
>= TLB_MMIO
)
2384 if (must_use_aliases_source(start_addr
)) {
2385 p
= find_ram_mapping(phys_offset
);
2387 kvm_create_memory_alias(kvm_context
, start_addr
, size
,
2388 p
->phys
+ (phys_offset
- p
->ram
));
2394 r
= kvm_register_phys_mem(kvm_context
, start_addr
,
2395 qemu_get_ram_ptr(phys_offset
),
2398 printf("kvm_cpu_register_physical_memory: failed\n");
2403 drop_mapping(start_addr
);
2404 p
= &mappings
[nr_mappings
++];
2405 p
->phys
= start_addr
;
2406 p
->ram
= phys_offset
;
2413 int kvm_setup_guest_memory(void *area
, unsigned long size
)
2417 #ifdef MADV_DONTFORK
2418 if (kvm_enabled() && !kvm_has_sync_mmu())
2419 ret
= madvise(area
, size
, MADV_DONTFORK
);
2428 int kvm_qemu_check_extension(int ext
)
2430 return kvm_check_extension(kvm_context
, ext
);
2433 int kvm_qemu_init_env(CPUState
*cenv
)
2435 return kvm_arch_qemu_init_env(cenv
);
2438 #ifdef KVM_CAP_SET_GUEST_DEBUG
2439 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
=
2440 TAILQ_HEAD_INITIALIZER(kvm_sw_breakpoints
);
2442 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(target_ulong pc
)
2444 struct kvm_sw_breakpoint
*bp
;
2446 TAILQ_FOREACH(bp
, &kvm_sw_breakpoints
, entry
) {
2453 struct kvm_set_guest_debug_data
{
2454 struct kvm_guest_debug dbg
;
2458 static void kvm_invoke_set_guest_debug(void *data
)
2460 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2462 dbg_data
->err
= kvm_set_guest_debug(cpu_single_env
->kvm_cpu_state
.vcpu_ctx
,
2466 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
2468 struct kvm_set_guest_debug_data data
;
2470 data
.dbg
.control
= 0;
2471 if (env
->singlestep_enabled
)
2472 data
.dbg
.control
= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2474 kvm_arch_update_guest_debug(env
, &data
.dbg
);
2475 data
.dbg
.control
|= reinject_trap
;
2477 on_vcpu(env
, kvm_invoke_set_guest_debug
, &data
);
2481 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
2482 target_ulong len
, int type
)
2484 struct kvm_sw_breakpoint
*bp
;
2488 if (type
== GDB_BREAKPOINT_SW
) {
2489 bp
= kvm_find_sw_breakpoint(addr
);
2495 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
2501 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
2507 TAILQ_INSERT_HEAD(&kvm_sw_breakpoints
, bp
, entry
);
2509 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2514 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2515 err
= kvm_update_guest_debug(env
, 0);
2522 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
2523 target_ulong len
, int type
)
2525 struct kvm_sw_breakpoint
*bp
;
2529 if (type
== GDB_BREAKPOINT_SW
) {
2530 bp
= kvm_find_sw_breakpoint(addr
);
2534 if (bp
->use_count
> 1) {
2539 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
2543 TAILQ_REMOVE(&kvm_sw_breakpoints
, bp
, entry
);
2546 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2551 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2552 err
= kvm_update_guest_debug(env
, 0);
2559 void kvm_remove_all_breakpoints(CPUState
*current_env
)
2561 struct kvm_sw_breakpoint
*bp
, *next
;
2564 TAILQ_FOREACH_SAFE(bp
, &kvm_sw_breakpoints
, entry
, next
) {
2565 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
2566 /* Try harder to find a CPU that currently sees the breakpoint. */
2567 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2568 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
2573 kvm_arch_remove_all_hw_breakpoints();
2575 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
2576 kvm_update_guest_debug(env
, 0);
2579 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2581 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
2586 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
2587 target_ulong len
, int type
)
2592 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
2593 target_ulong len
, int type
)
2598 void kvm_remove_all_breakpoints(CPUState
*current_env
)
2601 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2604 * dirty pages logging
2606 /* FIXME: use unsigned long pointer instead of unsigned char */
2607 unsigned char *kvm_dirty_bitmap
= NULL
;
2608 int kvm_physical_memory_set_dirty_tracking(int enable
)
2616 if (!kvm_dirty_bitmap
) {
2617 unsigned bitmap_size
= BITMAP_SIZE(phys_ram_size
);
2618 kvm_dirty_bitmap
= qemu_malloc(bitmap_size
);
2619 if (kvm_dirty_bitmap
== NULL
) {
2620 perror("Failed to allocate dirty pages bitmap");
2624 r
= kvm_dirty_pages_log_enable_all(kvm_context
);
2629 if (kvm_dirty_bitmap
) {
2630 r
= kvm_dirty_pages_log_reset(kvm_context
);
2631 qemu_free(kvm_dirty_bitmap
);
2632 kvm_dirty_bitmap
= NULL
;
2638 /* get kvm's dirty pages bitmap and update qemu's */
2639 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
2640 unsigned char *bitmap
,
2641 unsigned long offset
,
2642 unsigned long mem_size
)
2644 unsigned int i
, j
, n
=0;
2646 unsigned long page_number
, addr
, addr1
;
2647 ram_addr_t ram_addr
;
2648 unsigned int len
= ((mem_size
/TARGET_PAGE_SIZE
) + 7) / 8;
2651 * bitmap-traveling is faster than memory-traveling (for addr...)
