2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
26 /* We use pc-style serial ports. */
29 /* Should signal the TCMI/GPMC */
30 uint32_t omap_badwidth_read8(void *opaque
, target_phys_addr_t addr
)
35 cpu_physical_memory_read(addr
, (void *) &ret
, 1);
39 void omap_badwidth_write8(void *opaque
, target_phys_addr_t addr
,
45 cpu_physical_memory_write(addr
, (void *) &val8
, 1);
48 uint32_t omap_badwidth_read16(void *opaque
, target_phys_addr_t addr
)
53 cpu_physical_memory_read(addr
, (void *) &ret
, 2);
57 void omap_badwidth_write16(void *opaque
, target_phys_addr_t addr
,
60 uint16_t val16
= value
;
63 cpu_physical_memory_write(addr
, (void *) &val16
, 2);
66 uint32_t omap_badwidth_read32(void *opaque
, target_phys_addr_t addr
)
71 cpu_physical_memory_read(addr
, (void *) &ret
, 4);
75 void omap_badwidth_write32(void *opaque
, target_phys_addr_t addr
,
79 cpu_physical_memory_write(addr
, (void *) &value
, 4);
82 /* Interrupt Handlers */
83 struct omap_intr_handler_bank_s
{
90 unsigned char priority
[32];
93 struct omap_intr_handler_s
{
95 qemu_irq parent_intr
[2];
104 struct omap_intr_handler_bank_s bank
[];
107 static void omap_inth_sir_update(struct omap_intr_handler_s
*s
, int is_fiq
)
109 int i
, j
, sir_intr
, p_intr
, p
, f
;
114 /* Find the interrupt line with the highest dynamic priority.
115 * Note: 0 denotes the hightest priority.
116 * If all interrupts have the same priority, the default order is IRQ_N,
117 * IRQ_N-1,...,IRQ_0. */
118 for (j
= 0; j
< s
->nbanks
; ++j
) {
119 level
= s
->bank
[j
].irqs
& ~s
->bank
[j
].mask
&
120 (is_fiq
? s
->bank
[j
].fiq
: ~s
->bank
[j
].fiq
);
121 for (f
= ffs(level
), i
= f
- 1, level
>>= f
- 1; f
; i
+= f
,
123 p
= s
->bank
[j
].priority
[i
];
126 sir_intr
= 32 * j
+ i
;
131 s
->sir_intr
[is_fiq
] = sir_intr
;
134 static inline void omap_inth_update(struct omap_intr_handler_s
*s
, int is_fiq
)
137 uint32_t has_intr
= 0;
139 for (i
= 0; i
< s
->nbanks
; ++i
)
140 has_intr
|= s
->bank
[i
].irqs
& ~s
->bank
[i
].mask
&
141 (is_fiq
? s
->bank
[i
].fiq
: ~s
->bank
[i
].fiq
);
143 if (s
->new_agr
[is_fiq
] & has_intr
& s
->mask
) {
144 s
->new_agr
[is_fiq
] = 0;
145 omap_inth_sir_update(s
, is_fiq
);
146 qemu_set_irq(s
->parent_intr
[is_fiq
], 1);
150 #define INT_FALLING_EDGE 0
151 #define INT_LOW_LEVEL 1
153 static void omap_set_intr(void *opaque
, int irq
, int req
)
155 struct omap_intr_handler_s
*ih
= (struct omap_intr_handler_s
*) opaque
;
158 struct omap_intr_handler_bank_s
*bank
= &ih
->bank
[irq
>> 5];
162 rise
= ~bank
->irqs
& (1 << n
);
163 if (~bank
->sens_edge
& (1 << n
))
164 rise
&= ~bank
->inputs
;
166 bank
->inputs
|= (1 << n
);
169 omap_inth_update(ih
, 0);
170 omap_inth_update(ih
, 1);
173 rise
= bank
->sens_edge
& bank
->irqs
& (1 << n
);
175 bank
->inputs
&= ~(1 << n
);
179 /* Simplified version with no edge detection */
180 static void omap_set_intr_noedge(void *opaque
, int irq
, int req
)
182 struct omap_intr_handler_s
*ih
= (struct omap_intr_handler_s
*) opaque
;
185 struct omap_intr_handler_bank_s
*bank
= &ih
->bank
[irq
>> 5];
189 rise
= ~bank
->inputs
& (1 << n
);
191 bank
->irqs
|= bank
->inputs
|= rise
;
192 omap_inth_update(ih
, 0);
193 omap_inth_update(ih
, 1);
196 bank
->irqs
= (bank
->inputs
&= ~(1 << n
)) | bank
->swi
;
199 static uint32_t omap_inth_read(void *opaque
, target_phys_addr_t addr
)
201 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
202 int i
, offset
= addr
;
203 int bank_no
= offset
>> 8;
205 struct omap_intr_handler_bank_s
*bank
= &s
->bank
[bank_no
];
215 case 0x10: /* SIR_IRQ_CODE */
216 case 0x14: /* SIR_FIQ_CODE */
219 line_no
= s
->sir_intr
[(offset
- 0x10) >> 2];
220 bank
= &s
->bank
[line_no
>> 5];
222 if (((bank
->sens_edge
>> i
) & 1) == INT_FALLING_EDGE
)
223 bank
->irqs
&= ~(1 << i
);
226 case 0x18: /* CONTROL_REG */
231 case 0x1c: /* ILR0 */
232 case 0x20: /* ILR1 */
233 case 0x24: /* ILR2 */
234 case 0x28: /* ILR3 */
235 case 0x2c: /* ILR4 */
236 case 0x30: /* ILR5 */
237 case 0x34: /* ILR6 */
238 case 0x38: /* ILR7 */
239 case 0x3c: /* ILR8 */
240 case 0x40: /* ILR9 */
241 case 0x44: /* ILR10 */
242 case 0x48: /* ILR11 */
243 case 0x4c: /* ILR12 */
244 case 0x50: /* ILR13 */
245 case 0x54: /* ILR14 */
246 case 0x58: /* ILR15 */
247 case 0x5c: /* ILR16 */
248 case 0x60: /* ILR17 */
249 case 0x64: /* ILR18 */
250 case 0x68: /* ILR19 */
251 case 0x6c: /* ILR20 */
252 case 0x70: /* ILR21 */
253 case 0x74: /* ILR22 */
254 case 0x78: /* ILR23 */
255 case 0x7c: /* ILR24 */
256 case 0x80: /* ILR25 */
257 case 0x84: /* ILR26 */
258 case 0x88: /* ILR27 */
259 case 0x8c: /* ILR28 */
260 case 0x90: /* ILR29 */
261 case 0x94: /* ILR30 */
262 case 0x98: /* ILR31 */
263 i
= (offset
- 0x1c) >> 2;
264 return (bank
->priority
[i
] << 2) |
265 (((bank
->sens_edge
>> i
) & 1) << 1) |
266 ((bank
->fiq
>> i
) & 1);
276 static void omap_inth_write(void *opaque
, target_phys_addr_t addr
,
279 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
280 int i
, offset
= addr
;
281 int bank_no
= offset
>> 8;
282 struct omap_intr_handler_bank_s
*bank
= &s
->bank
[bank_no
];
287 /* Important: ignore the clearing if the IRQ is level-triggered and
288 the input bit is 1 */
289 bank
->irqs
&= value
| (bank
->inputs
& bank
->sens_edge
);
294 omap_inth_update(s
, 0);
295 omap_inth_update(s
, 1);
298 case 0x10: /* SIR_IRQ_CODE */
299 case 0x14: /* SIR_FIQ_CODE */
303 case 0x18: /* CONTROL_REG */
307 qemu_set_irq(s
->parent_intr
[1], 0);
309 omap_inth_update(s
, 1);
312 qemu_set_irq(s
->parent_intr
[0], 0);
314 omap_inth_update(s
, 0);
318 case 0x1c: /* ILR0 */
319 case 0x20: /* ILR1 */
320 case 0x24: /* ILR2 */
321 case 0x28: /* ILR3 */
322 case 0x2c: /* ILR4 */
323 case 0x30: /* ILR5 */
324 case 0x34: /* ILR6 */
325 case 0x38: /* ILR7 */
326 case 0x3c: /* ILR8 */
327 case 0x40: /* ILR9 */
328 case 0x44: /* ILR10 */
329 case 0x48: /* ILR11 */
330 case 0x4c: /* ILR12 */
331 case 0x50: /* ILR13 */
332 case 0x54: /* ILR14 */
333 case 0x58: /* ILR15 */
334 case 0x5c: /* ILR16 */
335 case 0x60: /* ILR17 */
336 case 0x64: /* ILR18 */
337 case 0x68: /* ILR19 */
338 case 0x6c: /* ILR20 */
339 case 0x70: /* ILR21 */
340 case 0x74: /* ILR22 */
341 case 0x78: /* ILR23 */
342 case 0x7c: /* ILR24 */
343 case 0x80: /* ILR25 */
344 case 0x84: /* ILR26 */
345 case 0x88: /* ILR27 */
346 case 0x8c: /* ILR28 */
347 case 0x90: /* ILR29 */
348 case 0x94: /* ILR30 */
349 case 0x98: /* ILR31 */
350 i
= (offset
- 0x1c) >> 2;
351 bank
->priority
[i
] = (value
>> 2) & 0x1f;
352 bank
->sens_edge
&= ~(1 << i
);
353 bank
->sens_edge
|= ((value
>> 1) & 1) << i
;
354 bank
->fiq
&= ~(1 << i
);
355 bank
->fiq
|= (value
& 1) << i
;
359 for (i
= 0; i
< 32; i
++)
360 if (value
& (1 << i
)) {
361 omap_set_intr(s
, 32 * bank_no
+ i
, 1);
369 static CPUReadMemoryFunc
*omap_inth_readfn
[] = {
370 omap_badwidth_read32
,
371 omap_badwidth_read32
,
375 static CPUWriteMemoryFunc
*omap_inth_writefn
[] = {
381 void omap_inth_reset(struct omap_intr_handler_s
*s
)
385 for (i
= 0; i
< s
->nbanks
; ++i
){
386 s
->bank
[i
].irqs
= 0x00000000;
387 s
->bank
[i
].mask
= 0xffffffff;
388 s
->bank
[i
].sens_edge
= 0x00000000;
389 s
->bank
[i
].fiq
= 0x00000000;
390 s
->bank
[i
].inputs
= 0x00000000;
391 s
->bank
[i
].swi
= 0x00000000;
392 memset(s
->bank
[i
].priority
, 0, sizeof(s
->bank
[i
].priority
));
395 s
->bank
[i
].sens_edge
= 0xffffffff;
405 qemu_set_irq(s
->parent_intr
[0], 0);
406 qemu_set_irq(s
->parent_intr
[1], 0);
409 struct omap_intr_handler_s
*omap_inth_init(target_phys_addr_t base
,
410 unsigned long size
, unsigned char nbanks
, qemu_irq
**pins
,
411 qemu_irq parent_irq
, qemu_irq parent_fiq
, omap_clk clk
)
414 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*)
415 qemu_mallocz(sizeof(struct omap_intr_handler_s
) +
416 sizeof(struct omap_intr_handler_bank_s
) * nbanks
);
418 s
->parent_intr
[0] = parent_irq
;
419 s
->parent_intr
[1] = parent_fiq
;
421 s
->pins
= qemu_allocate_irqs(omap_set_intr
, s
, nbanks
* 32);
427 iomemtype
= cpu_register_io_memory(omap_inth_readfn
,
428 omap_inth_writefn
, s
);
429 cpu_register_physical_memory(base
, size
, iomemtype
);
434 static uint32_t omap2_inth_read(void *opaque
, target_phys_addr_t addr
)
436 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
438 int bank_no
, line_no
;
439 struct omap_intr_handler_bank_s
*bank
= 0;
441 if ((offset
& 0xf80) == 0x80) {
442 bank_no
= (offset
& 0x60) >> 5;
443 if (bank_no
< s
->nbanks
) {
445 bank
= &s
->bank
[bank_no
];
450 case 0x00: /* INTC_REVISION */
453 case 0x10: /* INTC_SYSCONFIG */
454 return (s
->autoidle
>> 2) & 1;
456 case 0x14: /* INTC_SYSSTATUS */
457 return 1; /* RESETDONE */
459 case 0x40: /* INTC_SIR_IRQ */
460 return s
->sir_intr
[0];
462 case 0x44: /* INTC_SIR_FIQ */
463 return s
->sir_intr
[1];
465 case 0x48: /* INTC_CONTROL */
466 return (!s
->mask
) << 2; /* GLOBALMASK */
468 case 0x4c: /* INTC_PROTECTION */
471 case 0x50: /* INTC_IDLE */
472 return s
->autoidle
& 3;
474 /* Per-bank registers */
475 case 0x80: /* INTC_ITR */
478 case 0x84: /* INTC_MIR */
481 case 0x88: /* INTC_MIR_CLEAR */
482 case 0x8c: /* INTC_MIR_SET */
485 case 0x90: /* INTC_ISR_SET */
488 case 0x94: /* INTC_ISR_CLEAR */
491 case 0x98: /* INTC_PENDING_IRQ */
492 return bank
->irqs
& ~bank
->mask
& ~bank
->fiq
;
494 case 0x9c: /* INTC_PENDING_FIQ */
495 return bank
->irqs
& ~bank
->mask
& bank
->fiq
;
497 /* Per-line registers */
498 case 0x100 ... 0x300: /* INTC_ILR */
499 bank_no
= (offset
- 0x100) >> 7;
500 if (bank_no
> s
->nbanks
)
502 bank
= &s
->bank
[bank_no
];
503 line_no
= (offset
& 0x7f) >> 2;
504 return (bank
->priority
[line_no
] << 2) |
505 ((bank
->fiq
>> line_no
) & 1);
511 static void omap2_inth_write(void *opaque
, target_phys_addr_t addr
,
514 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*) opaque
;
516 int bank_no
, line_no
;
517 struct omap_intr_handler_bank_s
*bank
= 0;
519 if ((offset
& 0xf80) == 0x80) {
520 bank_no
= (offset
& 0x60) >> 5;
521 if (bank_no
< s
->nbanks
) {
523 bank
= &s
->bank
[bank_no
];
528 case 0x10: /* INTC_SYSCONFIG */
530 s
->autoidle
|= (value
& 1) << 2;
531 if (value
& 2) /* SOFTRESET */
535 case 0x48: /* INTC_CONTROL */
536 s
->mask
= (value
& 4) ? 0 : ~0; /* GLOBALMASK */
537 if (value
& 2) { /* NEWFIQAGR */
538 qemu_set_irq(s
->parent_intr
[1], 0);
540 omap_inth_update(s
, 1);
542 if (value
& 1) { /* NEWIRQAGR */
543 qemu_set_irq(s
->parent_intr
[0], 0);
545 omap_inth_update(s
, 0);
549 case 0x4c: /* INTC_PROTECTION */
550 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
551 * for every register, see Chapter 3 and 4 for privileged mode. */
553 fprintf(stderr
, "%s: protection mode enable attempt\n",
557 case 0x50: /* INTC_IDLE */
559 s
->autoidle
|= value
& 3;
562 /* Per-bank registers */
563 case 0x84: /* INTC_MIR */
565 omap_inth_update(s
, 0);
566 omap_inth_update(s
, 1);
569 case 0x88: /* INTC_MIR_CLEAR */
570 bank
->mask
&= ~value
;
571 omap_inth_update(s
, 0);
572 omap_inth_update(s
, 1);
575 case 0x8c: /* INTC_MIR_SET */
579 case 0x90: /* INTC_ISR_SET */
580 bank
->irqs
|= bank
->swi
|= value
;
581 omap_inth_update(s
, 0);
582 omap_inth_update(s
, 1);
585 case 0x94: /* INTC_ISR_CLEAR */
587 bank
->irqs
= bank
->swi
& bank
->inputs
;
590 /* Per-line registers */
591 case 0x100 ... 0x300: /* INTC_ILR */
592 bank_no
= (offset
- 0x100) >> 7;
593 if (bank_no
> s
->nbanks
)
595 bank
= &s
->bank
[bank_no
];
596 line_no
= (offset
& 0x7f) >> 2;
597 bank
->priority
[line_no
] = (value
>> 2) & 0x3f;
598 bank
->fiq
&= ~(1 << line_no
);
599 bank
->fiq
|= (value
& 1) << line_no
;
602 case 0x00: /* INTC_REVISION */
603 case 0x14: /* INTC_SYSSTATUS */
604 case 0x40: /* INTC_SIR_IRQ */
605 case 0x44: /* INTC_SIR_FIQ */
606 case 0x80: /* INTC_ITR */
607 case 0x98: /* INTC_PENDING_IRQ */
608 case 0x9c: /* INTC_PENDING_FIQ */
615 static CPUReadMemoryFunc
*omap2_inth_readfn
[] = {
616 omap_badwidth_read32
,
617 omap_badwidth_read32
,
621 static CPUWriteMemoryFunc
*omap2_inth_writefn
[] = {
627 struct omap_intr_handler_s
*omap2_inth_init(target_phys_addr_t base
,
628 int size
, int nbanks
, qemu_irq
**pins
,
629 qemu_irq parent_irq
, qemu_irq parent_fiq
,
630 omap_clk fclk
, omap_clk iclk
)
633 struct omap_intr_handler_s
*s
= (struct omap_intr_handler_s
*)
634 qemu_mallocz(sizeof(struct omap_intr_handler_s
) +
635 sizeof(struct omap_intr_handler_bank_s
) * nbanks
);
637 s
->parent_intr
[0] = parent_irq
;
638 s
->parent_intr
[1] = parent_fiq
;
641 s
->pins
= qemu_allocate_irqs(omap_set_intr_noedge
, s
, nbanks
* 32);
647 iomemtype
= cpu_register_io_memory(omap2_inth_readfn
,
648 omap2_inth_writefn
, s
);
649 cpu_register_physical_memory(base
, size
, iomemtype
);
655 struct omap_mpu_timer_s
{
672 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s
*timer
)
674 uint64_t distance
= qemu_get_clock(vm_clock
) - timer
->time
;
676 if (timer
->st
&& timer
->enable
&& timer
->rate
)
677 return timer
->val
- muldiv64(distance
>> (timer
->ptv
+ 1),
678 timer
->rate
, ticks_per_sec
);
683 static inline void omap_timer_sync(struct omap_mpu_timer_s
*timer
)
685 timer
->val
= omap_timer_read(timer
);
686 timer
->time
= qemu_get_clock(vm_clock
);
689 static inline void omap_timer_update(struct omap_mpu_timer_s
*timer
)
693 if (timer
->enable
&& timer
->st
&& timer
->rate
) {
694 timer
->val
= timer
->reset_val
; /* Should skip this on clk enable */
695 expires
= muldiv64((uint64_t) timer
->val
<< (timer
->ptv
+ 1),
696 ticks_per_sec
, timer
->rate
);
698 /* If timer expiry would be sooner than in about 1 ms and
699 * auto-reload isn't set, then fire immediately. This is a hack
700 * to make systems like PalmOS run in acceptable time. PalmOS
701 * sets the interval to a very low value and polls the status bit
702 * in a busy loop when it wants to sleep just a couple of CPU
704 if (expires
> (ticks_per_sec
>> 10) || timer
->ar
)
705 qemu_mod_timer(timer
->timer
, timer
->time
+ expires
);
707 qemu_bh_schedule(timer
->tick
);
709 qemu_del_timer(timer
->timer
);
712 static void omap_timer_fire(void *opaque
)
714 struct omap_mpu_timer_s
*timer
= opaque
;
722 /* Edge-triggered irq */
723 qemu_irq_pulse(timer
->irq
);
726 static void omap_timer_tick(void *opaque
)
728 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
730 omap_timer_sync(timer
);
731 omap_timer_fire(timer
);
732 omap_timer_update(timer
);
735 static void omap_timer_clk_update(void *opaque
, int line
, int on
)
737 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
739 omap_timer_sync(timer
);
740 timer
->rate
= on
? omap_clk_getrate(timer
->clk
) : 0;
741 omap_timer_update(timer
);
744 static void omap_timer_clk_setup(struct omap_mpu_timer_s
*timer
)
746 omap_clk_adduser(timer
->clk
,
747 qemu_allocate_irqs(omap_timer_clk_update
, timer
, 1)[0]);
748 timer
->rate
= omap_clk_getrate(timer
->clk
);
751 static uint32_t omap_mpu_timer_read(void *opaque
, target_phys_addr_t addr
)
753 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
756 case 0x00: /* CNTL_TIMER */
757 return (s
->enable
<< 5) | (s
->ptv
<< 2) | (s
->ar
<< 1) | s
->st
;
759 case 0x04: /* LOAD_TIM */
762 case 0x08: /* READ_TIM */
763 return omap_timer_read(s
);
770 static void omap_mpu_timer_write(void *opaque
, target_phys_addr_t addr
,
