2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
31 //#define DEBUG_UNASSIGNED
36 # define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
38 # define LOG_UIC(...) do { } while (0)
41 /*****************************************************************************/
42 /* Generic PowerPC 4xx processor instanciation */
43 CPUState
*ppc4xx_init (const char *cpu_model
,
44 clk_setup_t
*cpu_clk
, clk_setup_t
*tb_clk
,
50 env
= cpu_init(cpu_model
);
52 fprintf(stderr
, "Unable to find PowerPC %s CPU definition\n",
56 cpu_clk
->cb
= NULL
; /* We don't care about CPU clock frequency changes */
57 cpu_clk
->opaque
= env
;
58 /* Set time-base frequency to sysclk */
59 tb_clk
->cb
= ppc_emb_timers_init(env
, sysclk
);
61 ppc_dcr_init(env
, NULL
, NULL
);
62 /* Register qemu callbacks */
63 qemu_register_reset(&cpu_ppc_reset
, env
);
68 /*****************************************************************************/
69 /* Fake device used to map multiple devices in a single memory page */
70 #define MMIO_AREA_BITS 8
71 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
72 #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
73 #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
74 struct ppc4xx_mmio_t
{
75 target_phys_addr_t base
;
76 CPUReadMemoryFunc
**mem_read
[MMIO_AREA_NB
];
77 CPUWriteMemoryFunc
**mem_write
[MMIO_AREA_NB
];
78 void *opaque
[MMIO_AREA_NB
];
81 static uint32_t unassigned_mmio_readb (void *opaque
, target_phys_addr_t addr
)
83 #ifdef DEBUG_UNASSIGNED
87 printf("Unassigned mmio read 0x" PADDRX
" base " PADDRX
"\n",
94 static void unassigned_mmio_writeb (void *opaque
,
95 target_phys_addr_t addr
, uint32_t val
)
97 #ifdef DEBUG_UNASSIGNED
101 printf("Unassigned mmio write 0x" PADDRX
" = 0x%x base " PADDRX
"\n",
102 addr
, val
, mmio
->base
);
106 static CPUReadMemoryFunc
*unassigned_mmio_read
[3] = {
107 unassigned_mmio_readb
,
108 unassigned_mmio_readb
,
109 unassigned_mmio_readb
,
112 static CPUWriteMemoryFunc
*unassigned_mmio_write
[3] = {
113 unassigned_mmio_writeb
,
114 unassigned_mmio_writeb
,
115 unassigned_mmio_writeb
,
118 static uint32_t mmio_readlen (ppc4xx_mmio_t
*mmio
,
119 target_phys_addr_t addr
, int len
)
121 CPUReadMemoryFunc
**mem_read
;
125 idx
= MMIO_IDX(addr
);
126 #if defined(DEBUG_MMIO)
127 printf("%s: mmio %p len %d addr " PADDRX
" idx %d\n", __func__
,
128 mmio
, len
, addr
, idx
);
130 mem_read
= mmio
->mem_read
[idx
];
131 ret
= (*mem_read
[len
])(mmio
->opaque
[idx
], addr
);
136 static void mmio_writelen (ppc4xx_mmio_t
*mmio
,
137 target_phys_addr_t addr
, uint32_t value
, int len
)
139 CPUWriteMemoryFunc
**mem_write
;
142 idx
= MMIO_IDX(addr
);
143 #if defined(DEBUG_MMIO)
144 printf("%s: mmio %p len %d addr " PADDRX
" idx %d value %08" PRIx32
"\n",
145 __func__
, mmio
, len
, addr
, idx
, value
);
147 mem_write
= mmio
->mem_write
[idx
];
148 (*mem_write
[len
])(mmio
->opaque
[idx
], addr
, value
);
151 static uint32_t mmio_readb (void *opaque
, target_phys_addr_t addr
)
153 #if defined(DEBUG_MMIO)
154 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
157 return mmio_readlen(opaque
, addr
, 0);
160 static void mmio_writeb (void *opaque
,
161 target_phys_addr_t addr
, uint32_t value
)
163 #if defined(DEBUG_MMIO)
164 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
166 mmio_writelen(opaque
