Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / include / exec / memory.h
blob2e602a2fadbda532d66ff770fe83a71c817de4d3
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
60 /* Do Nothing */
62 #endif
64 /* Possible bits for global_dirty_log_{start|stop} */
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
75 #define GLOBAL_DIRTY_MASK (0x7)
77 extern unsigned int global_dirty_tracking;
79 typedef struct MemoryRegionOps MemoryRegionOps;
81 struct ReservedRegion {
82 hwaddr low;
83 hwaddr high;
84 unsigned type;
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
111 /* See address_space_translate: bit 0 is read, bit 1 is write. */
112 typedef enum {
113 IOMMU_NONE = 0,
114 IOMMU_RO = 1,
115 IOMMU_WO = 2,
116 IOMMU_RW = 3,
117 } IOMMUAccessFlags;
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
121 struct IOMMUTLBEntry {
122 AddressSpace *target_as;
123 hwaddr iova;
124 hwaddr translated_addr;
125 hwaddr addr_mask; /* 0xfff = 4k translation */
126 IOMMUAccessFlags perm;
130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131 * register with one or multiple IOMMU Notifier capability bit(s).
133 * Normally there're two use cases for the notifiers:
135 * (1) When the device needs accurate synchronizations of the vIOMMU page
136 * tables, it needs to register with both MAP|UNMAP notifies (which
137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
139 * Regarding to accurate synchronization, it's when the notified
140 * device maintains a shadow page table and must be notified on each
141 * guest MAP (page table entry creation) and UNMAP (invalidation)
142 * events (e.g. VFIO). Both notifications must be accurate so that
143 * the shadow page table is fully in sync with the guest view.
145 * (2) When the device doesn't need accurate synchronizations of the
146 * vIOMMU page tables, it needs to register only with UNMAP or
147 * DEVIOTLB_UNMAP notifies.
149 * It's when the device maintains a cache of IOMMU translations
150 * (IOTLB) and is able to fill that cache by requesting translations
151 * from the vIOMMU through a protocol similar to ATS (Address
152 * Translation Service).
154 * Note that in this mode the vIOMMU will not maintain a shadowed
155 * page table for the address space, and the UNMAP messages can cover
156 * more than the pages that used to get mapped. The IOMMU notifiee
157 * should be able to take care of over-sized invalidations.
159 typedef enum {
160 IOMMU_NOTIFIER_NONE = 0,
161 /* Notify cache invalidations */
162 IOMMU_NOTIFIER_UNMAP = 0x1,
163 /* Notify entry changes (newly created entries) */
164 IOMMU_NOTIFIER_MAP = 0x2,
165 /* Notify changes on device IOTLB entries */
166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176 IOMMUTLBEntry *data);
178 struct IOMMUNotifier {
179 IOMMUNotify notify;
180 IOMMUNotifierFlag notifier_flags;
181 /* Notify for address space range start <= addr <= end */
182 hwaddr start;
183 hwaddr end;
184 int iommu_idx;
185 QLIST_ENTRY(IOMMUNotifier) node;
187 typedef struct IOMMUNotifier IOMMUNotifier;
189 typedef struct IOMMUTLBEvent {
190 IOMMUNotifierFlag type;
191 IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC (1 << 0)
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED (1 << 1)
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201 * Resizing RAM while migrating can result in the migration being canceled.
203 #define RAM_RESIZEABLE (1 << 2)
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206 * zero the page and wake waiting processes.
207 * (Set during postcopy)
209 #define RAM_UF_ZEROPAGE (1 << 3)
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220 * support 'write-tracking' migration type.
221 * Implies ram_state->ram_wt_enabled.
223 #define RAM_UF_WRITEPROTECT (1 << 6)
226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227 * pages if applicable) is skipped: will bail out if not supported. When not
228 * set, the OS will do the reservation, if supported for the memory type.
230 #define RAM_NORESERVE (1 << 7)
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
236 IOMMUNotifierFlag flags,
237 hwaddr start, hwaddr end,
238 int iommu_idx)
240 n->notify = fn;
241 n->notifier_flags = flags;
242 n->start = start;
243 n->end = end;
244 n->iommu_idx = iommu_idx;
248 * Memory region callbacks
250 struct MemoryRegionOps {
251 /* Read from the memory region. @addr is relative to @mr; @size is
252 * in bytes. */
253 uint64_t (*read)(void *opaque,
254 hwaddr addr,
255 unsigned size);
256 /* Write to the memory region. @addr is relative to @mr; @size is
257 * in bytes. */
258 void (*write)(void *opaque,
259 hwaddr addr,
260 uint64_t data,
261 unsigned size);
263 MemTxResult (*read_with_attrs)(void *opaque,
264 hwaddr addr,
265 uint64_t *data,
266 unsigned size,
267 MemTxAttrs attrs);
268 MemTxResult (*write_with_attrs)(void *opaque,
269 hwaddr addr,
270 uint64_t data,
271 unsigned size,
272 MemTxAttrs attrs);
274 enum device_endian endianness;
275 /* Guest-visible constraints: */
276 struct {
277 /* If nonzero, specify bounds on access sizes beyond which a machine
278 * check is thrown.
280 unsigned min_access_size;
281 unsigned max_access_size;
282 /* If true, unaligned accesses are supported. Otherwise unaligned
283 * accesses throw machine checks.