773 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
776 case 0x00: /* CNTL_TIMER */
778 s
->enable
= (value
>> 5) & 1;
779 s
->ptv
= (value
>> 2) & 7;
780 s
->ar
= (value
>> 1) & 1;
782 omap_timer_update(s
);
785 case 0x04: /* LOAD_TIM */
786 s
->reset_val
= value
;
789 case 0x08: /* READ_TIM */
798 static CPUReadMemoryFunc
*omap_mpu_timer_readfn
[] = {
799 omap_badwidth_read32
,
800 omap_badwidth_read32
,
804 static CPUWriteMemoryFunc
*omap_mpu_timer_writefn
[] = {
805 omap_badwidth_write32
,
806 omap_badwidth_write32
,
807 omap_mpu_timer_write
,
810 static void omap_mpu_timer_reset(struct omap_mpu_timer_s
*s
)
812 qemu_del_timer(s
->timer
);
814 s
->reset_val
= 31337;
822 struct omap_mpu_timer_s
*omap_mpu_timer_init(target_phys_addr_t base
,
823 qemu_irq irq
, omap_clk clk
)
826 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*)
827 qemu_mallocz(sizeof(struct omap_mpu_timer_s
));
831 s
->timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, s
);
832 s
->tick
= qemu_bh_new(omap_timer_fire
, s
);
833 omap_mpu_timer_reset(s
);
834 omap_timer_clk_setup(s
);
836 iomemtype
= cpu_register_io_memory(omap_mpu_timer_readfn
,
837 omap_mpu_timer_writefn
, s
);
838 cpu_register_physical_memory(base
, 0x100, iomemtype
);
844 struct omap_watchdog_timer_s
{
845 struct omap_mpu_timer_s timer
;
852 static uint32_t omap_wd_timer_read(void *opaque
, target_phys_addr_t addr
)
854 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
857 case 0x00: /* CNTL_TIMER */
858 return (s
->timer
.ptv
<< 9) | (s
->timer
.ar
<< 8) |
859 (s
->timer
.st
<< 7) | (s
->free
<< 1);
861 case 0x04: /* READ_TIMER */
862 return omap_timer_read(&s
->timer
);
864 case 0x08: /* TIMER_MODE */
865 return s
->mode
<< 15;
872 static void omap_wd_timer_write(void *opaque
, target_phys_addr_t addr
,
875 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
878 case 0x00: /* CNTL_TIMER */
879 omap_timer_sync(&s
->timer
);
880 s
->timer
.ptv
= (value
>> 9) & 7;
881 s
->timer
.ar
= (value
>> 8) & 1;
882 s
->timer
.st
= (value
>> 7) & 1;
883 s
->free
= (value
>> 1) & 1;
884 omap_timer_update(&s
->timer
);
887 case 0x04: /* LOAD_TIMER */
888 s
->timer
.reset_val
= value
& 0xffff;
891 case 0x08: /* TIMER_MODE */
892 if (!s
->mode
&& ((value
>> 15) & 1))
893 omap_clk_get(s
->timer
.clk
);
894 s
->mode
|= (value
>> 15) & 1;
895 if (s
->last_wr
== 0xf5) {
896 if ((value
& 0xff) == 0xa0) {
899 omap_clk_put(s
->timer
.clk
);
902 /* XXX: on T|E hardware somehow this has no effect,
903 * on Zire 71 it works as specified. */
905 qemu_system_reset_request();
908 s
->last_wr
= value
& 0xff;
916 static CPUReadMemoryFunc
*omap_wd_timer_readfn
[] = {
917 omap_badwidth_read16
,
919 omap_badwidth_read16
,
922 static CPUWriteMemoryFunc
*omap_wd_timer_writefn
[] = {
923 omap_badwidth_write16
,
925 omap_badwidth_write16
,
928 static void omap_wd_timer_reset(struct omap_watchdog_timer_s
*s
)
930 qemu_del_timer(s
->timer
.timer
);
932 omap_clk_get(s
->timer
.clk
);
938 s
->timer
.reset_val
= 0xffff;
943 omap_timer_update(&s
->timer
);
946 struct omap_watchdog_timer_s
*omap_wd_timer_init(target_phys_addr_t base
,
947 qemu_irq irq
, omap_clk clk
)
950 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*)
951 qemu_mallocz(sizeof(struct omap_watchdog_timer_s
));
955 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
956 omap_wd_timer_reset(s
);
957 omap_timer_clk_setup(&s
->timer
);
959 iomemtype
= cpu_register_io_memory(omap_wd_timer_readfn
,
960 omap_wd_timer_writefn
, s
);
961 cpu_register_physical_memory(base
, 0x100, iomemtype
);
967 struct omap_32khz_timer_s
{
968 struct omap_mpu_timer_s timer
;
971 static uint32_t omap_os_timer_read(void *opaque
, target_phys_addr_t addr
)
973 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
974 int offset
= addr
& OMAP_MPUI_REG_MASK
;
978 return s
->timer
.reset_val
;
981 return omap_timer_read(&s
->timer
);
984 return (s
->timer
.ar
<< 3) | (s
->timer
.it_ena
<< 2) | s
->timer
.st
;
993 static void omap_os_timer_write(void *opaque
, target_phys_addr_t addr
,
996 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
997 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1000 case 0x00: /* TVR */
1001 s
->timer
.reset_val
= value
& 0x00ffffff;
1004 case 0x04: /* TCR */
1009 s
->timer
.ar
= (value
>> 3) & 1;
1010 s
->timer
.it_ena
= (value
>> 2) & 1;
1011 if (s
->timer
.st
!= (value
& 1) || (value
& 2)) {
1012 omap_timer_sync(&s
->timer
);
1013 s
->timer
.enable
= value
& 1;
1014 s
->timer
.st
= value
& 1;
1015 omap_timer_update(&s
->timer
);
1024 static CPUReadMemoryFunc
*omap_os_timer_readfn
[] = {
1025 omap_badwidth_read32
,
1026 omap_badwidth_read32
,
1030 static CPUWriteMemoryFunc
*omap_os_timer_writefn
[] = {
1031 omap_badwidth_write32
,
1032 omap_badwidth_write32
,
1033 omap_os_timer_write
,
1036 static void omap_os_timer_reset(struct omap_32khz_timer_s
*s
)
1038 qemu_del_timer(s
->timer
.timer
);
1039 s
->timer
.enable
= 0;
1040 s
->timer
.it_ena
= 0;
1041 s
->timer
.reset_val
= 0x00ffffff;
1048 struct omap_32khz_timer_s
*omap_os_timer_init(target_phys_addr_t base
,
1049 qemu_irq irq
, omap_clk clk
)
1052 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*)
1053 qemu_mallocz(sizeof(struct omap_32khz_timer_s
));
1057 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
1058 omap_os_timer_reset(s
);
1059 omap_timer_clk_setup(&s
->timer
);
1061 iomemtype
= cpu_register_io_memory(omap_os_timer_readfn
,
1062 omap_os_timer_writefn
, s
);
1063 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1068 /* Ultra Low-Power Device Module */
1069 static uint32_t omap_ulpd_pm_read(void *opaque
, target_phys_addr_t addr
)
1071 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1075 case 0x14: /* IT_STATUS */
1076 ret
= s
->ulpd_pm_regs
[addr
>> 2];
1077 s
->ulpd_pm_regs
[addr
>> 2] = 0;
1078 qemu_irq_lower(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
1081 case 0x18: /* Reserved */
1082 case 0x1c: /* Reserved */
1083 case 0x20: /* Reserved */
1084 case 0x28: /* Reserved */
1085 case 0x2c: /* Reserved */
1087 case 0x00: /* COUNTER_32_LSB */
1088 case 0x04: /* COUNTER_32_MSB */
1089 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1090 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1091 case 0x10: /* GAUGING_CTRL */
1092 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1093 case 0x30: /* CLOCK_CTRL */
1094 case 0x34: /* SOFT_REQ */
1095 case 0x38: /* COUNTER_32_FIQ */
1096 case 0x3c: /* DPLL_CTRL */
1097 case 0x40: /* STATUS_REQ */
1098 /* XXX: check clk::usecount state for every clock */
1099 case 0x48: /* LOCL_TIME */
1100 case 0x4c: /* APLL_CTRL */
1101 case 0x50: /* POWER_CTRL */
1102 return s
->ulpd_pm_regs
[addr
>> 2];
1109 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s
*s
,
1110 uint16_t diff
, uint16_t value
)
1112 if (diff
& (1 << 4)) /* USB_MCLK_EN */
1113 omap_clk_onoff(omap_findclk(s
, "usb_clk0"), (value
>> 4) & 1);
1114 if (diff
& (1 << 5)) /* DIS_USB_PVCI_CLK */
1115 omap_clk_onoff(omap_findclk(s
, "usb_w2fc_ck"), (~value
>> 5) & 1);
1118 static inline void omap_ulpd_req_update(struct omap_mpu_state_s
*s
,
1119 uint16_t diff
, uint16_t value
)
1121 if (diff
& (1 << 0)) /* SOFT_DPLL_REQ */
1122 omap_clk_canidle(omap_findclk(s
, "dpll4"), (~value
>> 0) & 1);
1123 if (diff
& (1 << 1)) /* SOFT_COM_REQ */
1124 omap_clk_canidle(omap_findclk(s
, "com_mclk_out"), (~value
>> 1) & 1);
1125 if (diff
& (1 << 2)) /* SOFT_SDW_REQ */
1126 omap_clk_canidle(omap_findclk(s
, "bt_mclk_out"), (~value
>> 2) & 1);
1127 if (diff
& (1 << 3)) /* SOFT_USB_REQ */
1128 omap_clk_canidle(omap_findclk(s
, "usb_clk0"), (~value
>> 3) & 1);
1131 static void omap_ulpd_pm_write(void *opaque
, target_phys_addr_t addr
,
1134 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1137 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1141 case 0x00: /* COUNTER_32_LSB */
1142 case 0x04: /* COUNTER_32_MSB */
1143 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1144 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1145 case 0x14: /* IT_STATUS */
1146 case 0x40: /* STATUS_REQ */
1150 case 0x10: /* GAUGING_CTRL */
1151 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1152 if ((s
->ulpd_pm_regs
[addr
>> 2] ^ value
) & 1) {
1153 now
= qemu_get_clock(vm_clock
);
1156 s
->ulpd_gauge_start
= now
;
1158 now
-= s
->ulpd_gauge_start
;
1161 ticks
= muldiv64(now
, 32768, ticks_per_sec
);
1162 s
->ulpd_pm_regs
[0x00 >> 2] = (ticks
>> 0) & 0xffff;
1163 s
->ulpd_pm_regs
[0x04 >> 2] = (ticks
>> 16) & 0xffff;
1164 if (ticks
>> 32) /* OVERFLOW_32K */
1165 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 2;
1167 /* High frequency ticks */
1168 ticks
= muldiv64(now
, 12000000, ticks_per_sec
);
1169 s
->ulpd_pm_regs
[0x08 >> 2] = (ticks
>> 0) & 0xffff;
1170 s
->ulpd_pm_regs
[0x0c >> 2] = (ticks
>> 16) & 0xffff;
1171 if (ticks
>> 32) /* OVERFLOW_HI_FREQ */
1172 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 1;
1174 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1175 qemu_irq_raise(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
1178 s
->ulpd_pm_regs
[addr
>> 2] = value
;
1181 case 0x18: /* Reserved */
1182 case 0x1c: /* Reserved */
1183 case 0x20: /* Reserved */
1184 case 0x28: /* Reserved */
1185 case 0x2c: /* Reserved */
1187 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1188 case 0x38: /* COUNTER_32_FIQ */
1189 case 0x48: /* LOCL_TIME */
1190 case 0x50: /* POWER_CTRL */
1191 s
->ulpd_pm_regs
[addr
>> 2] = value
;
1194 case 0x30: /* CLOCK_CTRL */
1195 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
1196 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x3f;
1197 omap_ulpd_clk_update(s
, diff
, value
);
1200 case 0x34: /* SOFT_REQ */
1201 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
1202 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x1f;
1203 omap_ulpd_req_update(s
, diff
, value
);
1206 case 0x3c: /* DPLL_CTRL */
1207 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1208 * omitted altogether, probably a typo. */
1209 /* This register has identical semantics with DPLL(1:3) control
1210 * registers, see omap_dpll_write() */
1211 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
1212 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x2fff;
1213 if (diff
& (0x3ff << 2)) {
1214 if (value
& (1 << 4)) { /* PLL_ENABLE */
1215 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1216 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1218 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1221 omap_clk_setrate(omap_findclk(s
, "dpll4"), div
, mult
);
1224 /* Enter the desired mode. */
1225 s
->ulpd_pm_regs
[addr
>> 2] =
1226 (s
->ulpd_pm_regs
[addr
>> 2] & 0xfffe) |
1227 ((s
->ulpd_pm_regs
[addr
>> 2] >> 4) & 1);
1229 /* Act as if the lock is restored. */
1230 s
->ulpd_pm_regs
[addr
>> 2] |= 2;
1233 case 0x4c: /* APLL_CTRL */
1234 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
1235 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0xf;
1236 if (diff
& (1 << 0)) /* APLL_NDPLL_SWITCH */
1237 omap_clk_reparent(omap_findclk(s
, "ck_48m"), omap_findclk(s
,
1238 (value
& (1 << 0)) ? "apll" : "dpll4"));
1246 static CPUReadMemoryFunc
*omap_ulpd_pm_readfn
[] = {
1247 omap_badwidth_read16
,
1249 omap_badwidth_read16
,
1252 static CPUWriteMemoryFunc
*omap_ulpd_pm_writefn
[] = {
1253 omap_badwidth_write16
,
1255 omap_badwidth_write16
,
1258 static void omap_ulpd_pm_reset(struct omap_mpu_state_s
*mpu
)
1260 mpu
->ulpd_pm_regs
[0x00 >> 2] = 0x0001;
1261 mpu
->ulpd_pm_regs
[0x04 >> 2] = 0x0000;
1262 mpu
->ulpd_pm_regs
[0x08 >> 2] = 0x0001;
1263 mpu
->ulpd_pm_regs
[0x0c >> 2] = 0x0000;
1264 mpu
->ulpd_pm_regs
[0x10 >> 2] = 0x0000;
1265 mpu
->ulpd_pm_regs
[0x18 >> 2] = 0x01;
1266 mpu
->ulpd_pm_regs
[0x1c >> 2] = 0x01;
1267 mpu
->ulpd_pm_regs
[0x20 >> 2] = 0x01;
1268 mpu
->ulpd_pm_regs
[0x24 >> 2] = 0x03ff;
1269 mpu
->ulpd_pm_regs
[0x28 >> 2] = 0x01;
1270 mpu
->ulpd_pm_regs
[0x2c >> 2] = 0x01;
1271 omap_ulpd_clk_update(mpu
, mpu
->ulpd_pm_regs
[0x30 >> 2], 0x0000);
1272 mpu
->ulpd_pm_regs
[0x30 >> 2] = 0x0000;
1273 omap_ulpd_req_update(mpu
, mpu
->ulpd_pm_regs
[0x34 >> 2], 0x0000);
1274 mpu
->ulpd_pm_regs
[0x34 >> 2] = 0x0000;
1275 mpu
->ulpd_pm_regs
[0x38 >> 2] = 0x0001;
1276 mpu
->ulpd_pm_regs
[0x3c >> 2] = 0x2211;
1277 mpu
->ulpd_pm_regs
[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1278 mpu
->ulpd_pm_regs
[0x48 >> 2] = 0x960;
1279 mpu
->ulpd_pm_regs
[0x4c >> 2] = 0x08;
1280 mpu
->ulpd_pm_regs
[0x50 >> 2] = 0x08;
1281 omap_clk_setrate(omap_findclk(mpu
, "dpll4"), 1, 4);
1282 omap_clk_reparent(omap_findclk(mpu
, "ck_48m"), omap_findclk(mpu
, "dpll4"));
1285 static void omap_ulpd_pm_init(target_phys_addr_t base
,
1286 struct omap_mpu_state_s
*mpu
)
1288 int iomemtype
= cpu_register_io_memory(omap_ulpd_pm_readfn
,
1289 omap_ulpd_pm_writefn
, mpu
);
1291 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1292 omap_ulpd_pm_reset(mpu
);
1295 /* OMAP Pin Configuration */
1296 static uint32_t omap_pin_cfg_read(void *opaque
, target_phys_addr_t addr
)
1298 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1301 case 0x00: /* FUNC_MUX_CTRL_0 */
1302 case 0x04: /* FUNC_MUX_CTRL_1 */
1303 case 0x08: /* FUNC_MUX_CTRL_2 */
1304 return s
->func_mux_ctrl
[addr
>> 2];
1306 case 0x0c: /* COMP_MODE_CTRL_0 */
1307 return s
->comp_mode_ctrl
[0];
1309 case 0x10: /* FUNC_MUX_CTRL_3 */
1310 case 0x14: /* FUNC_MUX_CTRL_4 */
1311 case 0x18: /* FUNC_MUX_CTRL_5 */
1312 case 0x1c: /* FUNC_MUX_CTRL_6 */
1313 case 0x20: /* FUNC_MUX_CTRL_7 */
1314 case 0x24: /* FUNC_MUX_CTRL_8 */
1315 case 0x28: /* FUNC_MUX_CTRL_9 */
1316 case 0x2c: /* FUNC_MUX_CTRL_A */
1317 case 0x30: /* FUNC_MUX_CTRL_B */
1318 case 0x34: /* FUNC_MUX_CTRL_C */
1319 case 0x38: /* FUNC_MUX_CTRL_D */
1320 return s
->func_mux_ctrl
[(addr
>> 2) - 1];
1322 case 0x40: /* PULL_DWN_CTRL_0 */
1323 case 0x44: /* PULL_DWN_CTRL_1 */
1324 case 0x48: /* PULL_DWN_CTRL_2 */
1325 case 0x4c: /* PULL_DWN_CTRL_3 */
1326 return s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2];
1328 case 0x50: /* GATE_INH_CTRL_0 */
1329 return s
->gate_inh_ctrl
[0];
1331 case 0x60: /* VOLTAGE_CTRL_0 */
1332 return s
->voltage_ctrl
[0];
1334 case 0x70: /* TEST_DBG_CTRL_0 */
1335 return s
->test_dbg_ctrl
[0];
1337 case 0x80: /* MOD_CONF_CTRL_0 */
1338 return s
->mod_conf_ctrl
[0];
1345 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s
*s
,
1346 uint32_t diff
, uint32_t value
)
1348 if (s
->compat1509
) {
1349 if (diff
& (1 << 9)) /* BLUETOOTH */
1350 omap_clk_onoff(omap_findclk(s
, "bt_mclk_out"),
1352 if (diff
& (1 << 7)) /* USB.CLKO */
1353 omap_clk_onoff(omap_findclk(s
, "usb.clko"),
1358 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s
*s
,
1359 uint32_t diff
, uint32_t value
)
1361 if (s
->compat1509
) {
1362 if (diff
& (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1363 omap_clk_onoff(omap_findclk(s
, "mcbsp3.clkx"),
1365 if (diff
& (1 << 1)) /* CLK32K */
1366 omap_clk_onoff(omap_findclk(s
, "clk32k_out"),
1371 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s
*s
,
1372 uint32_t diff
, uint32_t value
)
1374 if (diff
& (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1375 omap_clk_reparent(omap_findclk(s
, "uart3_ck"),
1376 omap_findclk(s
, ((value
>> 31) & 1) ?