, addr
, value
, 0);
169 static uint32_t mmio_readw (void *opaque
, target_phys_addr_t addr
)
171 #if defined(DEBUG_MMIO)
172 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
175 return mmio_readlen(opaque
, addr
, 1);
178 static void mmio_writew (void *opaque
,
179 target_phys_addr_t addr
, uint32_t value
)
181 #if defined(DEBUG_MMIO)
182 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
184 mmio_writelen(opaque
, addr
, value
, 1);
187 static uint32_t mmio_readl (void *opaque
, target_phys_addr_t addr
)
189 #if defined(DEBUG_MMIO)
190 printf("%s: addr " PADDRX
"\n", __func__
, addr
);
193 return mmio_readlen(opaque
, addr
, 2);
196 static void mmio_writel (void *opaque
,
197 target_phys_addr_t addr
, uint32_t value
)
199 #if defined(DEBUG_MMIO)
200 printf("%s: addr " PADDRX
" val %08" PRIx32
"\n", __func__
, addr
, value
);
202 mmio_writelen(opaque
, addr
, value
, 2);
205 static CPUReadMemoryFunc
*mmio_read
[] = {
211 static CPUWriteMemoryFunc
*mmio_write
[] = {
217 int ppc4xx_mmio_register (CPUState
*env
, ppc4xx_mmio_t
*mmio
,
218 target_phys_addr_t offset
, uint32_t len
,
219 CPUReadMemoryFunc
**mem_read
,
220 CPUWriteMemoryFunc
**mem_write
, void *opaque
)
222 target_phys_addr_t end
;
225 if ((offset
+ len
) > TARGET_PAGE_SIZE
)
227 idx
= MMIO_IDX(offset
);
228 end
= offset
+ len
- 1;
229 eidx
= MMIO_IDX(end
);
230 #if defined(DEBUG_MMIO)
231 printf("%s: offset " PADDRX
" len %08" PRIx32
" " PADDRX
" %d %d\n",
232 __func__
, offset
, len
, end
, idx
, eidx
);
234 for (; idx
<= eidx
; idx
++) {
235 mmio
->mem_read
[idx
] = mem_read
;
236 mmio
->mem_write
[idx
] = mem_write
;
237 mmio
->opaque
[idx
] = opaque
;
243 ppc4xx_mmio_t
*ppc4xx_mmio_init (CPUState
*env
, target_phys_addr_t base
)
248 mmio
= qemu_mallocz(sizeof(ppc4xx_mmio_t
));
250 mmio_memory
= cpu_register_io_memory(mmio_read
, mmio_write
, mmio
);
251 #if defined(DEBUG_MMIO)
252 printf("%s: base " PADDRX
" len %08x %d\n", __func__
,
253 base
, TARGET_PAGE_SIZE
, mmio_memory
);
255 cpu_register_physical_memory(base
, TARGET_PAGE_SIZE
, mmio_memory
);
256 ppc4xx_mmio_register(env
, mmio
, 0, TARGET_PAGE_SIZE
,
257 unassigned_mmio_read
, unassigned_mmio_write
,
263 /*****************************************************************************/
264 /* "Universal" Interrupt controller */
278 #define UIC_MAX_IRQ 32
279 typedef struct ppcuic_t ppcuic_t
;
283 uint32_t level
; /* Remembers the state of level-triggered interrupts. */
284 uint32_t uicsr
; /* Status register */
285 uint32_t uicer
; /* Enable register */
286 uint32_t uiccr
; /* Critical register */
287 uint32_t uicpr
; /* Polarity register */
288 uint32_t uictr
; /* Triggering register */
289 uint32_t uicvcr
; /* Vector configuration register */
294 static void ppcuic_trigger_irq (ppcuic_t
*uic
)
297 int start
, end
, inc
, i
;
299 /* Trigger interrupt if any is pending */
300 ir
= uic
->uicsr
& uic
->uicer
& (~uic
->uiccr
);
301 cr
= uic
->uicsr
& uic
->uicer
& uic
->uiccr
;
302 LOG_UIC("%s: uicsr %08" PRIx32
" uicer %08" PRIx32
303 " uiccr %08" PRIx32
"\n"
304 " %08" PRIx32
" ir %08" PRIx32
" cr %08" PRIx32
"\n",
305 __func__
, uic
->uicsr
, uic
->uicer
, uic
->uiccr
,
306 uic
->uicsr
& uic
->uicer
, ir
, cr
);
307 if (ir
!= 0x0000000) {
308 LOG_UIC("Raise UIC interrupt\n");
309 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