285 bool unaligned;
287 * If present, and returns #false, the transaction is not accepted
288 * by the device (and results in machine dependent behaviour such
289 * as a machine check exception).
291 bool (*accepts)(void *opaque, hwaddr addr,
292 unsigned size, bool is_write,
293 MemTxAttrs attrs);
294 } valid;
295 /* Internal implementation constraints: */
296 struct {
297 /* If nonzero, specifies the minimum size implemented. Smaller sizes
298 * will be rounded upwards and a partial result will be returned.
300 unsigned min_access_size;
301 /* If nonzero, specifies the maximum size implemented. Larger sizes
302 * will be done as a series of accesses with smaller sizes.
304 unsigned max_access_size;
305 /* If true, unaligned accesses are supported. Otherwise all accesses
306 * are converted to (possibly multiple) naturally aligned accesses.
308 bool unaligned;
309 } impl;
312 typedef struct MemoryRegionClass {
313 /* private */
314 ObjectClass parent_class;
315 } MemoryRegionClass;
318 enum IOMMUMemoryRegionAttr {
319 IOMMU_ATTR_SPAPR_TCE_FD
323 * IOMMUMemoryRegionClass:
325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
326 * and provide an implementation of at least the @translate method here
327 * to handle requests to the memory region. Other methods are optional.
329 * The IOMMU implementation must use the IOMMU notifier infrastructure
330 * to report whenever mappings are changed, by calling
331 * memory_region_notify_iommu() (or, if necessary, by calling
332 * memory_region_notify_iommu_one() for each registered notifier).
334 * Conceptually an IOMMU provides a mapping from input address
335 * to an output TLB entry. If the IOMMU is aware of memory transaction
336 * attributes and the output TLB entry depends on the transaction
337 * attributes, we represent this using IOMMU indexes. Each index
338 * selects a particular translation table that the IOMMU has:
340 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
342 * @translate takes an input address and an IOMMU index
344 * and the mapping returned can only depend on the input address and the
345 * IOMMU index.
347 * Most IOMMUs don't care about the transaction attributes and support
348 * only a single IOMMU index. A more complex IOMMU might have one index
349 * for secure transactions and one for non-secure transactions.
351 struct IOMMUMemoryRegionClass {
352 /* private: */
353 MemoryRegionClass parent_class;
355 /* public: */
357 * @translate:
359 * Return a TLB entry that contains a given address.
361 * The IOMMUAccessFlags indicated via @flag are optional and may
362 * be specified as IOMMU_NONE to indicate that the caller needs
363 * the full translation information for both reads and writes. If
364 * the access flags are specified then the IOMMU implementation
365 * may use this as an optimization, to stop doing a page table
366 * walk as soon as it knows that the requested permissions are not
367 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
368 * full page table walk and report the permissions in the returned
369 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
370 * return different mappings for reads and writes.)
372 * The returned information remains valid while the caller is
373 * holding the big QEMU lock or is inside an RCU critical section;
374 * if the caller wishes to cache the mapping beyond that it must
375 * register an IOMMU notifier so it can invalidate its cached
376 * information when the IOMMU mapping changes.
378 * @iommu: the IOMMUMemoryRegion
380 * @hwaddr: address to be translated within the memory region
382 * @flag: requested access permission
384 * @iommu_idx: IOMMU index for the translation
386 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
387 IOMMUAccessFlags flag, int iommu_idx);
389 * @get_min_page_size:
391 * Returns minimum supported page size in bytes.
393 * If this method is not provided then the minimum is assumed to
394 * be TARGET_PAGE_SIZE.
396 * @iommu: the IOMMUMemoryRegion
398 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
400 * @notify_flag_changed:
402 * Called when IOMMU Notifier flag changes (ie when the set of
403 * events which IOMMU users are requesting notification for changes).
404 * Optional method -- need not be provided if the IOMMU does not
405 * need to know exactly which events must be notified.
407 * @iommu: the IOMMUMemoryRegion
409 * @old_flags: events which previously needed to be notified
411 * @new_flags: events which now need to be notified
413 * Returns 0 on success, or a negative errno; in particular
414 * returns -EINVAL if the new flag bitmap is not supported by the
415 * IOMMU memory region. In case of failure, the error object
416 * must be created
418 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
419 IOMMUNotifierFlag old_flags,
420 IOMMUNotifierFlag new_flags,
421 Error **errp);
423 * @replay:
425 * Called to handle memory_region_iommu_replay().
427 * The default implementation of memory_region_iommu_replay() is to
428 * call the IOMMU translate method for every page in the address space
429 * with flag == IOMMU_NONE and then call the notifier if translate
430 * returns a valid mapping. If this method is implemented then it
431 * overrides the default behaviour, and must provide the full semantics
432 * of memory_region_iommu_replay(), by calling @notifier for every
433 * translation present in the IOMMU.
435 * Optional method -- an IOMMU only needs to provide this method
436 * if the default is inefficient or produces undesirable side effects.
438 * Note: this is not related to record-and-replay functionality.
440 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
443 * @get_attr:
445 * Get IOMMU misc attributes. This is an optional method that
446 * can be used to allow users of the IOMMU to get implementation-specific
447 * information. The IOMMU implements this method to handle calls
448 * by IOMMU users to memory_region_iommu_get_attr() by filling in
449 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
450 * the IOMMU supports. If the method is unimplemented then
451 * memory_region_iommu_get_attr() will always return -EINVAL.