1377 "ck_48m" : "armper_ck"));
1378 if (diff
& (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1379 omap_clk_reparent(omap_findclk(s
, "uart2_ck"),
1380 omap_findclk(s
, ((value
>> 30) & 1) ?
1381 "ck_48m" : "armper_ck"));
1382 if (diff
& (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1383 omap_clk_reparent(omap_findclk(s
, "uart1_ck"),
1384 omap_findclk(s
, ((value
>> 29) & 1) ?
1385 "ck_48m" : "armper_ck"));
1386 if (diff
& (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1387 omap_clk_reparent(omap_findclk(s
, "mmc_ck"),
1388 omap_findclk(s
, ((value
>> 23) & 1) ?
1389 "ck_48m" : "armper_ck"));
1390 if (diff
& (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1391 omap_clk_reparent(omap_findclk(s
, "com_mclk_out"),
1392 omap_findclk(s
, ((value
>> 12) & 1) ?
1393 "ck_48m" : "armper_ck"));
1394 if (diff
& (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1395 omap_clk_onoff(omap_findclk(s
, "usb_hhc_ck"), (value
>> 9) & 1);
1398 static void omap_pin_cfg_write(void *opaque
, target_phys_addr_t addr
,
1401 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1405 case 0x00: /* FUNC_MUX_CTRL_0 */
1406 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
1407 s
->func_mux_ctrl
[addr
>> 2] = value
;
1408 omap_pin_funcmux0_update(s
, diff
, value
);
1411 case 0x04: /* FUNC_MUX_CTRL_1 */
1412 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
1413 s
->func_mux_ctrl
[addr
>> 2] = value
;
1414 omap_pin_funcmux1_update(s
, diff
, value
);
1417 case 0x08: /* FUNC_MUX_CTRL_2 */
1418 s
->func_mux_ctrl
[addr
>> 2] = value
;
1421 case 0x0c: /* COMP_MODE_CTRL_0 */
1422 s
->comp_mode_ctrl
[0] = value
;
1423 s
->compat1509
= (value
!= 0x0000eaef);
1424 omap_pin_funcmux0_update(s
, ~0, s
->func_mux_ctrl
[0]);
1425 omap_pin_funcmux1_update(s
, ~0, s
->func_mux_ctrl
[1]);
1428 case 0x10: /* FUNC_MUX_CTRL_3 */
1429 case 0x14: /* FUNC_MUX_CTRL_4 */
1430 case 0x18: /* FUNC_MUX_CTRL_5 */
1431 case 0x1c: /* FUNC_MUX_CTRL_6 */
1432 case 0x20: /* FUNC_MUX_CTRL_7 */
1433 case 0x24: /* FUNC_MUX_CTRL_8 */
1434 case 0x28: /* FUNC_MUX_CTRL_9 */
1435 case 0x2c: /* FUNC_MUX_CTRL_A */
1436 case 0x30: /* FUNC_MUX_CTRL_B */
1437 case 0x34: /* FUNC_MUX_CTRL_C */
1438 case 0x38: /* FUNC_MUX_CTRL_D */
1439 s
->func_mux_ctrl
[(addr
>> 2) - 1] = value
;
1442 case 0x40: /* PULL_DWN_CTRL_0 */
1443 case 0x44: /* PULL_DWN_CTRL_1 */
1444 case 0x48: /* PULL_DWN_CTRL_2 */
1445 case 0x4c: /* PULL_DWN_CTRL_3 */
1446 s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2] = value
;
1449 case 0x50: /* GATE_INH_CTRL_0 */
1450 s
->gate_inh_ctrl
[0] = value
;
1453 case 0x60: /* VOLTAGE_CTRL_0 */
1454 s
->voltage_ctrl
[0] = value
;
1457 case 0x70: /* TEST_DBG_CTRL_0 */
1458 s
->test_dbg_ctrl
[0] = value
;
1461 case 0x80: /* MOD_CONF_CTRL_0 */
1462 diff
= s
->mod_conf_ctrl
[0] ^ value
;
1463 s
->mod_conf_ctrl
[0] = value
;
1464 omap_pin_modconf1_update(s
, diff
, value
);
1472 static CPUReadMemoryFunc
*omap_pin_cfg_readfn
[] = {
1473 omap_badwidth_read32
,
1474 omap_badwidth_read32
,
1478 static CPUWriteMemoryFunc
*omap_pin_cfg_writefn
[] = {
1479 omap_badwidth_write32
,
1480 omap_badwidth_write32
,
1484 static void omap_pin_cfg_reset(struct omap_mpu_state_s
*mpu
)
1486 /* Start in Compatibility Mode. */
1487 mpu
->compat1509
= 1;
1488 omap_pin_funcmux0_update(mpu
, mpu
->func_mux_ctrl
[0], 0);
1489 omap_pin_funcmux1_update(mpu
, mpu
->func_mux_ctrl
[1], 0);
1490 omap_pin_modconf1_update(mpu
, mpu
->mod_conf_ctrl
[0], 0);
1491 memset(mpu
->func_mux_ctrl
, 0, sizeof(mpu
->func_mux_ctrl
));
1492 memset(mpu
->comp_mode_ctrl
, 0, sizeof(mpu
->comp_mode_ctrl
));
1493 memset(mpu
->pull_dwn_ctrl
, 0, sizeof(mpu
->pull_dwn_ctrl
));
1494 memset(mpu
->gate_inh_ctrl
, 0, sizeof(mpu
->gate_inh_ctrl
));
1495 memset(mpu
->voltage_ctrl
, 0, sizeof(mpu
->voltage_ctrl
));
1496 memset(mpu
->test_dbg_ctrl
, 0, sizeof(mpu
->test_dbg_ctrl
));
1497 memset(mpu
->mod_conf_ctrl
, 0, sizeof(mpu
->mod_conf_ctrl
));
1500 static void omap_pin_cfg_init(target_phys_addr_t base
,
1501 struct omap_mpu_state_s
*mpu
)
1503 int iomemtype
= cpu_register_io_memory(omap_pin_cfg_readfn
,
1504 omap_pin_cfg_writefn
, mpu
);
1506 cpu_register_physical_memory(base
, 0x800, iomemtype
);
1507 omap_pin_cfg_reset(mpu
);
1510 /* Device Identification, Die Identification */
1511 static uint32_t omap_id_read(void *opaque
, target_phys_addr_t addr
)
1513 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1516 case 0xfffe1800: /* DIE_ID_LSB */
1518 case 0xfffe1804: /* DIE_ID_MSB */
1521 case 0xfffe2000: /* PRODUCT_ID_LSB */
1523 case 0xfffe2004: /* PRODUCT_ID_MSB */
1526 case 0xfffed400: /* JTAG_ID_LSB */
1527 switch (s
->mpu_model
) {
1533 hw_error("%s: bad mpu model\n", __FUNCTION__
);
1537 case 0xfffed404: /* JTAG_ID_MSB */
1538 switch (s
->mpu_model
) {
1544 hw_error("%s: bad mpu model\n", __FUNCTION__
);
1553 static void omap_id_write(void *opaque
, target_phys_addr_t addr
,
1559 static CPUReadMemoryFunc
*omap_id_readfn
[] = {
1560 omap_badwidth_read32
,
1561 omap_badwidth_read32
,
1565 static CPUWriteMemoryFunc
*omap_id_writefn
[] = {
1566 omap_badwidth_write32
,
1567 omap_badwidth_write32
,
1571 static void omap_id_init(struct omap_mpu_state_s
*mpu
)
1573 int iomemtype
= cpu_register_io_memory(omap_id_readfn
,
1574 omap_id_writefn
, mpu
);
1575 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype
, 0xfffe1800);
1576 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype
, 0xfffed400);
1577 if (!cpu_is_omap15xx(mpu
))
1578 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype
, 0xfffe2000);
1581 /* MPUI Control (Dummy) */
1582 static uint32_t omap_mpui_read(void *opaque
, target_phys_addr_t addr
)
1584 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1587 case 0x00: /* CTRL */
1588 return s
->mpui_ctrl
;
1589 case 0x04: /* DEBUG_ADDR */
1591 case 0x08: /* DEBUG_DATA */
1593 case 0x0c: /* DEBUG_FLAG */
1595 case 0x10: /* STATUS */
1598 /* Not in OMAP310 */
1599 case 0x14: /* DSP_STATUS */
1600 case 0x18: /* DSP_BOOT_CONFIG */
1602 case 0x1c: /* DSP_MPUI_CONFIG */
1610 static void omap_mpui_write(void *opaque
, target_phys_addr_t addr
,
1613 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1616 case 0x00: /* CTRL */
1617 s
->mpui_ctrl
= value
& 0x007fffff;
1620 case 0x04: /* DEBUG_ADDR */
1621 case 0x08: /* DEBUG_DATA */
1622 case 0x0c: /* DEBUG_FLAG */
1623 case 0x10: /* STATUS */
1624 /* Not in OMAP310 */
1625 case 0x14: /* DSP_STATUS */
1627 case 0x18: /* DSP_BOOT_CONFIG */
1628 case 0x1c: /* DSP_MPUI_CONFIG */
1636 static CPUReadMemoryFunc
*omap_mpui_readfn
[] = {
1637 omap_badwidth_read32
,
1638 omap_badwidth_read32
,
1642 static CPUWriteMemoryFunc
*omap_mpui_writefn
[] = {
1643 omap_badwidth_write32
,
1644 omap_badwidth_write32
,
1648 static void omap_mpui_reset(struct omap_mpu_state_s
*s
)
1650 s
->mpui_ctrl
= 0x0003ff1b;
1653 static void omap_mpui_init(target_phys_addr_t base
,
1654 struct omap_mpu_state_s
*mpu
)
1656 int iomemtype
= cpu_register_io_memory(omap_mpui_readfn
,
1657 omap_mpui_writefn
, mpu
);
1659 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1661 omap_mpui_reset(mpu
);
1665 struct omap_tipb_bridge_s
{
1672 uint16_t enh_control
;
1675 static uint32_t omap_tipb_bridge_read(void *opaque
, target_phys_addr_t addr
)
1677 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1680 case 0x00: /* TIPB_CNTL */
1682 case 0x04: /* TIPB_BUS_ALLOC */
1684 case 0x08: /* MPU_TIPB_CNTL */
1686 case 0x0c: /* ENHANCED_TIPB_CNTL */
1687 return s
->enh_control
;
1688 case 0x10: /* ADDRESS_DBG */
1689 case 0x14: /* DATA_DEBUG_LOW */
1690 case 0x18: /* DATA_DEBUG_HIGH */
1692 case 0x1c: /* DEBUG_CNTR_SIG */
1700 static void omap_tipb_bridge_write(void *opaque
, target_phys_addr_t addr
,
1703 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1706 case 0x00: /* TIPB_CNTL */
1707 s
->control
= value
& 0xffff;
1710 case 0x04: /* TIPB_BUS_ALLOC */
1711 s
->alloc
= value
& 0x003f;
1714 case 0x08: /* MPU_TIPB_CNTL */
1715 s
->buffer
= value
& 0x0003;
1718 case 0x0c: /* ENHANCED_TIPB_CNTL */
1719 s
->width_intr
= !(value
& 2);
1720 s
->enh_control
= value
& 0x000f;
1723 case 0x10: /* ADDRESS_DBG */
1724 case 0x14: /* DATA_DEBUG_LOW */
1725 case 0x18: /* DATA_DEBUG_HIGH */
1726 case 0x1c: /* DEBUG_CNTR_SIG */
1735 static CPUReadMemoryFunc
*omap_tipb_bridge_readfn
[] = {
1736 omap_badwidth_read16
,
1737 omap_tipb_bridge_read
,
1738 omap_tipb_bridge_read
,
1741 static CPUWriteMemoryFunc
*omap_tipb_bridge_writefn
[] = {
1742 omap_badwidth_write16
,
1743 omap_tipb_bridge_write
,
1744 omap_tipb_bridge_write
,
1747 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s
*s
)
1749 s
->control
= 0xffff;
1752 s
->enh_control
= 0x000f;
1755 struct omap_tipb_bridge_s
*omap_tipb_bridge_init(target_phys_addr_t base
,
1756 qemu_irq abort_irq
, omap_clk clk
)
1759 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*)
1760 qemu_mallocz(sizeof(struct omap_tipb_bridge_s
));
1762 s
->abort
= abort_irq
;
1763 omap_tipb_bridge_reset(s
);
1765 iomemtype
= cpu_register_io_memory(omap_tipb_bridge_readfn
,
1766 omap_tipb_bridge_writefn
, s
);
1767 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1772 /* Dummy Traffic Controller's Memory Interface */
1773 static uint32_t omap_tcmi_read(void *opaque
, target_phys_addr_t addr
)
1775 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1779 case 0x00: /* IMIF_PRIO */
1780 case 0x04: /* EMIFS_PRIO */
1781 case 0x08: /* EMIFF_PRIO */
1782 case 0x0c: /* EMIFS_CONFIG */
1783 case 0x10: /* EMIFS_CS0_CONFIG */
1784 case 0x14: /* EMIFS_CS1_CONFIG */
1785 case 0x18: /* EMIFS_CS2_CONFIG */
1786 case 0x1c: /* EMIFS_CS3_CONFIG */
1787 case 0x24: /* EMIFF_MRS */
1788 case 0x28: /* TIMEOUT1 */
1789 case 0x2c: /* TIMEOUT2 */
1790 case 0x30: /* TIMEOUT3 */
1791 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1792 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1793 return s
->tcmi_regs
[addr
>> 2];
1795 case 0x20: /* EMIFF_SDRAM_CONFIG */
1796 ret
= s
->tcmi_regs
[addr
>> 2];
1797 s
->tcmi_regs
[addr
>> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1798 /* XXX: We can try using the VGA_DIRTY flag for this */
1806 static void omap_tcmi_write(void *opaque
, target_phys_addr_t addr
,
1809 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1812 case 0x00: /* IMIF_PRIO */
1813 case 0x04: /* EMIFS_PRIO */
1814 case 0x08: /* EMIFF_PRIO */
1815 case 0x10: /* EMIFS_CS0_CONFIG */
1816 case 0x14: /* EMIFS_CS1_CONFIG */
1817 case 0x18: /* EMIFS_CS2_CONFIG */
1818 case 0x1c: /* EMIFS_CS3_CONFIG */
1819 case 0x20: /* EMIFF_SDRAM_CONFIG */
1820 case 0x24: /* EMIFF_MRS */
1821 case 0x28: /* TIMEOUT1 */
1822 case 0x2c: /* TIMEOUT2 */
1823 case 0x30: /* TIMEOUT3 */
1824 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1825 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1826 s
->tcmi_regs
[addr
>> 2] = value
;
1828 case 0x0c: /* EMIFS_CONFIG */
1829 s
->tcmi_regs
[addr
>> 2] = (value
& 0xf) | (1 << 4);
1837 static CPUReadMemoryFunc
*omap_tcmi_readfn
[] = {
1838 omap_badwidth_read32
,
1839 omap_badwidth_read32
,
1843 static CPUWriteMemoryFunc
*omap_tcmi_writefn
[] = {
1844 omap_badwidth_write32
,
1845 omap_badwidth_write32
,
1849 static void omap_tcmi_reset(struct omap_mpu_state_s
*mpu
)
1851 mpu
->tcmi_regs
[0x00 >> 2] = 0x00000000;
1852 mpu
->tcmi_regs
[0x04 >> 2] = 0x00000000;
1853 mpu
->tcmi_regs
[0x08 >> 2] = 0x00000000;
1854 mpu
->tcmi_regs
[0x0c >> 2] = 0x00000010;
1855 mpu
->tcmi_regs
[0x10 >> 2] = 0x0010fffb;
1856 mpu
->tcmi_regs
[0x14 >> 2] = 0x0010fffb;
1857 mpu
->tcmi_regs
[0x18 >> 2] = 0x0010fffb;
1858 mpu
->tcmi_regs
[0x1c >> 2] = 0x0010fffb;
1859 mpu
->tcmi_regs
[0x20 >> 2] = 0x00618800;
1860 mpu
->tcmi_regs
[0x24 >> 2] = 0x00000037;
1861 mpu
->tcmi_regs
[0x28 >> 2] = 0x00000000;
1862 mpu
->tcmi_regs
[0x2c >> 2] = 0x00000000;
1863 mpu
->tcmi_regs
[0x30 >> 2] = 0x00000000;
1864 mpu
->tcmi_regs
[0x3c >> 2] = 0x00000003;
1865 mpu
->tcmi_regs
[0x40 >> 2] = 0x00000000;
1868 static void omap_tcmi_init(target_phys_addr_t base
,
1869 struct omap_mpu_state_s
*mpu
)
1871 int iomemtype
= cpu_register_io_memory(omap_tcmi_readfn
,
1872 omap_tcmi_writefn
, mpu
);
1874 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1875 omap_tcmi_reset(mpu
);
1878 /* Digital phase-locked loops control */
1879 static uint32_t omap_dpll_read(void *opaque