311 LOG_UIC("Lower UIC interrupt\n");
312 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_INT
]);
314 /* Trigger critical interrupt if any is pending and update vector */
315 if (cr
!= 0x0000000) {
316 qemu_irq_raise(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
317 if (uic
->use_vectors
) {
318 /* Compute critical IRQ vector */
319 if (uic
->uicvcr
& 1) {
328 uic
->uicvr
= uic
->uicvcr
& 0xFFFFFFFC;
329 for (i
= start
; i
<= end
; i
+= inc
) {
331 uic
->uicvr
+= (i
- start
) * 512 * inc
;
336 LOG_UIC("Raise UIC critical interrupt - "
337 "vector %08" PRIx32
"\n", uic
->uicvr
);
339 LOG_UIC("Lower UIC critical interrupt\n");
340 qemu_irq_lower(uic
->irqs
[PPCUIC_OUTPUT_CINT
]);
341 uic
->uicvr
= 0x00000000;
345 static void ppcuic_set_irq (void *opaque
, int irq_num
, int level
)
351 mask
= 1 << (31-irq_num
);
352 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
353 " mask %08" PRIx32
" => %08" PRIx32
" %08" PRIx32
"\n",
354 __func__
, irq_num
, level
,
355 uic
->uicsr
, mask
, uic
->uicsr
& mask
, level
<< irq_num
);
356 if (irq_num
< 0 || irq_num
> 31)
360 /* Update status register */
361 if (uic
->uictr
& mask
) {
362 /* Edge sensitive interrupt */
366 /* Level sensitive interrupt */
375 LOG_UIC("%s: irq %d level %d sr %" PRIx32
" => "
376 "%08" PRIx32
"\n", __func__
, irq_num
, level
, uic
->uicsr
, sr
);
377 if (sr
!= uic
->uicsr
)
378 ppcuic_trigger_irq(uic
);
381 static target_ulong
dcr_read_uic (void *opaque
, int dcrn
)
387 dcrn
-= uic
->dcr_base
;
406 ret
= uic
->uicsr
& uic
->uicer
;
409 if (!uic
->use_vectors
)
414 if (!uic
->use_vectors
)
427 static void dcr_write_uic (void *opaque
, int dcrn
, target_ulong val
)
432 dcrn
-= uic
->dcr_base
;
433 LOG_UIC("%s: dcr %d val " ADDRX
"\n", __func__
, dcrn
, val
);
437 uic
->uicsr
|= uic
->level
;
438 ppcuic_trigger_irq(uic
);
442 ppcuic_trigger_irq(uic
);
446 ppcuic_trigger_irq(uic
);
450 ppcuic_trigger_irq(uic
);
457 ppcuic_trigger_irq(uic
);
464 uic
->uicvcr
= val
& 0xFFFFFFFD;
465 ppcuic_trigger_irq(uic
);
470 static void ppcuic_reset (void *opaque
)
475 uic
->uiccr
= 0x00000000;
476 uic
->uicer
= 0x00000000;
477 uic
->uicpr
= 0x00000000;
478 uic
->uicsr
= 0x00000000;
479 uic
->uictr
= 0x00000000;
480 if (uic
->use_vectors
) {
481 uic
->uicvcr
= 0x00000000;
482 uic
->uicvr
= 0x0000000;
486 qemu_irq
*ppcuic_init (CPUState
*env
, qemu_irq
*irqs
,
487 uint32_t dcr_base
, int has_ssr
, int has_vr
)
492 uic
= qemu_mallocz(sizeof(ppcuic_t
));
493 uic
->dcr_base
= dcr_base
;
496 uic
->use_vectors
= 1;
497 for (i
= 0; i
< DCR_UICMAX
; i
++) {
498 ppc_dcr_register(env
, dcr_base
+ i
, uic
,
499 &dcr_read_uic
, &dcr_write_uic
);
501 qemu_register_reset(ppcuic_reset
, uic
);
504 return qemu_allocate_irqs(&ppcuic_set_irq
, uic
, UIC_MAX_IRQ
);
507 /*****************************************************************************/
508 /* SDRAM controller */
509 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t
;
510 struct ppc4xx_sdram_t
{
513 target_phys_addr_t ram_bases
[4];
514 target_phys_addr_t ram_sizes
[4];
530 SDRAM0_CFGADDR
= 0x010,
531 SDRAM0_CFGDATA
= 0x011,
534 /* XXX: TOFIX: some patches have made this code become inconsistent:
535 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
538 static uint32_t sdram_bcr (target_phys_addr_t ram_base
,