453 * @iommu: the IOMMUMemoryRegion
455 * @attr: attribute being queried
457 * @data: memory to fill in with the attribute data
459 * Returns 0 on success, or a negative errno; in particular
460 * returns -EINVAL for unrecognized or unimplemented attribute types.
462 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
463 void *data);
466 * @attrs_to_index:
468 * Return the IOMMU index to use for a given set of transaction attributes.
470 * Optional method: if an IOMMU only supports a single IOMMU index then
471 * the default implementation of memory_region_iommu_attrs_to_index()
472 * will return 0.
474 * The indexes supported by an IOMMU must be contiguous, starting at 0.
476 * @iommu: the IOMMUMemoryRegion
477 * @attrs: memory transaction attributes
479 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
482 * @num_indexes:
484 * Return the number of IOMMU indexes this IOMMU supports.
486 * Optional method: if this method is not provided, then
487 * memory_region_iommu_num_indexes() will return 1, indicating that
488 * only a single IOMMU index is supported.
490 * @iommu: the IOMMUMemoryRegion
492 int (*num_indexes)(IOMMUMemoryRegion *iommu);
495 * @iommu_set_page_size_mask:
497 * Restrict the page size mask that can be supported with a given IOMMU
498 * memory region. Used for example to propagate host physical IOMMU page
499 * size mask limitations to the virtual IOMMU.
501 * Optional method: if this method is not provided, then the default global
502 * page mask is used.
504 * @iommu: the IOMMUMemoryRegion
506 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
507 * representing the smallest page size, must be set. Additional set bits
508 * represent supported block sizes. For example a host physical IOMMU that
509 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
510 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
511 * block sizes is specified with mask 0xfffffffffffff000.
513 * Returns 0 on success, or a negative error. In case of failure, the error
514 * object must be created.
516 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
517 uint64_t page_size_mask,
518 Error **errp);
521 typedef struct RamDiscardListener RamDiscardListener;
522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
523 MemoryRegionSection *section);
524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
525 MemoryRegionSection *section);
527 struct RamDiscardListener {
529 * @notify_populate:
531 * Notification that previously discarded memory is about to get populated.
532 * Listeners are able to object. If any listener objects, already
533 * successfully notified listeners are notified about a discard again.
535 * @rdl: the #RamDiscardListener getting notified
536 * @section: the #MemoryRegionSection to get populated. The section
537 * is aligned within the memory region to the minimum granularity
538 * unless it would exceed the registered section.
540 * Returns 0 on success. If the notification is rejected by the listener,
541 * an error is returned.
543 NotifyRamPopulate notify_populate;
546 * @notify_discard:
548 * Notification that previously populated memory was discarded successfully
549 * and listeners should drop all references to such memory and prevent
550 * new population (e.g., unmap).
552 * @rdl: the #RamDiscardListener getting notified
553 * @section: the #MemoryRegionSection to get populated. The section
554 * is aligned within the memory region to the minimum granularity
555 * unless it would exceed the registered section.
557 NotifyRamDiscard notify_discard;
560 * @double_discard_supported:
562 * The listener suppors getting @notify_discard notifications that span
563 * already discarded parts.
565 bool double_discard_supported;
567 MemoryRegionSection *section;
568 QLIST_ENTRY(RamDiscardListener) next;
571 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
572 NotifyRamPopulate populate_fn,
573 NotifyRamDiscard discard_fn,
574 bool double_discard_supported)
576 rdl->notify_populate = populate_fn;
577 rdl->notify_discard = discard_fn;
578 rdl->double_discard_supported = double_discard_supported;
581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
585 * RamDiscardManagerClass:
587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
588 * regions are currently populated to be used/accessed by the VM, notifying
589 * after parts were discarded (freeing up memory) and before parts will be
590 * populated (consuming memory), to be used/accessed by the VM.
592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
594 * mapped.
596 * The #RamDiscardManager is intended to be used by technologies that are
597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
598 * memory inside a #MemoryRegion), and require proper coordination to only
599 * map the currently populated parts, to hinder parts that are expected to
600 * remain discarded from silently getting populated and consuming memory.
601 * Technologies that support discarding of RAM don't have to bother and can
602 * simply map the whole #MemoryRegion.
604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
608 * properly coordinate with listeners before memory is plugged (populated),
609 * and after memory is unplugged (discarded).
611 * Listeners are called in multiples of the minimum granularity (unless it
612 * would exceed the registered range) and changes are aligned to the minimum
613 * granularity within the #MemoryRegion. Listeners have to prepare for memory
614 * becoming discarded in a different granularity than it was populated and the
615 * other way around.
617 struct RamDiscardManagerClass {
618 /* private */
619 InterfaceClass parent_class;
621 /* public */
624 * @get_min_granularity:
626 * Get the minimum granularity in which listeners will get notified
627 * about changes within the #MemoryRegion via the #RamDiscardManager.
629 * @rdm: the #RamDiscardManager
630 * @mr: the #MemoryRegion
632 * Returns the minimum granularity.
634 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
635 const MemoryRegion *mr);
638 * @is_populated:
640 * Check whether the given #MemoryRegionSection is completely populated
641 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
642 * There are no alignment requirements.