, target_phys_addr_t addr
)
1881 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1883 if (addr
== 0x00) /* CTL_REG */
1890 static void omap_dpll_write(void *opaque
, target_phys_addr_t addr
,
1893 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1895 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1898 if (addr
== 0x00) { /* CTL_REG */
1899 /* See omap_ulpd_pm_write() too */
1900 diff
= s
->mode
& value
;
1901 s
->mode
= value
& 0x2fff;
1902 if (diff
& (0x3ff << 2)) {
1903 if (value
& (1 << 4)) { /* PLL_ENABLE */
1904 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1905 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1907 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1910 omap_clk_setrate(s
->dpll
, div
, mult
);
1913 /* Enter the desired mode. */
1914 s
->mode
= (s
->mode
& 0xfffe) | ((s
->mode
>> 4) & 1);
1916 /* Act as if the lock is restored. */
1923 static CPUReadMemoryFunc
*omap_dpll_readfn
[] = {
1924 omap_badwidth_read16
,
1926 omap_badwidth_read16
,
1929 static CPUWriteMemoryFunc
*omap_dpll_writefn
[] = {
1930 omap_badwidth_write16
,
1932 omap_badwidth_write16
,
1935 static void omap_dpll_reset(struct dpll_ctl_s
*s
)
1938 omap_clk_setrate(s
->dpll
, 1, 1);
1941 static void omap_dpll_init(struct dpll_ctl_s
*s
, target_phys_addr_t base
,
1944 int iomemtype
= cpu_register_io_memory(omap_dpll_readfn
,
1945 omap_dpll_writefn
, s
);
1950 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1954 struct omap_uart_s
{
1955 target_phys_addr_t base
;
1956 SerialState
*serial
; /* TODO */
1957 struct omap_target_agent_s
*ta
;
1970 void omap_uart_reset(struct omap_uart_s
*s
)
1979 struct omap_uart_s
*omap_uart_init(target_phys_addr_t base
,
1980 qemu_irq irq
, omap_clk fclk
, omap_clk iclk
,
1981 qemu_irq txdma
, qemu_irq rxdma
, CharDriverState
*chr
)
1983 struct omap_uart_s
*s
= (struct omap_uart_s
*)
1984 qemu_mallocz(sizeof(struct omap_uart_s
));
1989 s
->serial
= serial_mm_init(base
, 2, irq
, omap_clk_getrate(fclk
)/16,
1990 chr
?: qemu_chr_open("null", "null", NULL
), 1);
1995 static uint32_t omap_uart_read(void *opaque
, target_phys_addr_t addr
)
1997 struct omap_uart_s
*s
= (struct omap_uart_s
*) opaque
;
2001 case 0x20: /* MDR1 */
2003 case 0x24: /* MDR2 */
2005 case 0x40: /* SCR */
2007 case 0x44: /* SSR */
2009 case 0x48: /* EBLR (OMAP2) */
2011 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2013 case 0x50: /* MVR */
2015 case 0x54: /* SYSC (OMAP2) */
2016 return s
->syscontrol
;
2017 case 0x58: /* SYSS (OMAP2) */
2019 case 0x5c: /* WER (OMAP2) */
2021 case 0x60: /* CFPS (OMAP2) */
2029 static void omap_uart_write(void *opaque
, target_phys_addr_t addr
,
2032 struct omap_uart_s
*s
= (struct omap_uart_s
*) opaque
;
2036 case 0x20: /* MDR1 */
2037 s
->mdr
[0] = value
& 0x7f;
2039 case 0x24: /* MDR2 */
2040 s
->mdr
[1] = value
& 0xff;
2042 case 0x40: /* SCR */
2043 s
->scr
= value
& 0xff;
2045 case 0x48: /* EBLR (OMAP2) */
2046 s
->eblr
= value
& 0xff;
2048 case 0x4C: /* OSC_12M_SEL (OMAP1) */
2049 s
->clksel
= value
& 1;
2051 case 0x44: /* SSR */
2052 case 0x50: /* MVR */
2053 case 0x58: /* SYSS (OMAP2) */
2056 case 0x54: /* SYSC (OMAP2) */
2057 s
->syscontrol
= value
& 0x1d;
2061 case 0x5c: /* WER (OMAP2) */
2062 s
->wkup
= value
& 0x7f;
2064 case 0x60: /* CFPS (OMAP2) */
2065 s
->cfps
= value
& 0xff;
2072 static CPUReadMemoryFunc
*omap_uart_readfn
[] = {
2075 omap_badwidth_read8
,
2078 static CPUWriteMemoryFunc
*omap_uart_writefn
[] = {
2081 omap_badwidth_write8
,
2084 struct omap_uart_s
*omap2_uart_init(struct omap_target_agent_s
*ta
,
2085 qemu_irq irq
, omap_clk fclk
, omap_clk iclk
,
2086 qemu_irq txdma
, qemu_irq rxdma
, CharDriverState
*chr
)
2088 target_phys_addr_t base
= omap_l4_attach(ta
, 0, 0);
2089 struct omap_uart_s
*s
= omap_uart_init(base
, irq
,
2090 fclk
, iclk
, txdma
, rxdma
, chr
);
2091 int iomemtype
= cpu_register_io_memory(omap_uart_readfn
,
2092 omap_uart_writefn
, s
);
2096 cpu_register_physical_memory(base
+ 0x20, 0x100, iomemtype
);
2101 void omap_uart_attach(struct omap_uart_s
*s
, CharDriverState
*chr
)
2103 /* TODO: Should reuse or destroy current s->serial */
2104 s
->serial
= serial_mm_init(s
->base
, 2, s
->irq
,
2105 omap_clk_getrate(s
->fclk
) / 16,
2106 chr
?: qemu_chr_open("null", "null", NULL
), 1);
2109 /* MPU Clock/Reset/Power Mode Control */
2110 static uint32_t omap_clkm_read(void *opaque
, target_phys_addr_t addr
)
2112 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2115 case 0x00: /* ARM_CKCTL */
2116 return s
->clkm
.arm_ckctl
;
2118 case 0x04: /* ARM_IDLECT1 */
2119 return s
->clkm
.arm_idlect1
;
2121 case 0x08: /* ARM_IDLECT2 */
2122 return s
->clkm
.arm_idlect2
;
2124 case 0x0c: /* ARM_EWUPCT */
2125 return s
->clkm
.arm_ewupct
;
2127 case 0x10: /* ARM_RSTCT1 */
2128 return s
->clkm
.arm_rstct1
;
2130 case 0x14: /* ARM_RSTCT2 */
2131 return s
->clkm
.arm_rstct2
;
2133 case 0x18: /* ARM_SYSST */
2134 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
;
2136 case 0x1c: /* ARM_CKOUT1 */
2137 return s
->clkm
.arm_ckout1
;
2139 case 0x20: /* ARM_CKOUT2 */
2147 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s
*s
,
2148 uint16_t diff
, uint16_t value
)
2152 if (diff
& (1 << 14)) { /* ARM_INTHCK_SEL */
2153 if (value
& (1 << 14))
2156 clk
= omap_findclk(s
, "arminth_ck");
2157 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
2160 if (diff
& (1 << 12)) { /* ARM_TIMXO */
2161 clk
= omap_findclk(s
, "armtim_ck");
2162 if (value
& (1 << 12))
2163 omap_clk_reparent(clk
, omap_findclk(s
, "clkin"));
2165 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
2168 if (diff
& (3 << 10)) { /* DSPMMUDIV */
2169 clk
= omap_findclk(s
, "dspmmu_ck");
2170 omap_clk_setrate(clk
, 1 << ((value
>> 10) & 3), 1);
2172 if (diff
& (3 << 8)) { /* TCDIV */
2173 clk
= omap_findclk(s
, "tc_ck");
2174 omap_clk_setrate(clk
, 1 << ((value
>> 8) & 3), 1);
2176 if (diff
& (3 << 6)) { /* DSPDIV */
2177 clk
= omap_findclk(s
, "dsp_ck");
2178 omap_clk_setrate(clk
, 1 << ((value
>> 6) & 3), 1);
2180 if (diff
& (3 << 4)) { /* ARMDIV */
2181 clk
= omap_findclk(s
, "arm_ck");
2182 omap_clk_setrate(clk
, 1 << ((value
>> 4) & 3), 1);
2184 if (diff
& (3 << 2)) { /* LCDDIV */
2185 clk
= omap_findclk(s
, "lcd_ck");
2186 omap_clk_setrate(clk
, 1 << ((value
>> 2) & 3), 1);
2188 if (diff
& (3 << 0)) { /* PERDIV */
2189 clk
= omap_findclk(s
, "armper_ck");
2190 omap_clk_setrate(clk
, 1 << ((value
>> 0) & 3), 1);
2194 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s
*s
,
2195 uint16_t diff
, uint16_t value
)
2199 if (value
& (1 << 11)) /* SETARM_IDLE */
2200 cpu_interrupt(s
->env
, CPU_INTERRUPT_HALT
);
2201 if (!(value
& (1 << 10))) /* WKUP_MODE */
2202 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2204 #define SET_CANIDLE(clock, bit) \
2205 if (diff & (1 << bit)) { \
2206 clk = omap_findclk(s, clock); \
2207 omap_clk_canidle(clk, (value >> bit) & 1); \
2209 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2210 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2211 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2212 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2213 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2214 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2215 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2216 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2217 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2218 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2219 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2220 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2221 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2222 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2225 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s
*s
,
2226 uint16_t diff
, uint16_t value
)
2230 #define SET_ONOFF(clock, bit) \
2231 if (diff & (1 << bit)) { \
2232 clk = omap_findclk(s, clock); \
2233 omap_clk_onoff(clk, (value >> bit) & 1); \
2235 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2236 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2237 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2238 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2239 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2240 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2241 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2242 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2243 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2244 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2245 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2248 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s
*s
,
2249 uint16_t diff
, uint16_t value
)
2253 if (diff
& (3 << 4)) { /* TCLKOUT */
2254 clk
= omap_findclk(s
, "tclk_out");
2255 switch ((value
>> 4) & 3) {
2257 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen3"));
2258 omap_clk_onoff(clk
, 1);
2261 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
2262 omap_clk_onoff(clk
, 1);
2265 omap_clk_onoff(clk
, 0);
2268 if (diff
& (3 << 2)) { /* DCLKOUT */
2269 clk
= omap_findclk(s
, "dclk_out");
2270 switch ((value
>> 2) & 3) {
2272 omap_clk_reparent(clk
, omap_findclk(s
, "dspmmu_ck"));
2275 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen2"));
2278 omap_clk_reparent(clk
, omap_findclk(s
, "dsp_ck"));
2281 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
2285 if (diff
& (3 << 0)) { /* ACLKOUT */
2286 clk
= omap_findclk(s
, "aclk_out");
2287 switch ((value
>> 0) & 3) {
2289 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
2290 omap_clk_onoff(clk
, 1);
2293 omap_clk_reparent(clk
, omap_findclk(s
, "arm_ck"));
2294 omap_clk_onoff(clk
, 1);
2297 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
2298 omap_clk_onoff(clk
, 1);
2301 omap_clk_onoff(clk
, 0);
2306 static void omap_clkm_write(void *opaque
, target_phys_addr_t addr
,
2309 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2312 static const char *clkschemename
[8] = {
2313 "fully synchronous", "fully asynchronous", "synchronous scalable",
2314 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2318 case 0x00: /* ARM_CKCTL */
2319 diff
= s
->clkm
.arm_ckctl
^ value
;
2320 s
->clkm
.arm_ckctl
= value
& 0x7fff;
2321 omap_clkm_ckctl_update(s
, diff
, value
);
2324 case 0x04: /* ARM_IDLECT1 */
2325 diff
= s
->clkm
.arm_idlect1
^ value
;
2326 s
->clkm
.arm_idlect1
= value
& 0x0fff;
2327 omap_clkm_idlect1_update(s
, diff
, value
);
2330 case 0x08: /* ARM_IDLECT2 */
2331 diff
= s
->clkm
.arm_idlect2
^ value
;
2332 s
->clkm
.arm_idlect2
= value
& 0x07ff;
2333 omap_clkm_idlect2_update(s
, diff
, value
);
2336 case 0x0c: /* ARM_EWUPCT */
2337 diff
= s
->clkm
.arm_ewupct
^ value
;
2338 s
->clkm
.arm_ewupct
= value
& 0x003f;
2341 case 0x10: /* ARM_RSTCT1 */
2342 diff
= s
->clkm
.arm_rstct1
^ value
;
2343 s
->clkm
.arm_rstct1
= value
& 0x0007;
2345 qemu_system_reset_request();
2346 s
->clkm
.cold_start
= 0xa;
2348 if (diff
& ~value
& 4) { /* DSP_RST */
2350 omap_tipb_bridge_reset(s
->private_tipb
);
2351 omap_tipb_bridge_reset(s
->public_tipb
);
2353 if (diff
& 2) { /* DSP_EN */
2354 clk
= omap_findclk(s
, "dsp_ck");
2355 omap_clk_canidle(clk
, (~value
>> 1) & 1);
2359 case 0x14: /* ARM_RSTCT2 */
2360 s
->clkm
.arm_rstct2
= value
& 0x0001;
2363 case 0x18: /* ARM_SYSST */
2364 if ((s
->clkm
.clocking_scheme
^ (value
>> 11)) & 7) {
2365 s
->clkm
.clocking_scheme
= (value
>> 11) & 7;
2366 printf("%s: clocking scheme set to %s\n", __FUNCTION__
,
2367 clkschemename
[s
->clkm
.clocking_scheme
]);
2369 s
->clkm
.cold_start
&= value
& 0x3f;
2372 case 0x1c: /* ARM_CKOUT1 */
2373 diff
= s
->clkm
.arm_ckout1
^ value
;
2374 s
->clkm
.arm_ckout1
= value
& 0x003f;
2375 omap_clkm_ckout1_update(s
, diff
, value
);
2378 case 0x20: /* ARM_CKOUT2 */
2384 static CPUReadMemoryFunc
*omap_clkm_readfn
[] = {
2385 omap_badwidth_read16
,
2387 omap_badwidth_read16
,
2390 static CPUWriteMemoryFunc
*omap_clkm_writefn
[] = {
2391 omap_badwidth_write16
,
2393 omap_badwidth_write16
,
2396 static uint32_t omap_clkdsp_read(void *opaque
, target_phys_addr_t addr
)
2398 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2401 case 0x04: /* DSP_IDLECT1 */
2402 return s
->clkm
.dsp_idlect1
;
2404 case 0x08: /* DSP_IDLECT2 */
2405 return s
->clkm
.dsp_idlect2