539 target_phys_addr_t ram_size
)
544 case (4 * 1024 * 1024):
547 case (8 * 1024 * 1024):
550 case (16 * 1024 * 1024):
553 case (32 * 1024 * 1024):
556 case (64 * 1024 * 1024):
559 case (128 * 1024 * 1024):
562 case (256 * 1024 * 1024):
566 printf("%s: invalid RAM size " PADDRX
"\n", __func__
, ram_size
);
569 bcr
|= ram_base
& 0xFF800000;
575 static always_inline target_phys_addr_t
sdram_base (uint32_t bcr
)
577 return bcr
& 0xFF800000;
580 static target_ulong
sdram_size (uint32_t bcr
)
585 sh
= (bcr
>> 17) & 0x7;
589 size
= (4 * 1024 * 1024) << sh
;
594 static void sdram_set_bcr (uint32_t *bcrp
, uint32_t bcr
, int enabled
)
596 if (*bcrp
& 0x00000001) {
599 printf("%s: unmap RAM area " PADDRX
" " ADDRX
"\n",
600 __func__
, sdram_base(*bcrp
), sdram_size(*bcrp
));
602 cpu_register_physical_memory(sdram_base(*bcrp
), sdram_size(*bcrp
),
605 *bcrp
= bcr
& 0xFFDEE001;
606 if (enabled
&& (bcr
& 0x00000001)) {
608 printf("%s: Map RAM area " PADDRX
" " ADDRX
"\n",
609 __func__
, sdram_base(bcr
), sdram_size(bcr
));
611 cpu_register_physical_memory(sdram_base(bcr
), sdram_size(bcr
),
612 sdram_base(bcr
) | IO_MEM_RAM
);
616 static void sdram_map_bcr (ppc4xx_sdram_t
*sdram
)
620 for (i
= 0; i
< sdram
->nbanks
; i
++) {
621 if (sdram
->ram_sizes
[i
] != 0) {
622 sdram_set_bcr(&sdram
->bcr
[i
],
623 sdram_bcr(sdram
->ram_bases
[i
], sdram
->ram_sizes
[i
]),
626 sdram_set_bcr(&sdram
->bcr
[i
], 0x00000000, 0);
631 static void sdram_unmap_bcr (ppc4xx_sdram_t
*sdram
)
635 for (i
= 0; i
< sdram
->nbanks
; i
++) {
637 printf("%s: Unmap RAM area " PADDRX
" " ADDRX
"\n",
638 __func__
, sdram_base(sdram
->bcr
[i
]), sdram_size(sdram
->bcr
[i
]));
640 cpu_register_physical_memory(sdram_base(sdram
->bcr
[i
]),
641 sdram_size(sdram
->bcr
[i
]),
646 static target_ulong
dcr_read_sdram (void *opaque
, int dcrn
)
648 ppc4xx_sdram_t
*sdram
;
657 switch (sdram
->addr
) {
658 case 0x00: /* SDRAM_BESR0 */
661 case 0x08: /* SDRAM_BESR1 */
664 case 0x10: /* SDRAM_BEAR */
667 case 0x20: /* SDRAM_CFG */
670 case 0x24: /* SDRAM_STATUS */
673 case 0x30: /* SDRAM_RTR */
676 case 0x34: /* SDRAM_PMIT */
679 case 0x40: /* SDRAM_B0CR */
682 case 0x44: /* SDRAM_B1CR */
685 case 0x48: /* SDRAM_B2CR */
688 case 0x4C: /* SDRAM_B3CR */
691 case 0x80: /* SDRAM_TR */
694 case 0x94: /* SDRAM_ECCCFG */
697 case 0x98: /* SDRAM_ECCESR */
706 /* Avoid gcc warning */
714 static void dcr_write_sdram (void *opaque
, int dcrn
, target_ulong val
)
716 ppc4xx_sdram_t
*sdram
;
724 switch (sdram
->addr
) {
725 case 0x00: /* SDRAM_BESR0 */
726 sdram
->besr0
&= ~val
;
728 case 0x08: /* SDRAM_BESR1 */
729 sdram
->besr1
&= ~val
;
731 case 0x10: /* SDRAM_BEAR */
734 case 0x20: /* SDRAM_CFG */
736 if (!(sdram
->cfg
& 0x80000000) && (val
& 0x80000000)) {
738 printf("%s: enable SDRAM controller\n", __func__
);
740 /* validate all RAM mappings */
741 sdram_map_bcr(sdram
);
742 sdram
->status
&= ~0x80000000;
743 } else if ((sdram
->cfg
& 0x80000000) && !(val
& 0x80000000)) {
745 printf("%s: disable SDRAM controller\n", __func__
);
747 /* invalidate all RAM mappings */
748 sdram_unmap_bcr(sdram
);
749 sdram
->status
|= 0x80000000;
751 if (!(sdram
->cfg
& 0x40000000) && (val
& 0x40000000))
752 sdram
->status
|= 0x40000000;
753 else if ((sdram
->cfg
& 0x40000000) && !(val
& 0x40000000))
754 sdram
->status
&= ~0x40000000;