644 * @rdm: the #RamDiscardManager
645 * @section: the #MemoryRegionSection
647 * Returns whether the given range is completely populated.
649 bool (*is_populated)(const RamDiscardManager *rdm,
650 const MemoryRegionSection *section);
653 * @replay_populated:
655 * Call the #ReplayRamPopulate callback for all populated parts within the
656 * #MemoryRegionSection via the #RamDiscardManager.
658 * In case any call fails, no further calls are made.
660 * @rdm: the #RamDiscardManager
661 * @section: the #MemoryRegionSection
662 * @replay_fn: the #ReplayRamPopulate callback
663 * @opaque: pointer to forward to the callback
665 * Returns 0 on success, or a negative error if any notification failed.
667 int (*replay_populated)(const RamDiscardManager *rdm,
668 MemoryRegionSection *section,
669 ReplayRamPopulate replay_fn, void *opaque);
672 * @replay_discarded:
674 * Call the #ReplayRamDiscard callback for all discarded parts within the
675 * #MemoryRegionSection via the #RamDiscardManager.
677 * @rdm: the #RamDiscardManager
678 * @section: the #MemoryRegionSection
679 * @replay_fn: the #ReplayRamDiscard callback
680 * @opaque: pointer to forward to the callback
682 void (*replay_discarded)(const RamDiscardManager *rdm,
683 MemoryRegionSection *section,
684 ReplayRamDiscard replay_fn, void *opaque);
687 * @register_listener:
689 * Register a #RamDiscardListener for the given #MemoryRegionSection and
690 * immediately notify the #RamDiscardListener about all populated parts
691 * within the #MemoryRegionSection via the #RamDiscardManager.
693 * In case any notification fails, no further notifications are triggered
694 * and an error is logged.
696 * @rdm: the #RamDiscardManager
697 * @rdl: the #RamDiscardListener
698 * @section: the #MemoryRegionSection
700 void (*register_listener)(RamDiscardManager *rdm,
701 RamDiscardListener *rdl,
702 MemoryRegionSection *section);
705 * @unregister_listener:
707 * Unregister a previously registered #RamDiscardListener via the
708 * #RamDiscardManager after notifying the #RamDiscardListener about all
709 * populated parts becoming unpopulated within the registered
710 * #MemoryRegionSection.
712 * @rdm: the #RamDiscardManager
713 * @rdl: the #RamDiscardListener
715 void (*unregister_listener)(RamDiscardManager *rdm,
716 RamDiscardListener *rdl);
719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
720 const MemoryRegion *mr);
722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
723 const MemoryRegionSection *section);
725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
726 MemoryRegionSection *section,
727 ReplayRamPopulate replay_fn,
728 void *opaque);
730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
731 MemoryRegionSection *section,
732 ReplayRamDiscard replay_fn,
733 void *opaque);
735 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
736 RamDiscardListener *rdl,
737 MemoryRegionSection *section);
739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
740 RamDiscardListener *rdl);
742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
743 ram_addr_t *ram_addr, bool *read_only,
744 bool *mr_has_discard_manager);
746 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
749 /** MemoryRegion:
751 * A struct representing a memory region.
753 struct MemoryRegion {
754 Object parent_obj;
756 /* private: */
758 /* The following fields should fit in a cache line */
759 bool romd_mode;
760 bool ram;
761 bool subpage;
762 bool readonly; /* For RAM regions */
763 bool nonvolatile;
764 bool rom_device;
765 bool flush_coalesced_mmio;
766 uint8_t dirty_log_mask;
767 bool is_iommu;
768 RAMBlock *ram_block;
769 Object *owner;
771 const MemoryRegionOps *ops;
772 void *opaque;
773 MemoryRegion *container;
774 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
775 Int128 size;
776 hwaddr addr;
777 void (*destructor)(MemoryRegion *mr);
778 uint64_t align;
779 bool terminates;
780 bool ram_device;
781 bool enabled;
782 bool warning_printed; /* For reservations */
783 uint8_t vga_logging_count;
784 MemoryRegion *alias;
785 hwaddr alias_offset;
786 int32_t priority;
787 QTAILQ_HEAD(, MemoryRegion) subregions;
788 QTAILQ_ENTRY(MemoryRegion) subregions_link;
789 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
790 const char *name;
791 unsigned ioeventfd_nb;
792 MemoryRegionIoeventfd *ioeventfds;
793 RamDiscardManager *rdm; /* Only for RAM */
796 struct IOMMUMemoryRegion {
797 MemoryRegion parent_obj;
799 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
800 IOMMUNotifierFlag iommu_notify_flags;
803 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
804 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
807 * struct MemoryListener: callbacks structure for updates to the physical memory map
809 * Allows a component to adjust to changes in the guest-visible memory map.
810 * Use with memory_listener_register() and memory_listener_unregister().
812 struct MemoryListener {
814 * @begin:
816 * Called at the beginning of an address space update transaction.
817 * Followed by calls to #MemoryListener.region_add(),
818 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
819 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
820 * increasing address order.
822 * @listener: The #MemoryListener.
824 void (*begin)(MemoryListener *listener);
827 * @commit:
829 * Called at the end of an address space update transaction,
830 * after the last call to #MemoryListener.region_add(),
831 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
832 * #MemoryListener.log_start() and #MemoryListener.log_stop().