;
2407 case 0x14: /* DSP_RSTCT2 */
2408 return s
->clkm
.dsp_rstct2
;
2410 case 0x18: /* DSP_SYSST */
2411 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
|
2412 (s
->env
->halted
<< 6); /* Quite useless... */
2419 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s
*s
,
2420 uint16_t diff
, uint16_t value
)
2424 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2427 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s
*s
,
2428 uint16_t diff
, uint16_t value
)
2432 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2435 static void omap_clkdsp_write(void *opaque
, target_phys_addr_t addr
,
2438 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2442 case 0x04: /* DSP_IDLECT1 */
2443 diff
= s
->clkm
.dsp_idlect1
^ value
;
2444 s
->clkm
.dsp_idlect1
= value
& 0x01f7;
2445 omap_clkdsp_idlect1_update(s
, diff
, value
);
2448 case 0x08: /* DSP_IDLECT2 */
2449 s
->clkm
.dsp_idlect2
= value
& 0x0037;
2450 diff
= s
->clkm
.dsp_idlect1
^ value
;
2451 omap_clkdsp_idlect2_update(s
, diff
, value
);
2454 case 0x14: /* DSP_RSTCT2 */
2455 s
->clkm
.dsp_rstct2
= value
& 0x0001;
2458 case 0x18: /* DSP_SYSST */
2459 s
->clkm
.cold_start
&= value
& 0x3f;
2467 static CPUReadMemoryFunc
*omap_clkdsp_readfn
[] = {
2468 omap_badwidth_read16
,
2470 omap_badwidth_read16
,
2473 static CPUWriteMemoryFunc
*omap_clkdsp_writefn
[] = {
2474 omap_badwidth_write16
,
2476 omap_badwidth_write16
,
2479 static void omap_clkm_reset(struct omap_mpu_state_s
*s
)
2481 if (s
->wdt
&& s
->wdt
->reset
)
2482 s
->clkm
.cold_start
= 0x6;
2483 s
->clkm
.clocking_scheme
= 0;
2484 omap_clkm_ckctl_update(s
, ~0, 0x3000);
2485 s
->clkm
.arm_ckctl
= 0x3000;
2486 omap_clkm_idlect1_update(s
, s
->clkm
.arm_idlect1
^ 0x0400, 0x0400);
2487 s
->clkm
.arm_idlect1
= 0x0400;
2488 omap_clkm_idlect2_update(s
, s
->clkm
.arm_idlect2
^ 0x0100, 0x0100);
2489 s
->clkm
.arm_idlect2
= 0x0100;
2490 s
->clkm
.arm_ewupct
= 0x003f;
2491 s
->clkm
.arm_rstct1
= 0x0000;
2492 s
->clkm
.arm_rstct2
= 0x0000;
2493 s
->clkm
.arm_ckout1
= 0x0015;
2494 s
->clkm
.dpll1_mode
= 0x2002;
2495 omap_clkdsp_idlect1_update(s
, s
->clkm
.dsp_idlect1
^ 0x0040, 0x0040);
2496 s
->clkm
.dsp_idlect1
= 0x0040;
2497 omap_clkdsp_idlect2_update(s
, ~0, 0x0000);
2498 s
->clkm
.dsp_idlect2
= 0x0000;
2499 s
->clkm
.dsp_rstct2
= 0x0000;
2502 static void omap_clkm_init(target_phys_addr_t mpu_base
,
2503 target_phys_addr_t dsp_base
, struct omap_mpu_state_s
*s
)
2505 int iomemtype
[2] = {
2506 cpu_register_io_memory(omap_clkm_readfn
, omap_clkm_writefn
, s
),
2507 cpu_register_io_memory(omap_clkdsp_readfn
, omap_clkdsp_writefn
, s
),
2510 s
->clkm
.arm_idlect1
= 0x03ff;
2511 s
->clkm
.arm_idlect2
= 0x0100;
2512 s
->clkm
.dsp_idlect1
= 0x0002;
2514 s
->clkm
.cold_start
= 0x3a;
2516 cpu_register_physical_memory(mpu_base
, 0x100, iomemtype
[0]);
2517 cpu_register_physical_memory(dsp_base
, 0x1000, iomemtype
[1]);
2521 struct omap_mpuio_s
{
2525 qemu_irq handler
[16];
2546 static void omap_mpuio_set(void *opaque
, int line
, int level
)
2548 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2549 uint16_t prev
= s
->inputs
;
2552 s
->inputs
|= 1 << line
;
2554 s
->inputs
&= ~(1 << line
);
2556 if (((1 << line
) & s
->dir
& ~s
->mask
) && s
->clk
) {
2557 if ((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) {
2558 s
->ints
|= 1 << line
;
2559 qemu_irq_raise(s
->irq
);
2562 if ((s
->event
& (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2563 (s
->event
>> 1) == line
) /* PIN_SELECT */
2564 s
->latch
= s
->inputs
;
2568 static void omap_mpuio_kbd_update(struct omap_mpuio_s
*s
)
2571 uint8_t *row
, rows
= 0, cols
= ~s
->cols
;
2573 for (row
= s
->buttons
+ 4, i
= 1 << 4; i
; row
--, i
>>= 1)
2577 qemu_set_irq(s
->kbd_irq
, rows
&& !s
->kbd_mask
&& s
->clk
);
2578 s
->row_latch
= ~rows
;
2581 static uint32_t omap_mpuio_read(void *opaque
, target_phys_addr_t addr
)
2583 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2584 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2588 case 0x00: /* INPUT_LATCH */
2591 case 0x04: /* OUTPUT_REG */
2594 case 0x08: /* IO_CNTL */
2597 case 0x10: /* KBR_LATCH */
2598 return s
->row_latch
;
2600 case 0x14: /* KBC_REG */
2603 case 0x18: /* GPIO_EVENT_MODE_REG */
2606 case 0x1c: /* GPIO_INT_EDGE_REG */
2609 case 0x20: /* KBD_INT */
2610 return (~s
->row_latch
& 0x1f) && !s
->kbd_mask
;
2612 case 0x24: /* GPIO_INT */
2616 qemu_irq_lower(s
->irq
);
2619 case 0x28: /* KBD_MASKIT */
2622 case 0x2c: /* GPIO_MASKIT */
2625 case 0x30: /* GPIO_DEBOUNCING_REG */
2628 case 0x34: /* GPIO_LATCH_REG */
2636 static void omap_mpuio_write(void *opaque
, target_phys_addr_t addr
,
2639 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2640 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2645 case 0x04: /* OUTPUT_REG */
2646 diff
= (s
->outputs
^ value
) & ~s
->dir
;
2648 while ((ln
= ffs(diff
))) {
2651 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2656 case 0x08: /* IO_CNTL */
2657 diff
= s
->outputs
& (s
->dir
^ value
);
2660 value
= s
->outputs
& ~s
->dir
;
2661 while ((ln
= ffs(diff
))) {
2664 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2669 case 0x14: /* KBC_REG */
2671 omap_mpuio_kbd_update(s
);
2674 case 0x18: /* GPIO_EVENT_MODE_REG */
2675 s
->event
= value
& 0x1f;
2678 case 0x1c: /* GPIO_INT_EDGE_REG */
2682 case 0x28: /* KBD_MASKIT */
2683 s
->kbd_mask
= value
& 1;
2684 omap_mpuio_kbd_update(s
);
2687 case 0x2c: /* GPIO_MASKIT */
2691 case 0x30: /* GPIO_DEBOUNCING_REG */
2692 s
->debounce
= value
& 0x1ff;
2695 case 0x00: /* INPUT_LATCH */
2696 case 0x10: /* KBR_LATCH */
2697 case 0x20: /* KBD_INT */
2698 case 0x24: /* GPIO_INT */
2699 case 0x34: /* GPIO_LATCH_REG */
2709 static CPUReadMemoryFunc
*omap_mpuio_readfn
[] = {
2710 omap_badwidth_read16
,
2712 omap_badwidth_read16
,
2715 static CPUWriteMemoryFunc
*omap_mpuio_writefn
[] = {
2716 omap_badwidth_write16
,
2718 omap_badwidth_write16
,
2721 static void omap_mpuio_reset(struct omap_mpuio_s
*s
)
2733 s
->row_latch
= 0x1f;
2737 static void omap_mpuio_onoff(void *opaque
, int line
, int on
)
2739 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2743 omap_mpuio_kbd_update(s
);
2746 struct omap_mpuio_s
*omap_mpuio_init(target_phys_addr_t base
,
2747 qemu_irq kbd_int
, qemu_irq gpio_int
, qemu_irq wakeup
,
2751 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*)
2752 qemu_mallocz(sizeof(struct omap_mpuio_s
));
2755 s
->kbd_irq
= kbd_int
;
2757 s
->in
= qemu_allocate_irqs(omap_mpuio_set
, s
, 16);
2758 omap_mpuio_reset(s
);
2760 iomemtype
= cpu_register_io_memory(omap_mpuio_readfn
,
2761 omap_mpuio_writefn
, s
);
2762 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2764 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_mpuio_onoff
, s
, 1)[0]);
2769 qemu_irq
*omap_mpuio_in_get(struct omap_mpuio_s
*s
)
2774 void omap_mpuio_out_set(struct omap_mpuio_s
*s
, int line
, qemu_irq handler
)
2776 if (line
>= 16 || line
< 0)
2777 hw_error("%s: No GPIO line %i\n", __FUNCTION__
, line
);
2778 s
->handler
[line
] = handler
;
2781 void omap_mpuio_key(struct omap_mpuio_s
*s
, int row
, int col
, int down
)
2783 if (row
>= 5 || row
< 0)
2784 hw_error("%s: No key %i-%i\n", __FUNCTION__
, col
, row
);
2787 s
->buttons
[row
] |= 1 << col
;
2789 s
->buttons
[row
] &= ~(1 << col
);
2791 omap_mpuio_kbd_update(s
);
2794 /* General-Purpose I/O */
2795 struct omap_gpio_s
{
2798 qemu_irq handler
[16];
2809 static void omap_gpio_set(void *opaque
, int line
, int level
)
2811 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2812 uint16_t prev
= s
->inputs
;
2815 s
->inputs
|= 1 << line
;
2817 s
->inputs
&= ~(1 << line
);
2819 if (((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) &
2820 (1 << line
) & s
->dir
& ~s
->mask
) {
2821 s
->ints
|= 1 << line
;
2822 qemu_irq_raise(s
->irq
);
2826 static uint32_t omap_gpio_read(void *opaque
, target_phys_addr_t addr
)
2828 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2829 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2832 case 0x00: /* DATA_INPUT */
2833 return s
->inputs
& s
->pins
;
2835 case 0x04: /* DATA_OUTPUT */
2838 case 0x08: /* DIRECTION_CONTROL */
2841 case 0x0c: /* INTERRUPT_CONTROL */
2844 case 0x10: /* INTERRUPT_MASK */
2847 case 0x14: /* INTERRUPT_STATUS */
2850 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2859 static void omap_gpio_write(void *opaque
, target_phys_addr_t addr
,
2862 struct omap_gpio_s
*s
= (struct omap_gpio_s
*) opaque
;
2863 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2868 case 0x00: /* DATA_INPUT */
2872 case 0x04: /* DATA_OUTPUT */
2873 diff
= (s
->outputs
^ value
) & ~s
->dir
;
2875 while ((ln
= ffs(diff
))) {
2878 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2883 case 0x08: /* DIRECTION_CONTROL */
2884 diff
= s
->outputs
& (s
->dir
^ value
);
2887 value
= s
->outputs
& ~s
->dir
;
2888 while ((ln
= ffs(diff
))) {
2891 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
2896 case 0x0c: /* INTERRUPT_CONTROL */
2900 case 0x10: /* INTERRUPT_MASK */
2904 case 0x14: /* INTERRUPT_STATUS */
2907 qemu_irq_lower(s
->irq
);
2910 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2921 /* *Some* sources say the memory region is 32-bit. */
2922 static CPUReadMemoryFunc
*omap_gpio_readfn
[] = {
2923 omap_badwidth_read16
,
2925 omap_badwidth_read16
,
2928 static CPUWriteMemoryFunc
*omap_gpio_writefn
[] = {
2929 omap_badwidth_write16
,
2931 omap_badwidth_write16
,
2934 static void omap_gpio_reset(struct omap_gpio_s
*s
)
2945 struct omap_gpio_s
*omap_gpio_init(target_phys_addr_t base
,
2946 qemu_irq irq
, omap_clk clk
)
2949 struct omap_gpio_s
*s
= (struct omap_gpio_s
*)
2950 qemu_mallocz(sizeof(struct omap_gpio_s
));
2953 s
->in
= qemu_allocate_irqs(omap_gpio_set
, s
, 16);
2956 iomemtype
= cpu_register_io_memory(omap_gpio_readfn
,
2957 omap_gpio_writefn
, s
);
2958 cpu_register_physical_memory(base
, 0x1000, iomemtype
);
2963 qemu_irq
*omap_gpio_in_get(struct omap_gpio_s
*s
)
2968 void omap_gpio_out_set(struct omap_gpio_s
*s
, int line
, qemu_irq handler
)
2970 if (line
>= 16 || line
< 0)
2971 hw_error("%s: No GPIO line %i\n", __FUNCTION__
, line
);
2972 s
->handler
[line
] = handler
;
2975 /* MicroWire Interface */
2976 struct omap_uwire_s
{
2986 uWireSlave
*chip
[4];
2989 static void omap_uwire_transfer_start(struct omap_uwire_s
*s
)
2991 int chipselect
= (s
->control
>> 10) & 3; /* INDEX */
2992 uWireSlave
*slave
= s
->chip
[chipselect
];
2994 if ((s
->control
>> 5) & 0x1f) { /* NB_BITS_WR */
2995 if (s
->control
& (1 << 12)) /* CS_CMD */
2996 if (slave
&& slave
->send
)
2997 slave
->send(slave
->opaque
,
2998 s
->txbuf
>> (16 - ((s
->control
>> 5) & 0x1f)));
2999 s
->control
&= ~(1 << 14); /* CSRB */
3000 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3001 * a DRQ. When is the level IRQ supposed to be reset? */
3004 if ((s
->control
>> 0) & 0x1f) { /* NB_BITS_RD */
3005 if (s
->control
& (1 << 12)) /* CS_CMD */
3006 if (slave
&& slave
->receive
)
3007 s
->rxbuf
= slave
->receive(slave
->opaque
);
3008 s
->control
|= 1 << 15; /* RDRB */
3009 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3010 * a DRQ. When is the level IRQ supposed to be reset? */
3014 static uint32_t omap_uwire_read(void *opaque
, target_phys_addr_t addr
)
3016 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
3017 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3020 case 0x00: /* RDR */
3021 s
->control
&= ~(1 << 15); /* RDRB */
3024 case 0x04: /* CSR */
3027 case 0x08: /* SR1 */
3029 case 0x0c: /* SR2 */
3031 case 0x10: /* SR3 */
3033 case 0x14: /* SR4 */
3035 case 0x18: /* SR5 */
3043 static void omap_uwire_write(void *opaque
, target_phys_addr_t addr
,
3046 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
3047 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3050 case 0x00: /* TDR */
3051 s
->txbuf
= value
; /* TD */
3052 if ((s
->setup
[4] & (1 << 2)) && /* AUTO_TX_EN */
3053 ((s
->setup
[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3054 (s
->control
& (1 << 12)))) { /* CS_CMD */
3055 s
->control
|= 1 << 14; /* CSRB */
3056 omap_uwire_transfer_start(s
);
3060 case 0x04: /* CSR */
3061 s
->control
= value
& 0x1fff;
3062 if (value
& (1 << 13)) /* START */
3063 omap_uwire_transfer_start(s
);
3066 case 0x08: /* SR1 */
3067 s
->setup
[0] = value
& 0x003f;