2652 * especially when most of the memory is not dirty.
2654 for (i
=0; i
<len
; i
++) {
2659 page_number
= i
* 8 + j
;
2660 addr1
= page_number
* TARGET_PAGE_SIZE
;
2661 addr
= offset
+ addr1
;
2662 ram_addr
= cpu_get_physical_page_desc(addr
);
2663 cpu_physical_memory_set_dirty(ram_addr
);
2669 static int kvm_get_dirty_bitmap_cb(unsigned long start
, unsigned long len
,
2670 void *bitmap
, void *opaque
)
2672 return kvm_get_dirty_pages_log_range(start
, bitmap
, start
, len
);
2676 * get kvm's dirty pages bitmap and update qemu's
2677 * we only care about physical ram, which resides in slots 0 and 3
2679 int kvm_update_dirty_pages_log(void)
2684 r
= kvm_get_dirty_pages_range(kvm_context
, 0, -1UL,
2686 kvm_get_dirty_bitmap_cb
);
2690 void kvm_qemu_log_memory(target_phys_addr_t start
, target_phys_addr_t size
,
2694 kvm_dirty_pages_log_enable_slot(kvm_context
, start
, size
);
2697 if (must_use_aliases_target(start
))
2700 kvm_dirty_pages_log_disable_slot(kvm_context
, start
, size
);
2704 int kvm_get_phys_ram_page_bitmap(unsigned char *bitmap
)
2706 unsigned int bsize
= BITMAP_SIZE(phys_ram_size
);
2707 unsigned int brsize
= BITMAP_SIZE(ram_size
);
2708 unsigned int extra_pages
= (phys_ram_size
- ram_size
) / TARGET_PAGE_SIZE
;
2709 unsigned int extra_bytes
= (extra_pages
+7)/8;
2710 unsigned int hole_start
= BITMAP_SIZE(0xa0000);
2711 unsigned int hole_end
= BITMAP_SIZE(0xc0000);
2713 memset(bitmap
, 0xFF, brsize
+ extra_bytes
);
2714 memset(bitmap
+ hole_start
, 0, hole_end
- hole_start
);
2715 memset(bitmap
+ brsize
+ extra_bytes
, 0, bsize
- brsize
- extra_bytes
);
2720 #ifdef KVM_CAP_IRQCHIP
2722 int kvm_set_irq(int irq
, int level
, int *status
)
2724 return kvm_set_irq_level(kvm_context
, irq
, level
, status
);
2729 int qemu_kvm_get_dirty_pages(unsigned long phys_addr
, void *buf
)
2731 return kvm_get_dirty_pages(kvm_context
, phys_addr
, buf
);
2734 void kvm_mutex_unlock(void)
2736 assert(!cpu_single_env
);
2737 pthread_mutex_unlock(&qemu_mutex
);
2740 void kvm_mutex_lock(void)
2742 pthread_mutex_lock(&qemu_mutex
);
2743 cpu_single_env
= NULL
;
2746 #ifdef USE_KVM_DEVICE_ASSIGNMENT
2747 void kvm_add_ioperm_data(struct ioperm_data
*data
)
2749 LIST_INSERT_HEAD(&ioperm_head
, data
, entries
);
2752 void kvm_remove_ioperm_data(unsigned long start_port
, unsigned long num
)
2754 struct ioperm_data
*data
;
2756 data
= LIST_FIRST(&ioperm_head
);
2758 struct ioperm_data
*next
= LIST_NEXT(data
, entries
);
2760 if (data
->start_port
== start_port
&& data
->num
== num
) {
2761 LIST_REMOVE(data
, entries
);
2769 void kvm_ioperm(CPUState
*env
, void *data
)
2771 if (kvm_enabled() && qemu_system_ready
)
2772 on_vcpu(env
, kvm_arch_do_ioperm
, data
);
2777 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
2782 if (must_use_aliases_source(start_addr
))
2786 kvm_get_dirty_pages_range(kvm_context
, start_addr
, end_addr
- start_addr
,
2787 NULL
, kvm_get_dirty_bitmap_cb
);
2792 int kvm_log_start(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
2795 if (must_use_aliases_source(phys_addr
))
2800 kvm_qemu_log_memory(phys_addr
, len
, 1);
2805 int kvm_log_stop(target_phys_addr_t phys_addr
, target_phys_addr_t len
)
2808 if (must_use_aliases_source(phys_addr
))
2813 kvm_qemu_log_memory(phys_addr
, len
, 0);
2818 void qemu_kvm_cpu_stop(CPUState
*env
)
2821 env
->kvm_cpu_state
.stopped
= 1;
2824 int kvm_set_boot_cpu_id(uint32_t id
)
2826 return kvm_set_boot_vcpu_id(kvm_context
, id
);