834 * @listener: The #MemoryListener.
836 void (*commit)(MemoryListener *listener);
839 * @region_add:
841 * Called during an address space update transaction,
842 * for a section of the address space that is new in this address space
843 * space since the last transaction.
845 * @listener: The #MemoryListener.
846 * @section: The new #MemoryRegionSection.
848 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
851 * @region_del:
853 * Called during an address space update transaction,
854 * for a section of the address space that has disappeared in the address
855 * space since the last transaction.
857 * @listener: The #MemoryListener.
858 * @section: The old #MemoryRegionSection.
860 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
863 * @region_nop:
865 * Called during an address space update transaction,
866 * for a section of the address space that is in the same place in the address
867 * space as in the last transaction.
869 * @listener: The #MemoryListener.
870 * @section: The #MemoryRegionSection.
872 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
875 * @log_start:
877 * Called during an address space update transaction, after
878 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
879 * #MemoryListener.region_nop(), if dirty memory logging clients have
880 * become active since the last transaction.
882 * @listener: The #MemoryListener.
883 * @section: The #MemoryRegionSection.
884 * @old: A bitmap of dirty memory logging clients that were active in
885 * the previous transaction.
886 * @new: A bitmap of dirty memory logging clients that are active in
887 * the current transaction.
889 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
890 int old, int new);
893 * @log_stop:
895 * Called during an address space update transaction, after
896 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
897 * #MemoryListener.region_nop() and possibly after
898 * #MemoryListener.log_start(), if dirty memory logging clients have
899 * become inactive since the last transaction.
901 * @listener: The #MemoryListener.
902 * @section: The #MemoryRegionSection.
903 * @old: A bitmap of dirty memory logging clients that were active in
904 * the previous transaction.
905 * @new: A bitmap of dirty memory logging clients that are active in
906 * the current transaction.
908 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
909 int old, int new);
912 * @log_sync:
914 * Called by memory_region_snapshot_and_clear_dirty() and
915 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
916 * copy of the dirty memory bitmap for a #MemoryRegionSection.
918 * @listener: The #MemoryListener.
919 * @section: The #MemoryRegionSection.
921 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
924 * @log_sync_global:
926 * This is the global version of @log_sync when the listener does
927 * not have a way to synchronize the log with finer granularity.
928 * When the listener registers with @log_sync_global defined, then
929 * its @log_sync must be NULL. Vice versa.
931 * @listener: The #MemoryListener.
933 void (*log_sync_global)(MemoryListener *listener);
936 * @log_clear:
938 * Called before reading the dirty memory bitmap for a
939 * #MemoryRegionSection.
941 * @listener: The #MemoryListener.
942 * @section: The #MemoryRegionSection.
944 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
947 * @log_global_start:
949 * Called by memory_global_dirty_log_start(), which
950 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
951 * the address space. #MemoryListener.log_global_start() is also
952 * called when a #MemoryListener is added, if global dirty logging is
953 * active at that time.
955 * @listener: The #MemoryListener.
957 void (*log_global_start)(MemoryListener *listener);
960 * @log_global_stop:
962 * Called by memory_global_dirty_log_stop(), which
963 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
964 * the address space.
966 * @listener: The #MemoryListener.
968 void (*log_global_stop)(MemoryListener *listener);
971 * @log_global_after_sync:
973 * Called after reading the dirty memory bitmap
974 * for any #MemoryRegionSection.
976 * @listener: The #MemoryListener.
978 void (*log_global_after_sync)(MemoryListener *listener);
981 * @eventfd_add:
983 * Called during an address space update transaction,
984 * for a section of the address space that has had a new ioeventfd
985 * registration since the last transaction.
987 * @listener: The #MemoryListener.
988 * @section: The new #MemoryRegionSection.
989 * @match_data: The @match_data parameter for the new ioeventfd.
990 * @data: The @data parameter for the new ioeventfd.
991 * @e: The #EventNotifier parameter for the new ioeventfd.
993 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
994 bool match_data, uint64_t data, EventNotifier *e);
997 * @eventfd_del:
999 * Called during an address space update transaction,
1000 * for a section of the address space that has dropped an ioeventfd
1001 * registration since the last transaction.
1003 * @listener: The #MemoryListener.
1004 * @section: The new #MemoryRegionSection.
1005 * @match_data: The @match_data parameter for the dropped ioeventfd.
1006 * @data: The @data parameter for the dropped ioeventfd.
1007 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1009 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1010 bool match_data, uint64_t data, EventNotifier *e);
1013 * @coalesced_io_add:
1015 * Called during an address space update transaction,
1016 * for a section of the address space that has had a new coalesced
1017 * MMIO range registration since the last transaction.
1019 * @listener: The #MemoryListener.
1020 * @section: The new #MemoryRegionSection.
1021 * @addr: The starting address for the coalesced MMIO range.
1022 * @len: The length of the coalesced MMIO range.
1024 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1025 hwaddr addr, hwaddr len);
1028 * @coalesced_io_del:
1030 * Called during an address space update transaction,
1031 * for a section of the address space that has dropped a coalesced
1032 * MMIO range since the last transaction.
1034 * @listener: The #MemoryListener.
1035 * @section: The new #MemoryRegionSection.
1036 * @addr: The starting address for the coalesced MMIO range.