3070 case 0x0c: /* SR2 */
3071 s
->setup
[1] = value
& 0x0fc0;
3074 case 0x10: /* SR3 */
3075 s
->setup
[2] = value
& 0x0003;
3078 case 0x14: /* SR4 */
3079 s
->setup
[3] = value
& 0x0001;
3082 case 0x18: /* SR5 */
3083 s
->setup
[4] = value
& 0x000f;
3092 static CPUReadMemoryFunc
*omap_uwire_readfn
[] = {
3093 omap_badwidth_read16
,
3095 omap_badwidth_read16
,
3098 static CPUWriteMemoryFunc
*omap_uwire_writefn
[] = {
3099 omap_badwidth_write16
,
3101 omap_badwidth_write16
,
3104 static void omap_uwire_reset(struct omap_uwire_s
*s
)
3114 struct omap_uwire_s
*omap_uwire_init(target_phys_addr_t base
,
3115 qemu_irq
*irq
, qemu_irq dma
, omap_clk clk
)
3118 struct omap_uwire_s
*s
= (struct omap_uwire_s
*)
3119 qemu_mallocz(sizeof(struct omap_uwire_s
));
3124 omap_uwire_reset(s
);
3126 iomemtype
= cpu_register_io_memory(omap_uwire_readfn
,
3127 omap_uwire_writefn
, s
);
3128 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3133 void omap_uwire_attach(struct omap_uwire_s
*s
,
3134 uWireSlave
*slave
, int chipselect
)
3136 if (chipselect
< 0 || chipselect
> 3) {
3137 fprintf(stderr
, "%s: Bad chipselect %i\n", __FUNCTION__
, chipselect
);
3141 s
->chip
[chipselect
] = slave
;
3144 /* Pseudonoise Pulse-Width Light Modulator */
3145 static void omap_pwl_update(struct omap_mpu_state_s
*s
)
3147 int output
= (s
->pwl
.clk
&& s
->pwl
.enable
) ? s
->pwl
.level
: 0;
3149 if (output
!= s
->pwl
.output
) {
3150 s
->pwl
.output
= output
;
3151 printf("%s: Backlight now at %i/256\n", __FUNCTION__
, output
);
3155 static uint32_t omap_pwl_read(void *opaque
, target_phys_addr_t addr
)
3157 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3158 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3161 case 0x00: /* PWL_LEVEL */
3162 return s
->pwl
.level
;
3163 case 0x04: /* PWL_CTRL */
3164 return s
->pwl
.enable
;
3170 static void omap_pwl_write(void *opaque
, target_phys_addr_t addr
,
3173 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3174 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3177 case 0x00: /* PWL_LEVEL */
3178 s
->pwl
.level
= value
;
3181 case 0x04: /* PWL_CTRL */
3182 s
->pwl
.enable
= value
& 1;
3191 static CPUReadMemoryFunc
*omap_pwl_readfn
[] = {
3193 omap_badwidth_read8
,
3194 omap_badwidth_read8
,
3197 static CPUWriteMemoryFunc
*omap_pwl_writefn
[] = {
3199 omap_badwidth_write8
,
3200 omap_badwidth_write8
,
3203 static void omap_pwl_reset(struct omap_mpu_state_s
*s
)
3212 static void omap_pwl_clk_update(void *opaque
, int line
, int on
)
3214 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3220 static void omap_pwl_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
3227 iomemtype
= cpu_register_io_memory(omap_pwl_readfn
,
3228 omap_pwl_writefn
, s
);
3229 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3231 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_pwl_clk_update
, s
, 1)[0]);
3234 /* Pulse-Width Tone module */
3235 static uint32_t omap_pwt_read(void *opaque
, target_phys_addr_t addr
)
3237 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3238 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3241 case 0x00: /* FRC */
3243 case 0x04: /* VCR */
3245 case 0x08: /* GCR */
3252 static void omap_pwt_write(void *opaque
, target_phys_addr_t addr
,
3255 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
3256 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3259 case 0x00: /* FRC */
3260 s
->pwt
.frc
= value
& 0x3f;
3262 case 0x04: /* VRC */
3263 if ((value
^ s
->pwt
.vrc
) & 1) {
3265 printf("%s: %iHz buzz on\n", __FUNCTION__
, (int)
3266 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3267 ((omap_clk_getrate(s
->pwt
.clk
) >> 3) /
3268 /* Pre-multiplexer divider */
3269 ((s
->pwt
.gcr
& 2) ? 1 : 154) /
3270 /* Octave multiplexer */
3271 (2 << (value
& 3)) *
3272 /* 101/107 divider */
3273 ((value
& (1 << 2)) ? 101 : 107) *
3275 ((value
& (1 << 3)) ? 49 : 55) *
3277 ((value
& (1 << 4)) ? 50 : 63) *
3278 /* 80/127 divider */
3279 ((value
& (1 << 5)) ? 80 : 127) /
3280 (107 * 55 * 63 * 127)));
3282 printf("%s: silence!\n", __FUNCTION__
);
3284 s
->pwt
.vrc
= value
& 0x7f;
3286 case 0x08: /* GCR */
3287 s
->pwt
.gcr
= value
& 3;
3295 static CPUReadMemoryFunc
*omap_pwt_readfn
[] = {
3297 omap_badwidth_read8
,
3298 omap_badwidth_read8
,
3301 static CPUWriteMemoryFunc
*omap_pwt_writefn
[] = {
3303 omap_badwidth_write8
,
3304 omap_badwidth_write8
,
3307 static void omap_pwt_reset(struct omap_mpu_state_s
*s
)
3314 static void omap_pwt_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
3322 iomemtype
= cpu_register_io_memory(omap_pwt_readfn
,
3323 omap_pwt_writefn
, s
);
3324 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3327 /* Real-time Clock module */
3343 struct tm current_tm
;
3348 static void omap_rtc_interrupts_update(struct omap_rtc_s
*s
)
3350 /* s->alarm is level-triggered */
3351 qemu_set_irq(s
->alarm
, (s
->status
>> 6) & 1);
3354 static void omap_rtc_alarm_update(struct omap_rtc_s
*s
)
3356 s
->alarm_ti
= mktimegm(&s
->alarm_tm
);
3357 if (s
->alarm_ti
== -1)
3358 printf("%s: conversion failed\n", __FUNCTION__
);
3361 static inline uint8_t omap_rtc_bcd(int num
)
3363 return ((num
/ 10) << 4) | (num
% 10);
3366 static inline int omap_rtc_bin(uint8_t num
)
3368 return (num
& 15) + 10 * (num
>> 4);
3371 static uint32_t omap_rtc_read(void *opaque
, target_phys_addr_t addr
)
3373 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
3374 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3378 case 0x00: /* SECONDS_REG */
3379 return omap_rtc_bcd(s
->current_tm
.tm_sec
);
3381 case 0x04: /* MINUTES_REG */
3382 return omap_rtc_bcd(s
->current_tm
.tm_min
);
3384 case 0x08: /* HOURS_REG */
3386 return ((s
->current_tm
.tm_hour
> 11) << 7) |
3387 omap_rtc_bcd(((s
->current_tm
.tm_hour
- 1) % 12) + 1);
3389 return omap_rtc_bcd(s
->current_tm
.tm_hour
);
3391 case 0x0c: /* DAYS_REG */
3392 return omap_rtc_bcd(s
->current_tm
.tm_mday
);
3394 case 0x10: /* MONTHS_REG */
3395 return omap_rtc_bcd(s
->current_tm
.tm_mon
+ 1);
3397 case 0x14: /* YEARS_REG */
3398 return omap_rtc_bcd(s
->current_tm
.tm_year
% 100);
3400 case 0x18: /* WEEK_REG */
3401 return s
->current_tm
.tm_wday
;
3403 case 0x20: /* ALARM_SECONDS_REG */
3404 return omap_rtc_bcd(s
->alarm_tm
.tm_sec
);
3406 case 0x24: /* ALARM_MINUTES_REG */
3407 return omap_rtc_bcd(s
->alarm_tm
.tm_min
);
3409 case 0x28: /* ALARM_HOURS_REG */
3411 return ((s
->alarm_tm
.tm_hour
> 11) << 7) |
3412 omap_rtc_bcd(((s
->alarm_tm
.tm_hour
- 1) % 12) + 1);
3414 return omap_rtc_bcd(s
->alarm_tm
.tm_hour
);
3416 case 0x2c: /* ALARM_DAYS_REG */
3417 return omap_rtc_bcd(s
->alarm_tm
.tm_mday
);
3419 case 0x30: /* ALARM_MONTHS_REG */
3420 return omap_rtc_bcd(s
->alarm_tm
.tm_mon
+ 1);
3422 case 0x34: /* ALARM_YEARS_REG */
3423 return omap_rtc_bcd(s
->alarm_tm
.tm_year
% 100);
3425 case 0x40: /* RTC_CTRL_REG */
3426 return (s
->pm_am
<< 3) | (s
->auto_comp
<< 2) |
3427 (s
->round
<< 1) | s
->running
;
3429 case 0x44: /* RTC_STATUS_REG */
3434 case 0x48: /* RTC_INTERRUPTS_REG */
3435 return s
->interrupts
;
3437 case 0x4c: /* RTC_COMP_LSB_REG */
3438 return ((uint16_t) s
->comp_reg
) & 0xff;
3440 case 0x50: /* RTC_COMP_MSB_REG */
3441 return ((uint16_t) s
->comp_reg
) >> 8;
3448 static void omap_rtc_write(void *opaque
, target_phys_addr_t addr
,
3451 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
3452 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3457 case 0x00: /* SECONDS_REG */
3459 printf("RTC SEC_REG <-- %02x\n", value
);
3461 s
->ti
-= s
->current_tm
.tm_sec
;
3462 s
->ti
+= omap_rtc_bin(value
);
3465 case 0x04: /* MINUTES_REG */
3467 printf("RTC MIN_REG <-- %02x\n", value
);
3469 s
->ti
-= s
->current_tm
.tm_min
* 60;
3470 s
->ti
+= omap_rtc_bin(value
) * 60;
3473 case 0x08: /* HOURS_REG */
3475 printf("RTC HRS_REG <-- %02x\n", value
);
3477 s
->ti
-= s
->current_tm
.tm_hour
* 3600;
3479 s
->ti
+= (omap_rtc_bin(value
& 0x3f) & 12) * 3600;
3480 s
->ti
+= ((value
>> 7) & 1) * 43200;
3482 s
->ti
+= omap_rtc_bin(value
& 0x3f) * 3600;
3485 case 0x0c: /* DAYS_REG */
3487 printf("RTC DAY_REG <-- %02x\n", value
);
3489 s
->ti
-= s
->current_tm
.tm_mday
* 86400;
3490 s
->ti
+= omap_rtc_bin(value
) * 86400;
3493 case 0x10: /* MONTHS_REG */
3495 printf("RTC MTH_REG <-- %02x\n", value
);
3497 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
3498 new_tm
.tm_mon
= omap_rtc_bin(value
);
3499 ti
[0] = mktimegm(&s
->current_tm
);
3500 ti
[1] = mktimegm(&new_tm
);
3502 if (ti
[0] != -1 && ti
[1] != -1) {
3506 /* A less accurate version */
3507 s
->ti
-= s
->current_tm
.tm_mon
* 2592000;
3508 s
->ti
+= omap_rtc_bin(value
) * 2592000;
3512 case 0x14: /* YEARS_REG */
3514 printf("RTC YRS_REG <-- %02x\n", value
);
3516 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
3517 new_tm
.tm_year
+= omap_rtc_bin(value
) - (new_tm
.tm_year
% 100);
3518 ti
[0] = mktimegm(&s
->current_tm
);
3519 ti
[1] = mktimegm(&new_tm
);
3521 if (ti
[0] != -1 && ti
[1] != -1) {
3525 /* A less accurate version */
3526 s
->ti
-= (s
->current_tm
.tm_year
% 100) * 31536000;
3527 s
->ti
+= omap_rtc_bin(value
) * 31536000;
3531 case 0x18: /* WEEK_REG */
3532 return; /* Ignored */
3534 case 0x20: /* ALARM_SECONDS_REG */
3536 printf("ALM SEC_REG <-- %02x\n", value
);
3538 s
->alarm_tm
.tm_sec
= omap_rtc_bin(value
);
3539 omap_rtc_alarm_update(s
);
3542 case 0x24: /* ALARM_MINUTES_REG */
3544 printf("ALM MIN_REG <-- %02x\n", value
);
3546 s
->alarm_tm
.tm_min
= omap_rtc_bin(value
);
3547 omap_rtc_alarm_update(s
);
3550 case 0x28: /* ALARM_HOURS_REG */
3552 printf("ALM HRS_REG <-- %02x\n", value
);
3555 s
->alarm_tm
.tm_hour
=
3556 ((omap_rtc_bin(value
& 0x3f)) % 12) +
3557 ((value
>> 7) & 1) * 12;
3559 s
->alarm_tm
.tm_hour
= omap_rtc_bin(value
);
3560 omap_rtc_alarm_update(s
);
3563 case 0x2c: /* ALARM_DAYS_REG */
3565 printf("ALM DAY_REG <-- %02x\n", value
);
3567 s
->alarm_tm
.tm_mday
= omap_rtc_bin(value
);
3568 omap_rtc_alarm_update(s
);
3571 case 0x30: /* ALARM_MONTHS_REG */
3573 printf("ALM MON_REG <-- %02x\n", value
);
3575 s
->alarm_tm
.tm_mon
= omap_rtc_bin(value
);
3576 omap_rtc_alarm_update(s
);
3579 case 0x34: /* ALARM_YEARS_REG */
3581 printf("ALM YRS_REG <-- %02x\n", value
);
3583 s
->alarm_tm
.tm_year
= omap_rtc_bin(value
);
3584 omap_rtc_alarm_update(s
);
3587 case 0x40: /* RTC_CTRL_REG */
3589 printf("RTC CONTROL <-- %02x\n", value
);
3591 s
->pm_am
= (value
>> 3) & 1;
3592 s
->auto_comp
= (value
>> 2) & 1;
3593 s
->round
= (value
>> 1) & 1;
3594 s
->running
= value
& 1;
3596 s
->status
|= s
->running
<< 1;
3599 case 0x44: /* RTC_STATUS_REG */
3601 printf("RTC STATUSL <-- %02x\n", value
);
3603 s
->status
&= ~((value
& 0xc0) ^ 0x80);
3604 omap_rtc_interrupts_update(s
);
3607 case 0x48: /* RTC_INTERRUPTS_REG */
3609 printf("RTC INTRS <-- %02x\n", value
);
3611 s
->interrupts
= value
;
3614 case 0x4c: /* RTC_COMP_LSB_REG */
3616 printf("RTC COMPLSB <-- %02x\n", value
);
3618 s
->comp_reg
&= 0xff00;
3619 s
->comp_reg
|= 0x00ff & value
;
3622 case 0x50: /* RTC_COMP_MSB_REG */
3624 printf("RTC COMPMSB <-- %02x\n", value
);
3626 s
->comp_reg
&= 0x00ff;
3627 s
->comp_reg
|= 0xff00 & (value
<< 8);
3636 static CPUReadMemoryFunc
*omap_rtc_readfn
[] = {
3638 omap_badwidth_read8
,
3639 omap_badwidth_read8
,
3642 static CPUWriteMemoryFunc
*omap_rtc_writefn
[] = {
3644 omap_badwidth_write8
,
3645 omap_badwidth_write8
,
3648 static void omap_rtc_tick(void *opaque
)
3650 struct omap_rtc_s
*s
= opaque
;
3653 /* Round to nearest full minute. */
3654 if (s
->current_tm
.tm_sec
< 30)
3655 s
->ti
-= s
->current_tm
.tm_sec
;
3657 s
->ti
+= 60 - s
->current_tm
.tm_sec
;
3662 memcpy(&s
->current_tm
, localtime(&s
->ti
), sizeof(s
->current_tm
));
3664 if ((s
->interrupts
& 0x08) && s
->ti
== s
->alarm_ti
) {
3666 omap_rtc_interrupts_update(s
);
3669 if (s
->interrupts
& 0x04)
3670 switch (s
->interrupts
& 3) {
3673 qemu_irq_pulse(s
->irq
);
3676 if (s
->current_tm
.tm_sec
)
3679 qemu_irq_pulse(s
->irq
);
3682 if (s
->current_tm
.tm_sec
|| s
->current_tm
.tm_min
)
3685 qemu_irq_pulse(s
->irq
);
3688 if (s
->current_tm
.tm_sec
||
3689 s
->current_tm
.tm_min
|| s
->current_tm
.tm_hour
)
3692 qemu_irq_pulse(s
->irq
);
3702 * Every full hour add a rough approximation of the compensation
3703 * register to the 32kHz Timer (which drives the RTC) value.