757 case 0x24: /* SDRAM_STATUS */
758 /* Read-only register */
760 case 0x30: /* SDRAM_RTR */
761 sdram
->rtr
= val
& 0x3FF80000;
763 case 0x34: /* SDRAM_PMIT */
764 sdram
->pmit
= (val
& 0xF8000000) | 0x07C00000;
766 case 0x40: /* SDRAM_B0CR */
767 sdram_set_bcr(&sdram
->bcr
[0], val
, sdram
->cfg
& 0x80000000);
769 case 0x44: /* SDRAM_B1CR */
770 sdram_set_bcr(&sdram
->bcr
[1], val
, sdram
->cfg
& 0x80000000);
772 case 0x48: /* SDRAM_B2CR */
773 sdram_set_bcr(&sdram
->bcr
[2], val
, sdram
->cfg
& 0x80000000);
775 case 0x4C: /* SDRAM_B3CR */
776 sdram_set_bcr(&sdram
->bcr
[3], val
, sdram
->cfg
& 0x80000000);
778 case 0x80: /* SDRAM_TR */
779 sdram
->tr
= val
& 0x018FC01F;
781 case 0x94: /* SDRAM_ECCCFG */
782 sdram
->ecccfg
= val
& 0x00F00000;
784 case 0x98: /* SDRAM_ECCESR */
786 if (sdram
->eccesr
== 0 && val
!= 0)
787 qemu_irq_raise(sdram
->irq
);
788 else if (sdram
->eccesr
!= 0 && val
== 0)
789 qemu_irq_lower(sdram
->irq
);
799 static void sdram_reset (void *opaque
)
801 ppc4xx_sdram_t
*sdram
;
804 sdram
->addr
= 0x00000000;
805 sdram
->bear
= 0x00000000;
806 sdram
->besr0
= 0x00000000; /* No error */
807 sdram
->besr1
= 0x00000000; /* No error */
808 sdram
->cfg
= 0x00000000;
809 sdram
->ecccfg
= 0x00000000; /* No ECC */
810 sdram
->eccesr
= 0x00000000; /* No error */
811 sdram
->pmit
= 0x07C00000;
812 sdram
->rtr
= 0x05F00000;
813 sdram
->tr
= 0x00854009;
814 /* We pre-initialize RAM banks */
815 sdram
->status
= 0x00000000;
816 sdram
->cfg
= 0x00800000;
817 sdram_unmap_bcr(sdram
);
820 void ppc4xx_sdram_init (CPUState
*env
, qemu_irq irq
, int nbanks
,
821 target_phys_addr_t
*ram_bases
,
822 target_phys_addr_t
*ram_sizes
,
825 ppc4xx_sdram_t
*sdram
;
827 sdram
= qemu_mallocz(sizeof(ppc4xx_sdram_t
));
829 sdram
->nbanks
= nbanks
;
830 memset(sdram
->ram_bases
, 0, 4 * sizeof(target_phys_addr_t
));
831 memcpy(sdram
->ram_bases
, ram_bases
,
832 nbanks
* sizeof(target_phys_addr_t
));
833 memset(sdram
->ram_sizes
, 0, 4 * sizeof(target_phys_addr_t
));
834 memcpy(sdram
->ram_sizes
, ram_sizes
,
835 nbanks
* sizeof(target_phys_addr_t
));
837 qemu_register_reset(&sdram_reset
, sdram
);
838 ppc_dcr_register(env
, SDRAM0_CFGADDR
,
839 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
840 ppc_dcr_register(env
, SDRAM0_CFGDATA
,
841 sdram
, &dcr_read_sdram
, &dcr_write_sdram
);
843 sdram_map_bcr(sdram
);
846 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
848 * sdram_bank_sizes[] must be 0-terminated.
850 * The 4xx SDRAM controller supports a small number of banks, and each bank
851 * must be one of a small set of sizes. The number of banks and the supported
852 * sizes varies by SoC. */
853 ram_addr_t
ppc4xx_sdram_adjust(ram_addr_t ram_size
, int nr_banks
,
854 target_phys_addr_t ram_bases
[],
855 target_phys_addr_t ram_sizes
[],
856 const unsigned int sdram_bank_sizes
[])
858 ram_addr_t size_left
= ram_size
;
862 for (i
= 0; i
< nr_banks
; i
++) {
863 for (j
= 0; sdram_bank_sizes
[j
] != 0; j
++) {
864 unsigned int bank_size
= sdram_bank_sizes
[j
];
866 if (bank_size
<= size_left
) {
867 ram_bases
[i
] = qemu_ram_alloc(bank_size
);
868 ram_sizes
[i
] = bank_size
;
869 size_left
-= bank_size
;
875 /* No need to use the remaining banks. */
880 ram_size
-= size_left
;
882 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
883 (int)(ram_size
>> 20));