1037 * @len: The length of the coalesced MMIO range.
1039 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1040 hwaddr addr, hwaddr len);
1042 * @priority:
1044 * Govern the order in which memory listeners are invoked. Lower priorities
1045 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1046 * or "stop" callbacks.
1048 unsigned priority;
1051 * @name:
1053 * Name of the listener. It can be used in contexts where we'd like to
1054 * identify one memory listener with the rest.
1056 const char *name;
1058 /* private: */
1059 AddressSpace *address_space;
1060 QTAILQ_ENTRY(MemoryListener) link;
1061 QTAILQ_ENTRY(MemoryListener) link_as;
1065 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1067 struct AddressSpace {
1068 /* private: */
1069 struct rcu_head rcu;
1070 char *name;
1071 MemoryRegion *root;
1073 /* Accessed via RCU. */
1074 struct FlatView *current_map;
1076 int ioeventfd_nb;
1077 struct MemoryRegionIoeventfd *ioeventfds;
1078 QTAILQ_HEAD(, MemoryListener) listeners;
1079 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1082 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1083 typedef struct FlatRange FlatRange;
1085 /* Flattened global view of current active memory hierarchy. Kept in sorted
1086 * order.
1088 struct FlatView {
1089 struct rcu_head rcu;
1090 unsigned ref;
1091 FlatRange *ranges;
1092 unsigned nr;
1093 unsigned nr_allocated;
1094 struct AddressSpaceDispatch *dispatch;
1095 MemoryRegion *root;
1098 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1100 return qatomic_rcu_read(&as->current_map);
1104 * typedef flatview_cb: callback for flatview_for_each_range()
1106 * @start: start address of the range within the FlatView
1107 * @len: length of the range in bytes
1108 * @mr: MemoryRegion covering this range
1109 * @offset_in_region: offset of the first byte of the range within @mr
1110 * @opaque: data pointer passed to flatview_for_each_range()
1112 * Returns: true to stop the iteration, false to keep going.
1114 typedef bool (*flatview_cb)(Int128 start,
1115 Int128 len,
1116 const MemoryRegion *mr,
1117 hwaddr offset_in_region,
1118 void *opaque);
1121 * flatview_for_each_range: Iterate through a FlatView
1122 * @fv: the FlatView to iterate through
1123 * @cb: function to call for each range
1124 * @opaque: opaque data pointer to pass to @cb
1126 * A FlatView is made up of a list of non-overlapping ranges, each of
1127 * which is a slice of a MemoryRegion. This function iterates through
1128 * each range in @fv, calling @cb. The callback function can terminate
1129 * iteration early by returning 'true'.
1131 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1133 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1134 MemoryRegionSection *b)
1136 return a->mr == b->mr &&
1137 a->fv == b->fv &&
1138 a->offset_within_region == b->offset_within_region &&
1139 a->offset_within_address_space == b->offset_within_address_space &&
1140 int128_eq(a->size, b->size) &&
1141 a->readonly == b->readonly &&
1142 a->nonvolatile == b->nonvolatile;
1146 * memory_region_section_new_copy: Copy a memory region section
1148 * Allocate memory for a new copy, copy the memory region section, and
1149 * properly take a reference on all relevant members.
1151 * @s: the #MemoryRegionSection to copy
1153 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1156 * memory_region_section_new_copy: Free a copied memory region section
1158 * Free a copy of a memory section created via memory_region_section_new_copy().
1159 * properly dropping references on all relevant members.
1161 * @s: the #MemoryRegionSection to copy
1163 void memory_region_section_free_copy(MemoryRegionSection *s);
1166 * memory_region_init: Initialize a memory region
1168 * The region typically acts as a container for other memory regions. Use
1169 * memory_region_add_subregion() to add subregions.
1171 * @mr: the #MemoryRegion to be initialized
1172 * @owner: the object that tracks the region's reference count
1173 * @name: used for debugging; not visible to the user or ABI
1174 * @size: size of the region; any subregions beyond this size will be clipped
1176 void memory_region_init(MemoryRegion *mr,
1177 Object *owner,
1178 const char *name,
1179 uint64_t size);
1182 * memory_region_ref: Add 1 to a memory region's reference count
1184 * Whenever memory regions are accessed outside the BQL, they need to be
1185 * preserved against hot-unplug. MemoryRegions actually do not have their
1186 * own reference count; they piggyback on a QOM object, their "owner".
1187 * This function adds a reference to the owner.
1189 * All MemoryRegions must have an owner if they can disappear, even if the
1190 * device they belong to operates exclusively under the BQL. This is because
1191 * the region could be returned at any time by memory_region_find, and this
1192 * is usually under guest control.
1194 * @mr: the #MemoryRegion
1196 void memory_region_ref(MemoryRegion *mr);
1199 * memory_region_unref: Remove 1 to a memory region's reference count
1201 * Whenever memory regions are accessed outside the BQL, they need to be
1202 * preserved against hot-unplug. MemoryRegions actually do not have their
1203 * own reference count; they piggyback on a QOM object, their "owner".
1204 * This function removes a reference to the owner and possibly destroys it.
1206 * @mr: the #MemoryRegion
1208 void memory_region_unref(MemoryRegion *mr);
1211 * memory_region_init_io: Initialize an I/O memory region.