3705 if (s
->auto_comp
&& !s
->current_tm
.tm_sec
&& !s
->current_tm
.tm_min
)
3706 s
->tick
+= s
->comp_reg
* 1000 / 32768;
3708 qemu_mod_timer(s
->clk
, s
->tick
);
3711 static void omap_rtc_reset(struct omap_rtc_s
*s
)
3721 s
->tick
= qemu_get_clock(rt_clock
);
3722 memset(&s
->alarm_tm
, 0, sizeof(s
->alarm_tm
));
3723 s
->alarm_tm
.tm_mday
= 0x01;
3725 qemu_get_timedate(&tm
, 0);
3726 s
->ti
= mktimegm(&tm
);
3728 omap_rtc_alarm_update(s
);
3732 struct omap_rtc_s
*omap_rtc_init(target_phys_addr_t base
,
3733 qemu_irq
*irq
, omap_clk clk
)
3736 struct omap_rtc_s
*s
= (struct omap_rtc_s
*)
3737 qemu_mallocz(sizeof(struct omap_rtc_s
));
3741 s
->clk
= qemu_new_timer(rt_clock
, omap_rtc_tick
, s
);
3745 iomemtype
= cpu_register_io_memory(omap_rtc_readfn
,
3746 omap_rtc_writefn
, s
);
3747 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3752 /* Multi-channel Buffered Serial Port interfaces */
3753 struct omap_mcbsp_s
{
3773 QEMUTimer
*source_timer
;
3774 QEMUTimer
*sink_timer
;
3777 static void omap_mcbsp_intr_update(struct omap_mcbsp_s
*s
)
3781 switch ((s
->spcr
[0] >> 4) & 3) { /* RINTM */
3783 irq
= (s
->spcr
[0] >> 1) & 1; /* RRDY */
3786 irq
= (s
->spcr
[0] >> 3) & 1; /* RSYNCERR */
3794 qemu_irq_pulse(s
->rxirq
);
3796 switch ((s
->spcr
[1] >> 4) & 3) { /* XINTM */
3798 irq
= (s
->spcr
[1] >> 1) & 1; /* XRDY */
3801 irq
= (s
->spcr
[1] >> 3) & 1; /* XSYNCERR */
3809 qemu_irq_pulse(s
->txirq
);
3812 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s
*s
)
3814 if ((s
->spcr
[0] >> 1) & 1) /* RRDY */
3815 s
->spcr
[0] |= 1 << 2; /* RFULL */
3816 s
->spcr
[0] |= 1 << 1; /* RRDY */
3817 qemu_irq_raise(s
->rxdrq
);
3818 omap_mcbsp_intr_update(s
);
3821 static void omap_mcbsp_source_tick(void *opaque
)
3823 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3824 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3829 printf("%s: Rx FIFO overrun\n", __FUNCTION__
);
3831 s
->rx_req
= s
->rx_rate
<< bps
[(s
->rcr
[0] >> 5) & 7];
3833 omap_mcbsp_rx_newdata(s
);
3834 qemu_mod_timer(s
->source_timer
, qemu_get_clock(vm_clock
) + ticks_per_sec
);
3837 static void omap_mcbsp_rx_start(struct omap_mcbsp_s
*s
)
3839 if (!s
->codec
|| !s
->codec
->rts
)
3840 omap_mcbsp_source_tick(s
);
3841 else if (s
->codec
->in
.len
) {
3842 s
->rx_req
= s
->codec
->in
.len
;
3843 omap_mcbsp_rx_newdata(s
);
3847 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s
*s
)
3849 qemu_del_timer(s
->source_timer
);
3852 static void omap_mcbsp_rx_done(struct omap_mcbsp_s
*s
)
3854 s
->spcr
[0] &= ~(1 << 1); /* RRDY */
3855 qemu_irq_lower(s
->rxdrq
);
3856 omap_mcbsp_intr_update(s
);
3859 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s
*s
)
3861 s
->spcr
[1] |= 1 << 1; /* XRDY */
3862 qemu_irq_raise(s
->txdrq
);
3863 omap_mcbsp_intr_update(s
);
3866 static void omap_mcbsp_sink_tick(void *opaque
)
3868 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3869 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3874 printf("%s: Tx FIFO underrun\n", __FUNCTION__
);
3876 s
->tx_req
= s
->tx_rate
<< bps
[(s
->xcr
[0] >> 5) & 7];
3878 omap_mcbsp_tx_newdata(s
);
3879 qemu_mod_timer(s
->sink_timer
, qemu_get_clock(vm_clock
) + ticks_per_sec
);
3882 static void omap_mcbsp_tx_start(struct omap_mcbsp_s
*s
)
3884 if (!s
->codec
|| !s
->codec
->cts
)
3885 omap_mcbsp_sink_tick(s
);
3886 else if (s
->codec
->out
.size
) {
3887 s
->tx_req
= s
->codec
->out
.size
;
3888 omap_mcbsp_tx_newdata(s
);
3892 static void omap_mcbsp_tx_done(struct omap_mcbsp_s
*s
)
3894 s
->spcr
[1] &= ~(1 << 1); /* XRDY */
3895 qemu_irq_lower(s
->txdrq
);
3896 omap_mcbsp_intr_update(s
);
3897 if (s
->codec
&& s
->codec
->cts
)
3898 s
->codec
->tx_swallow(s
->codec
->opaque
);
3901 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s
*s
)
3904 omap_mcbsp_tx_done(s
);
3905 qemu_del_timer(s
->sink_timer
);
3908 static void omap_mcbsp_req_update(struct omap_mcbsp_s
*s
)
3910 int prev_rx_rate
, prev_tx_rate
;
3911 int rx_rate
= 0, tx_rate
= 0;
3912 int cpu_rate
= 1500000; /* XXX */
3914 /* TODO: check CLKSTP bit */
3915 if (s
->spcr
[1] & (1 << 6)) { /* GRST */
3916 if (s
->spcr
[0] & (1 << 0)) { /* RRST */
3917 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3918 (s
->pcr
& (1 << 8))) { /* CLKRM */
3919 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3920 rx_rate
= cpu_rate
/
3921 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3924 rx_rate
= s
->codec
->rx_rate
;
3927 if (s
->spcr
[1] & (1 << 0)) { /* XRST */
3928 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3929 (s
->pcr
& (1 << 9))) { /* CLKXM */
3930 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3931 tx_rate
= cpu_rate
/
3932 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3935 tx_rate
= s
->codec
->tx_rate
;
3938 prev_tx_rate
= s
->tx_rate
;
3939 prev_rx_rate
= s
->rx_rate
;
3940 s
->tx_rate
= tx_rate
;
3941 s
->rx_rate
= rx_rate
;
3944 s
->codec
->set_rate(s
->codec
->opaque
, rx_rate
, tx_rate
);
3946 if (!prev_tx_rate
&& tx_rate
)
3947 omap_mcbsp_tx_start(s
);
3948 else if (s
->tx_rate
&& !tx_rate
)
3949 omap_mcbsp_tx_stop(s
);
3951 if (!prev_rx_rate
&& rx_rate
)
3952 omap_mcbsp_rx_start(s
);
3953 else if (prev_tx_rate
&& !tx_rate
)
3954 omap_mcbsp_rx_stop(s
);
3957 static uint32_t omap_mcbsp_read(void *opaque
, target_phys_addr_t addr
)
3959 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3960 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3964 case 0x00: /* DRR2 */
3965 if (((s
->rcr
[0] >> 5) & 7) < 3) /* RWDLEN1 */
3968 case 0x02: /* DRR1 */
3969 if (s
->rx_req
< 2) {
3970 printf("%s: Rx FIFO underrun\n", __FUNCTION__
);
3971 omap_mcbsp_rx_done(s
);
3974 if (s
->codec
&& s
->codec
->in
.len
>= 2) {
3975 ret
= s
->codec
->in
.fifo
[s
->codec
->in
.start
++] << 8;
3976 ret
|= s
->codec
->in
.fifo
[s
->codec
->in
.start
++];
3977 s
->codec
->in
.len
-= 2;
3981 omap_mcbsp_rx_done(s
);
3986 case 0x04: /* DXR2 */
3987 case 0x06: /* DXR1 */
3990 case 0x08: /* SPCR2 */
3992 case 0x0a: /* SPCR1 */
3994 case 0x0c: /* RCR2 */
3996 case 0x0e: /* RCR1 */
3998 case 0x10: /* XCR2 */
4000 case 0x12: /* XCR1 */
4002 case 0x14: /* SRGR2 */
4004 case 0x16: /* SRGR1 */
4006 case 0x18: /* MCR2 */
4008 case 0x1a: /* MCR1 */
4010 case 0x1c: /* RCERA */
4012 case 0x1e: /* RCERB */
4014 case 0x20: /* XCERA */
4016 case 0x22: /* XCERB */
4018 case 0x24: /* PCR0 */
4020 case 0x26: /* RCERC */
4022 case 0x28: /* RCERD */
4024 case 0x2a: /* XCERC */
4026 case 0x2c: /* XCERD */
4028 case 0x2e: /* RCERE */
4030 case 0x30: /* RCERF */
4032 case 0x32: /* XCERE */
4034 case 0x34: /* XCERF */
4036 case 0x36: /* RCERG */
4038 case 0x38: /* RCERH */
4040 case 0x3a: /* XCERG */
4042 case 0x3c: /* XCERH */
4050 static void omap_mcbsp_writeh(void *opaque
, target_phys_addr_t addr
,
4053 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4054 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4057 case 0x00: /* DRR2 */
4058 case 0x02: /* DRR1 */
4062 case 0x04: /* DXR2 */
4063 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
4066 case 0x06: /* DXR1 */
4067 if (s
->tx_req
> 1) {
4069 if (s
->codec
&& s
->codec
->cts
) {
4070 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 8) & 0xff;
4071 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 0) & 0xff;
4074 omap_mcbsp_tx_done(s
);
4076 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
4079 case 0x08: /* SPCR2 */
4080 s
->spcr
[1] &= 0x0002;
4081 s
->spcr
[1] |= 0x03f9 & value
;
4082 s
->spcr
[1] |= 0x0004 & (value
<< 2); /* XEMPTY := XRST */
4083 if (~value
& 1) /* XRST */
4085 omap_mcbsp_req_update(s
);
4087 case 0x0a: /* SPCR1 */
4088 s
->spcr
[0] &= 0x0006;
4089 s
->spcr
[0] |= 0xf8f9 & value
;
4090 if (value
& (1 << 15)) /* DLB */
4091 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__
);
4092 if (~value
& 1) { /* RRST */
4095 omap_mcbsp_rx_done(s
);
4097 omap_mcbsp_req_update(s
);
4100 case 0x0c: /* RCR2 */
4101 s
->rcr
[1] = value
& 0xffff;
4103 case 0x0e: /* RCR1 */
4104 s
->rcr
[0] = value
& 0x7fe0;
4106 case 0x10: /* XCR2 */
4107 s
->xcr
[1] = value
& 0xffff;
4109 case 0x12: /* XCR1 */
4110 s
->xcr
[0] = value
& 0x7fe0;
4112 case 0x14: /* SRGR2 */
4113 s
->srgr
[1] = value
& 0xffff;
4114 omap_mcbsp_req_update(s
);
4116 case 0x16: /* SRGR1 */
4117 s
->srgr
[0] = value
& 0xffff;
4118 omap_mcbsp_req_update(s
);
4120 case 0x18: /* MCR2 */
4121 s
->mcr
[1] = value
& 0x03e3;
4122 if (value
& 3) /* XMCM */
4123 printf("%s: Tx channel selection mode enable attempt\n",
4126 case 0x1a: /* MCR1 */
4127 s
->mcr
[0] = value
& 0x03e1;
4128 if (value
& 1) /* RMCM */
4129 printf("%s: Rx channel selection mode enable attempt\n",
4132 case 0x1c: /* RCERA */
4133 s
->rcer
[0] = value
& 0xffff;
4135 case 0x1e: /* RCERB */
4136 s
->rcer
[1] = value
& 0xffff;
4138 case 0x20: /* XCERA */
4139 s
->xcer
[0] = value
& 0xffff;
4141 case 0x22: /* XCERB */
4142 s
->xcer
[1] = value
& 0xffff;
4144 case 0x24: /* PCR0 */
4145 s
->pcr
= value
& 0x7faf;
4147 case 0x26: /* RCERC */
4148 s
->rcer
[2] = value
& 0xffff;
4150 case 0x28: /* RCERD */
4151 s
->rcer
[3] = value
& 0xffff;
4153 case 0x2a: /* XCERC */
4154 s
->xcer
[2] = value
& 0xffff;
4156 case 0x2c: /* XCERD */
4157 s
->xcer
[3] = value
& 0xffff;
4159 case 0x2e: /* RCERE */
4160 s
->rcer
[4] = value
& 0xffff;
4162 case 0x30: /* RCERF */
4163 s
->rcer
[5] = value
& 0xffff;
4165 case 0x32: /* XCERE */
4166 s
->xcer
[4] = value
& 0xffff;
4168 case 0x34: /* XCERF */
4169 s
->xcer
[5] = value
& 0xffff;
4171 case 0x36: /* RCERG */
4172 s
->rcer
[6] = value
& 0xffff;
4174 case 0x38: /* RCERH */
4175 s
->rcer
[7] = value
& 0xffff;
4177 case 0x3a: /* XCERG */
4178 s
->xcer
[6] = value
& 0xffff;
4180 case 0x3c: /* XCERH */
4181 s
->xcer
[7] = value
& 0xffff;
4188 static void omap_mcbsp_writew(void *opaque
, target_phys_addr_t addr
,
4191 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4192 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4194 if (offset
== 0x04) { /* DXR */
4195 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
4197 if (s
->tx_req
> 3) {
4199 if (s
->codec
&& s
->codec
->cts
) {
4200 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4201 (value
>> 24) & 0xff;
4202 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4203 (value
>> 16) & 0xff;
4204 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4205 (value
>> 8) & 0xff;
4206 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
4207 (value
>> 0) & 0xff;
4210 omap_mcbsp_tx_done(s
);
4212 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
4216 omap_badwidth_write16(opaque
, addr
, value
);
4219 static CPUReadMemoryFunc
*omap_mcbsp_readfn
[] = {
4220 omap_badwidth_read16
,
4222 omap_badwidth_read16
,
4225 static CPUWriteMemoryFunc
*omap_mcbsp_writefn
[] = {
4226 omap_badwidth_write16
,
4231 static void omap_mcbsp_reset(struct omap_mcbsp_s
*s
)
4233 memset(&s
->spcr
, 0, sizeof(s
->spcr
));
4234 memset(&s
->rcr
, 0, sizeof(s
->rcr
));
4235 memset(&s
->xcr
, 0, sizeof(s
->xcr
));
4236 s
->srgr
[0] = 0x0001;
4237 s
->srgr
[1] = 0x2000;
4238 memset(&s
->mcr
, 0, sizeof(s
->mcr
));
4239 memset(&s
->pcr
, 0, sizeof(s
->pcr
));
4240 memset(&s
->rcer
, 0, sizeof(s
->rcer
));
4241 memset(&s
->xcer
, 0, sizeof(s
->xcer
));
4246 qemu_del_timer(s
->source_timer
);
4247 qemu_del_timer(s
->sink_timer
);
4250 struct omap_mcbsp_s
*omap_mcbsp_init(target_phys_addr_t base
,
4251 qemu_irq
*irq
, qemu_irq
*dma
, omap_clk clk
)
4254 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*)
4255 qemu_mallocz(sizeof(struct omap_mcbsp_s
));
4261 s
->sink_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_sink_tick
, s
);
4262 s
->source_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_source_tick
, s
);
4263 omap_mcbsp_reset(s
);
4265 iomemtype
= cpu_register_io_memory(omap_mcbsp_readfn
,
4266 omap_mcbsp_writefn
, s
);
4267 cpu_register_physical_memory(base
, 0x800, iomemtype
);
4272 static void omap_mcbsp_i2s_swallow(void *opaque
, int line
, int level
)
4274 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4277 s
->rx_req
= s
->codec
->in
.len
;
4278 omap_mcbsp_rx_newdata(s
);
4282 static void omap_mcbsp_i2s_start(void *opaque
, int line
, int level
)
4284 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
4287 s
->tx_req
= s
->codec
->out
.size
;
4288 omap_mcbsp_tx_newdata(s
);
4292 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s
*s
, I2SCodec
*slave
)
4295 slave
->rx_swallow
= qemu_allocate_irqs(omap_mcbsp_i2s_swallow
, s
, 1)[0];
4296 slave
->tx_start
= qemu_allocate_irqs(omap_mcbsp_i2s_start
, s
, 1)[0];
4299 /* LED Pulse Generators */
4311 static void omap_lpg_tick(void *opaque
)
4313 struct omap_lpg_s
*s
= opaque
;
4316 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->period
- s
->on
);
4318 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->on
);
4320 s
->cycle
= !s
->cycle
;
4321 printf("%s: LED is %s\n", __FUNCTION__
, s
->cycle
? "on" : "off");
4324 static void omap_lpg_update(struct omap_lpg_s
*s
)
4326 int64_t on
, period
= 1, ticks
= 1000;
4327 static const int per
[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4329 if (~s
->control
& (1 << 6)) /* LPGRES */
4331 else if (s
->control
& (1 << 7)) /* PERM_ON */
4334 period
= muldiv64(ticks
, per
[s
->control
& 7], /* PERCTRL */
4336 on
= (s
->clk
&& s
->power
) ? muldiv64(ticks
,
4337 per
[(s
->control
>> 3) & 7], 256) : 0; /* ONCTRL */
4340 qemu_del_timer(s
->tm
);
4341 if (on
== period
&& s
->on
< s
->period
)
4342 printf("%s: LED is on\n", __FUNCTION__
);
4343 else if (on
== 0 && s
->on
)
4344 printf("%s: LED is off\n", __FUNCTION__
);
4345 else if (on
&& (on
!= s
->on
|| period
!= s
->period