1213 * Accesses into the region will cause the callbacks in @ops to be called.
1214 * if @size is nonzero, subregions will be clipped to @size.
1216 * @mr: the #MemoryRegion to be initialized.
1217 * @owner: the object that tracks the region's reference count
1218 * @ops: a structure containing read and write callbacks to be used when
1219 * I/O is performed on the region.
1220 * @opaque: passed to the read and write callbacks of the @ops structure.
1221 * @name: used for debugging; not visible to the user or ABI
1222 * @size: size of the region.
1224 void memory_region_init_io(MemoryRegion *mr,
1225 Object *owner,
1226 const MemoryRegionOps *ops,
1227 void *opaque,
1228 const char *name,
1229 uint64_t size);
1232 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1233 * into the region will modify memory
1234 * directly.
1236 * @mr: the #MemoryRegion to be initialized.
1237 * @owner: the object that tracks the region's reference count
1238 * @name: Region name, becomes part of RAMBlock name used in migration stream
1239 * must be unique within any device
1240 * @size: size of the region.
1241 * @errp: pointer to Error*, to store an error if it happens.
1243 * Note that this function does not do anything to cause the data in the
1244 * RAM memory region to be migrated; that is the responsibility of the caller.
1246 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1247 Object *owner,
1248 const char *name,
1249 uint64_t size,
1250 Error **errp);
1253 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1254 * Accesses into the region will
1255 * modify memory directly.
1257 * @mr: the #MemoryRegion to be initialized.
1258 * @owner: the object that tracks the region's reference count
1259 * @name: Region name, becomes part of RAMBlock name used in migration stream
1260 * must be unique within any device
1261 * @size: size of the region.
1262 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1263 * @errp: pointer to Error*, to store an error if it happens.
1265 * Note that this function does not do anything to cause the data in the
1266 * RAM memory region to be migrated; that is the responsibility of the caller.
1268 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1269 Object *owner,
1270 const char *name,
1271 uint64_t size,
1272 uint32_t ram_flags,
1273 Error **errp);
1276 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1277 * RAM. Accesses into the region will
1278 * modify memory directly. Only an initial
1279 * portion of this RAM is actually used.
1280 * Changing the size while migrating
1281 * can result in the migration being
1282 * canceled.
1284 * @mr: the #MemoryRegion to be initialized.
1285 * @owner: the object that tracks the region's reference count
1286 * @name: Region name, becomes part of RAMBlock name used in migration stream
1287 * must be unique within any device
1288 * @size: used size of the region.
1289 * @max_size: max size of the region.
1290 * @resized: callback to notify owner about used size change.
1291 * @errp: pointer to Error*, to store an error if it happens.
1293 * Note that this function does not do anything to cause the data in the
1294 * RAM memory region to be migrated; that is the responsibility of the caller.
1296 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1297 Object *owner,
1298 const char *name,
1299 uint64_t size,
1300 uint64_t max_size,
1301 void (*resized)(const char*,
1302 uint64_t length,
1303 void *host),
1304 Error **errp);
1305 #ifdef CONFIG_POSIX
1308 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1309 * mmap-ed backend.
1311 * @mr: the #MemoryRegion to be initialized.
1312 * @owner: the object that tracks the region's reference count
1313 * @name: Region name, becomes part of RAMBlock name used in migration stream
1314 * must be unique within any device
1315 * @size: size of the region.
1316 * @align: alignment of the region base address; if 0, the default alignment
1317 * (getpagesize()) will be used.
1318 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1319 * RAM_NORESERVE,
1320 * @path: the path in which to allocate the RAM.
1321 * @readonly: true to open @path for reading, false for read/write.
1322 * @errp: pointer to Error*, to store an error if it happens.
1324 * Note that this function does not do anything to cause the data in the
1325 * RAM memory region to be migrated; that is the responsibility of the caller.
1327 void memory_region_init_ram_from_file(MemoryRegion *mr,
1328 Object *owner,
1329 const char *name,
1330 uint64_t size,
1331 uint64_t align,
1332 uint32_t ram_flags,
1333 const char *path,
1334 bool readonly,
1335 Error **errp);
1338 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1339 * mmap-ed backend.
1341 * @mr: the #MemoryRegion to be initialized.
1342 * @owner: the object that tracks the region's reference count
1343 * @name: the name of the region.
1344 * @size: size of the region.
1345 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1346 * RAM_NORESERVE, RAM_PROTECTED.
1347 * @fd: the fd to mmap.
1348 * @offset: offset within the file referenced by fd
1349 * @errp: pointer to Error*, to store an error if it happens.
1351 * Note that this function does not do anything to cause the data in the
1352 * RAM memory region to be migrated; that is the responsibility of the caller.
1354 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1355 Object *owner,
1356 const char *name,
1357 uint64_t size,
1358 uint32_t ram_flags,
1359 int fd,
1360 ram_addr_t offset,
1361 Error **errp);
1362 #endif
1365 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1366 * user-provided pointer. Accesses into the
1367 * region will modify memory directly.
1369 * @mr: the #MemoryRegion to be initialized.
1370 * @owner: the object that tracks the region's reference count
1371 * @name: Region name, becomes part of RAMBlock name used in migration stream
1372 * must be unique within any device
1373 * @size: size of the region.
1374 * @ptr: memory to be mapped; must contain at least @size bytes.