)) {
4357 static void omap_lpg_reset(struct omap_lpg_s
*s
)
4365 static uint32_t omap_lpg_read(void *opaque
, target_phys_addr_t addr
)
4367 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4368 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4371 case 0x00: /* LCR */
4374 case 0x04: /* PMR */
4382 static void omap_lpg_write(void *opaque
, target_phys_addr_t addr
,
4385 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4386 int offset
= addr
& OMAP_MPUI_REG_MASK
;
4389 case 0x00: /* LCR */
4390 if (~value
& (1 << 6)) /* LPGRES */
4392 s
->control
= value
& 0xff;
4396 case 0x04: /* PMR */
4397 s
->power
= value
& 0x01;
4407 static CPUReadMemoryFunc
*omap_lpg_readfn
[] = {
4409 omap_badwidth_read8
,
4410 omap_badwidth_read8
,
4413 static CPUWriteMemoryFunc
*omap_lpg_writefn
[] = {
4415 omap_badwidth_write8
,
4416 omap_badwidth_write8
,
4419 static void omap_lpg_clk_update(void *opaque
, int line
, int on
)
4421 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
4427 struct omap_lpg_s
*omap_lpg_init(target_phys_addr_t base
, omap_clk clk
)
4430 struct omap_lpg_s
*s
= (struct omap_lpg_s
*)
4431 qemu_mallocz(sizeof(struct omap_lpg_s
));
4433 s
->tm
= qemu_new_timer(rt_clock
, omap_lpg_tick
, s
);
4437 iomemtype
= cpu_register_io_memory(omap_lpg_readfn
,
4438 omap_lpg_writefn
, s
);
4439 cpu_register_physical_memory(base
, 0x800, iomemtype
);
4441 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_lpg_clk_update
, s
, 1)[0]);
4446 /* MPUI Peripheral Bridge configuration */
4447 static uint32_t omap_mpui_io_read(void *opaque
, target_phys_addr_t addr
)
4449 if (addr
== OMAP_MPUI_BASE
) /* CMR */
4456 static CPUReadMemoryFunc
*omap_mpui_io_readfn
[] = {
4457 omap_badwidth_read16
,
4459 omap_badwidth_read16
,
4462 static CPUWriteMemoryFunc
*omap_mpui_io_writefn
[] = {
4463 omap_badwidth_write16
,
4464 omap_badwidth_write16
,
4465 omap_badwidth_write16
,
4468 static void omap_setup_mpui_io(struct omap_mpu_state_s
*mpu
)
4470 int iomemtype
= cpu_register_io_memory(omap_mpui_io_readfn
,
4471 omap_mpui_io_writefn
, mpu
);
4472 cpu_register_physical_memory(OMAP_MPUI_BASE
, 0x7fff, iomemtype
);
4475 /* General chip reset */
4476 static void omap1_mpu_reset(void *opaque
)
4478 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
4480 omap_inth_reset(mpu
->ih
[0]);
4481 omap_inth_reset(mpu
->ih
[1]);
4482 omap_dma_reset(mpu
->dma
);
4483 omap_mpu_timer_reset(mpu
->timer
[0]);
4484 omap_mpu_timer_reset(mpu
->timer
[1]);
4485 omap_mpu_timer_reset(mpu
->timer
[2]);
4486 omap_wd_timer_reset(mpu
->wdt
);
4487 omap_os_timer_reset(mpu
->os_timer
);
4488 omap_lcdc_reset(mpu
->lcd
);
4489 omap_ulpd_pm_reset(mpu
);
4490 omap_pin_cfg_reset(mpu
);
4491 omap_mpui_reset(mpu
);
4492 omap_tipb_bridge_reset(mpu
->private_tipb
);
4493 omap_tipb_bridge_reset(mpu
->public_tipb
);
4494 omap_dpll_reset(&mpu
->dpll
[0]);
4495 omap_dpll_reset(&mpu
->dpll
[1]);
4496 omap_dpll_reset(&mpu
->dpll
[2]);
4497 omap_uart_reset(mpu
->uart
[0]);
4498 omap_uart_reset(mpu
->uart
[1]);
4499 omap_uart_reset(mpu
->uart
[2]);
4500 omap_mmc_reset(mpu
->mmc
);
4501 omap_mpuio_reset(mpu
->mpuio
);
4502 omap_gpio_reset(mpu
->gpio
);
4503 omap_uwire_reset(mpu
->microwire
);
4504 omap_pwl_reset(mpu
);
4505 omap_pwt_reset(mpu
);
4506 omap_i2c_reset(mpu
->i2c
[0]);
4507 omap_rtc_reset(mpu
->rtc
);
4508 omap_mcbsp_reset(mpu
->mcbsp1
);
4509 omap_mcbsp_reset(mpu
->mcbsp2
);
4510 omap_mcbsp_reset(mpu
->mcbsp3
);
4511 omap_lpg_reset(mpu
->led
[0]);
4512 omap_lpg_reset(mpu
->led
[1]);
4513 omap_clkm_reset(mpu
);
4514 cpu_reset(mpu
->env
);
4517 static const struct omap_map_s
{
4518 target_phys_addr_t phys_dsp
;
4519 target_phys_addr_t phys_mpu
;
4522 } omap15xx_dsp_mm
[] = {
4524 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4525 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4526 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4527 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4528 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4529 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4530 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4531 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4532 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4533 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4534 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4535 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4536 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4537 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4538 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4539 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4540 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4542 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4547 static void omap_setup_dsp_mapping(const struct omap_map_s
*map
)
4551 for (; map
->phys_dsp
; map
++) {
4552 io
= cpu_get_physical_page_desc(map
->phys_mpu
);
4554 cpu_register_physical_memory(map
->phys_dsp
, map
->size
, io
);
4558 void omap_mpu_wakeup(void *opaque
, int irq
, int req
)
4560 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
4562 if (mpu
->env
->halted
)
4563 cpu_interrupt(mpu
->env
, CPU_INTERRUPT_EXITTB
);
4566 static const struct dma_irq_map omap1_dma_irq_map
[] = {
4567 { 0, OMAP_INT_DMA_CH0_6
},
4568 { 0, OMAP_INT_DMA_CH1_7
},
4569 { 0, OMAP_INT_DMA_CH2_8
},
4570 { 0, OMAP_INT_DMA_CH3
},
4571 { 0, OMAP_INT_DMA_CH4
},
4572 { 0, OMAP_INT_DMA_CH5
},
4573 { 1, OMAP_INT_1610_DMA_CH6
},
4574 { 1, OMAP_INT_1610_DMA_CH7
},
4575 { 1, OMAP_INT_1610_DMA_CH8
},
4576 { 1, OMAP_INT_1610_DMA_CH9
},
4577 { 1, OMAP_INT_1610_DMA_CH10
},
4578 { 1, OMAP_INT_1610_DMA_CH11
},
4579 { 1, OMAP_INT_1610_DMA_CH12
},
4580 { 1, OMAP_INT_1610_DMA_CH13
},
4581 { 1, OMAP_INT_1610_DMA_CH14
},
4582 { 1, OMAP_INT_1610_DMA_CH15
}
4585 /* DMA ports for OMAP1 */
4586 static int omap_validate_emiff_addr(struct omap_mpu_state_s
*s
,
4587 target_phys_addr_t addr
)
4589 return addr
>= OMAP_EMIFF_BASE
&& addr
< OMAP_EMIFF_BASE
+ s
->sdram_size
;
4592 static int omap_validate_emifs_addr(struct omap_mpu_state_s
*s
,
4593 target_phys_addr_t addr
)
4595 return addr
>= OMAP_EMIFS_BASE
&& addr
< OMAP_EMIFF_BASE
;
4598 static int omap_validate_imif_addr(struct omap_mpu_state_s
*s
,
4599 target_phys_addr_t addr
)
4601 return addr
>= OMAP_IMIF_BASE
&& addr
< OMAP_IMIF_BASE
+ s
->sram_size
;
4604 static int omap_validate_tipb_addr(struct omap_mpu_state_s
*s
,
4605 target_phys_addr_t addr
)
4607 return addr
>= 0xfffb0000 && addr
< 0xffff0000;
4610 static int omap_validate_local_addr(struct omap_mpu_state_s
*s
,
4611 target_phys_addr_t addr
)
4613 return addr
>= OMAP_LOCALBUS_BASE
&& addr
< OMAP_LOCALBUS_BASE
+ 0x1000000;
4616 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s
*s
,
4617 target_phys_addr_t addr
)
4619 return addr
>= 0xe1010000 && addr
< 0xe1020004;
4622 struct omap_mpu_state_s
*omap310_mpu_init(unsigned long sdram_size
,
4626 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*)
4627 qemu_mallocz(sizeof(struct omap_mpu_state_s
));
4628 ram_addr_t imif_base
, emiff_base
;
4630 qemu_irq dma_irqs
[6];
4637 s
->mpu_model
= omap310
;
4638 s
->env
= cpu_init(core
);
4640 fprintf(stderr
, "Unable to find CPU definition\n");
4643 s
->sdram_size
= sdram_size
;
4644 s
->sram_size
= OMAP15XX_SRAM_SIZE
;
4646 s
->wakeup
= qemu_allocate_irqs(omap_mpu_wakeup
, s
, 1)[0];
4651 /* Memory-mapped stuff */
4652 cpu_register_physical_memory(OMAP_EMIFF_BASE
, s
->sdram_size
,
4653 (emiff_base
= qemu_ram_alloc(s
->sdram_size
)) | IO_MEM_RAM
);
4654 cpu_register_physical_memory(OMAP_IMIF_BASE
, s
->sram_size
,
4655 (imif_base
= qemu_ram_alloc(s
->sram_size
)) | IO_MEM_RAM
);
4657 omap_clkm_init(0xfffece00, 0xe1008000, s
);
4659 cpu_irq
= arm_pic_init_cpu(s
->env
);
4660 s
->ih
[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s
->irq
[0],
4661 cpu_irq
[ARM_PIC_CPU_IRQ
], cpu_irq
[ARM_PIC_CPU_FIQ
],
4662 omap_findclk(s
, "arminth_ck"));
4663 s
->ih
[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s
->irq
[1],
4664 s
->ih
[0]->pins
[OMAP_INT_15XX_IH2_IRQ
], NULL
,
4665 omap_findclk(s
, "arminth_ck"));
4667 for (i
= 0; i
< 6; i
++)
4669 s
->irq
[omap1_dma_irq_map
[i
].ih
][omap1_dma_irq_map
[i
].intr
];
4670 s
->dma
= omap_dma_init(0xfffed800, dma_irqs
, s
->irq
[0][OMAP_INT_DMA_LCD
],
4671 s
, omap_findclk(s
, "dma_ck"), omap_dma_3_1
);
4673 s
->port
[emiff
].addr_valid
= omap_validate_emiff_addr
;
4674 s
->port
[emifs
].addr_valid
= omap_validate_emifs_addr
;
4675 s
->port
[imif
].addr_valid
= omap_validate_imif_addr
;
4676 s
->port
[tipb
].addr_valid
= omap_validate_tipb_addr
;
4677 s
->port
[local
].addr_valid
= omap_validate_local_addr
;
4678 s
->port
[tipb_mpui
].addr_valid
= omap_validate_tipb_mpui_addr
;
4680 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4681 soc_dma_port_add_mem_ram(s
->dma
,
4682 emiff_base
, OMAP_EMIFF_BASE
, s
->sdram_size
);
4683 soc_dma_port_add_mem_ram(s
->dma
,
4684 imif_base
, OMAP_IMIF_BASE
, s
->sram_size
);
4686 s
->timer
[0] = omap_mpu_timer_init(0xfffec500,
4687 s
->irq
[0][OMAP_INT_TIMER1
],
4688 omap_findclk(s
, "mputim_ck"));
4689 s
->timer
[1] = omap_mpu_timer_init(0xfffec600,
4690 s
->irq
[0][OMAP_INT_TIMER2
],
4691 omap_findclk(s
, "mputim_ck"));
4692 s
->timer
[2] = omap_mpu_timer_init(0xfffec700,
4693 s
->irq
[0][OMAP_INT_TIMER3
],
4694 omap_findclk(s
, "mputim_ck"));
4696 s
->wdt
= omap_wd_timer_init(0xfffec800,
4697 s
->irq
[0][OMAP_INT_WD_TIMER
],
4698 omap_findclk(s
, "armwdt_ck"));
4700 s
->os_timer
= omap_os_timer_init(0xfffb9000,
4701 s
->irq
[1][OMAP_INT_OS_TIMER
],
4702 omap_findclk(s
, "clk32-kHz"));
4704 s
->lcd
= omap_lcdc_init(0xfffec000, s
->irq
[0][OMAP_INT_LCD_CTRL
],
4705 omap_dma_get_lcdch(s
->dma
), imif_base
, emiff_base
,
4706 omap_findclk(s
, "lcd_ck"));
4708 omap_ulpd_pm_init(0xfffe0800, s
);
4709 omap_pin_cfg_init(0xfffe1000, s
);
4712 omap_mpui_init(0xfffec900, s
);
4714 s
->private_tipb
= omap_tipb_bridge_init(0xfffeca00,
4715 s
->irq
[0][OMAP_INT_BRIDGE_PRIV
],
4716 omap_findclk(s
, "tipb_ck"));
4717 s
->public_tipb
= omap_tipb_bridge_init(0xfffed300,
4718 s
->irq
[0][OMAP_INT_BRIDGE_PUB
],
4719 omap_findclk(s
, "tipb_ck"));
4721 omap_tcmi_init(0xfffecc00, s
);
4723 s
->uart
[0] = omap_uart_init(0xfffb0000, s
->irq
[1][OMAP_INT_UART1
],
4724 omap_findclk(s
, "uart1_ck"),
4725 omap_findclk(s
, "uart1_ck"),
4726 s
->drq
[OMAP_DMA_UART1_TX
], s
->drq
[OMAP_DMA_UART1_RX
],
4728 s
->uart
[1] = omap_uart_init(0xfffb0800, s
->irq
[1][OMAP_INT_UART2
],
4729 omap_findclk(s
, "uart2_ck"),
4730 omap_findclk(s
, "uart2_ck"),
4731 s
->drq
[OMAP_DMA_UART2_TX
], s
->drq
[OMAP_DMA_UART2_RX
],
4732 serial_hds
[0] ? serial_hds
[1] : 0);
4733 s
->uart
[2] = omap_uart_init(0xfffb9800, s
->irq
[0][OMAP_INT_UART3
],
4734 omap_findclk(s
, "uart3_ck"),
4735 omap_findclk(s
, "uart3_ck"),
4736 s
->drq
[OMAP_DMA_UART3_TX
], s
->drq
[OMAP_DMA_UART3_RX
],
4737 serial_hds
[0] && serial_hds
[1] ? serial_hds
[2] : 0);
4739 omap_dpll_init(&s
->dpll
[0], 0xfffecf00, omap_findclk(s
, "dpll1"));
4740 omap_dpll_init(&s
->dpll
[1], 0xfffed000, omap_findclk(s
, "dpll2"));
4741 omap_dpll_init(&s
->dpll
[2], 0xfffed100, omap_findclk(s
, "dpll3"));
4743 sdindex
= drive_get_index(IF_SD
, 0, 0);
4744 if (sdindex
== -1) {
4745 fprintf(stderr
, "qemu: missing SecureDigital device\n");
4748 s
->mmc
= omap_mmc_init(0xfffb7800, drives_table
[sdindex
].bdrv
,
4749 s
->irq
[1][OMAP_INT_OQN
], &s
->drq
[OMAP_DMA_MMC_TX
],
4750 omap_findclk(s
, "mmc_ck"));
4752 s
->mpuio
= omap_mpuio_init(0xfffb5000,
4753 s
->irq
[1][OMAP_INT_KEYBOARD
], s
->irq
[1][OMAP_INT_MPUIO
],
4754 s
->wakeup
, omap_findclk(s
, "clk32-kHz"));
4756 s
->gpio
= omap_gpio_init(0xfffce000, s
->irq
[0][OMAP_INT_GPIO_BANK1
],
4757 omap_findclk(s
, "arm_gpio_ck"));
4759 s
->microwire
= omap_uwire_init(0xfffb3000, &s
->irq
[1][OMAP_INT_uWireTX
],
4760 s
->drq
[OMAP_DMA_UWIRE_TX
], omap_findclk(s
, "mpuper_ck"));
4762 omap_pwl_init(0xfffb5800, s
, omap_findclk(s
, "armxor_ck"));
4763 omap_pwt_init(0xfffb6000, s
, omap_findclk(s
, "armxor_ck"));
4765 s
->i2c
[0] = omap_i2c_init(0xfffb3800, s
->irq
[1][OMAP_INT_I2C
],
4766 &s
->drq
[OMAP_DMA_I2C_RX
], omap_findclk(s
, "mpuper_ck"));
4768 s
->rtc
= omap_rtc_init(0xfffb4800, &s
->irq
[1][OMAP_INT_RTC_TIMER
],
4769 omap_findclk(s
, "clk32-kHz"));
4771 s
->mcbsp1
= omap_mcbsp_init(0xfffb1800, &s
->irq
[1][OMAP_INT_McBSP1TX
],
4772 &s
->drq
[OMAP_DMA_MCBSP1_TX
], omap_findclk(s
, "dspxor_ck"));
4773 s
->mcbsp2
= omap_mcbsp_init(0xfffb1000, &s
->irq
[0][OMAP_INT_310_McBSP2_TX
],
4774 &s
->drq
[OMAP_DMA_MCBSP2_TX
], omap_findclk(s
, "mpuper_ck"));
4775 s
->mcbsp3
= omap_mcbsp_init(0xfffb7000, &s
->irq
[1][OMAP_INT_McBSP3TX
],
4776 &s
->drq
[OMAP_DMA_MCBSP3_TX
], omap_findclk(s
, "dspxor_ck"));
4778 s
->led
[0] = omap_lpg_init(0xfffbd000, omap_findclk(s
, "clk32-kHz"));
4779 s
->led
[1] = omap_lpg_init(0xfffbd800, omap_findclk(s
, "clk32-kHz"));
4781 /* Register mappings not currenlty implemented:
4782 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4783 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4784 * USB W2FC fffb4000 - fffb47ff
4785 * Camera Interface fffb6800 - fffb6fff
4786 * USB Host fffba000 - fffba7ff
4787 * FAC fffba800 - fffbafff
4788 * HDQ/1-Wire fffbc000 - fffbc7ff
4789 * TIPB switches fffbc800 - fffbcfff
4790 * Mailbox fffcf000 - fffcf7ff
4791 * Local bus IF fffec100 - fffec1ff
4792 * Local bus MMU fffec200 - fffec2ff
4793 * DSP MMU fffed200 - fffed2ff
4796 omap_setup_dsp_mapping(omap15xx_dsp_mm
);
4797 omap_setup_mpui_io(s
);
4799 qemu_register_reset(omap1_mpu_reset
, s
);