1376 * Note that this function does not do anything to cause the data in the
1377 * RAM memory region to be migrated; that is the responsibility of the caller.
1379 void memory_region_init_ram_ptr(MemoryRegion *mr,
1380 Object *owner,
1381 const char *name,
1382 uint64_t size,
1383 void *ptr);
1386 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1387 * a user-provided pointer.
1389 * A RAM device represents a mapping to a physical device, such as to a PCI
1390 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1391 * into the VM address space and access to the region will modify memory
1392 * directly. However, the memory region should not be included in a memory
1393 * dump (device may not be enabled/mapped at the time of the dump), and
1394 * operations incompatible with manipulating MMIO should be avoided. Replaces
1395 * skip_dump flag.
1397 * @mr: the #MemoryRegion to be initialized.
1398 * @owner: the object that tracks the region's reference count
1399 * @name: the name of the region.
1400 * @size: size of the region.
1401 * @ptr: memory to be mapped; must contain at least @size bytes.
1403 * Note that this function does not do anything to cause the data in the
1404 * RAM memory region to be migrated; that is the responsibility of the caller.
1405 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1407 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1408 Object *owner,
1409 const char *name,
1410 uint64_t size,
1411 void *ptr);
1414 * memory_region_init_alias: Initialize a memory region that aliases all or a
1415 * part of another memory region.
1417 * @mr: the #MemoryRegion to be initialized.
1418 * @owner: the object that tracks the region's reference count
1419 * @name: used for debugging; not visible to the user or ABI
1420 * @orig: the region to be referenced; @mr will be equivalent to
1421 * @orig between @offset and @offset + @size - 1.
1422 * @offset: start of the section in @orig to be referenced.
1423 * @size: size of the region.
1425 void memory_region_init_alias(MemoryRegion *mr,
1426 Object *owner,
1427 const char *name,
1428 MemoryRegion *orig,
1429 hwaddr offset,
1430 uint64_t size);
1433 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1435 * This has the same effect as calling memory_region_init_ram_nomigrate()
1436 * and then marking the resulting region read-only with
1437 * memory_region_set_readonly().
1439 * Note that this function does not do anything to cause the data in the
1440 * RAM side of the memory region to be migrated; that is the responsibility
1441 * of the caller.
1443 * @mr: the #MemoryRegion to be initialized.
1444 * @owner: the object that tracks the region's reference count
1445 * @name: Region name, becomes part of RAMBlock name used in migration stream
1446 * must be unique within any device
1447 * @size: size of the region.
1448 * @errp: pointer to Error*, to store an error if it happens.
1450 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1451 Object *owner,
1452 const char *name,
1453 uint64_t size,
1454 Error **errp);
1457 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1458 * Writes are handled via callbacks.
1460 * Note that this function does not do anything to cause the data in the
1461 * RAM side of the memory region to be migrated; that is the responsibility
1462 * of the caller.
1464 * @mr: the #MemoryRegion to be initialized.
1465 * @owner: the object that tracks the region's reference count
1466 * @ops: callbacks for write access handling (must not be NULL).
1467 * @opaque: passed to the read and write callbacks of the @ops structure.
1468 * @name: Region name, becomes part of RAMBlock name used in migration stream
1469 * must be unique within any device
1470 * @size: size of the region.
1471 * @errp: pointer to Error*, to store an error if it happens.
1473 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1474 Object *owner,
1475 const MemoryRegionOps *ops,
1476 void *opaque,
1477 const char *name,
1478 uint64_t size,
1479 Error **errp);
1482 * memory_region_init_iommu: Initialize a memory region of a custom type
1483 * that translates addresses
1485 * An IOMMU region translates addresses and forwards accesses to a target
1486 * memory region.
1488 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1489 * @_iommu_mr should be a pointer to enough memory for an instance of
1490 * that subclass, @instance_size is the size of that subclass, and
1491 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1492 * instance of the subclass, and its methods will then be called to handle
1493 * accesses to the memory region. See the documentation of
1494 * #IOMMUMemoryRegionClass for further details.
1496 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1497 * @instance_size: the IOMMUMemoryRegion subclass instance size
1498 * @mrtypename: the type name of the #IOMMUMemoryRegion
1499 * @owner: the object that tracks the region's reference count
1500 * @name: used for debugging; not visible to the user or ABI
1501 * @size: size of the region.
1503 void memory_region_init_iommu(void *_iommu_mr,
1504 size_t instance_size,
1505 const char *mrtypename,
1506 Object *owner,
1507 const char *name,
1508 uint64_t size);
1511 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1512 * region will modify memory directly.
1514 * @mr: the #MemoryRegion to be initialized
1515 * @owner: the object that tracks the region's reference count (must be
1516 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1517 * @name: name of the memory region
1518 * @size: size of the region in bytes
1519 * @errp: pointer to Error*, to store an error if it happens.
1521 * This function allocates RAM for a board model or device, and
1522 * arranges for it to be migrated (by calling vmstate_register_ram()
1523 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1524 * @owner is NULL).
1526 * TODO: Currently we restrict @owner to being either NULL (for
1527 * global RAM regions with no owner) or devices, so that we can
1528 * give the RAM block a unique name for migration purposes.
1529 * We should lift this restriction and allow arbitrary Objects.
1530 * If you pass a non-NULL non-device @owner then we will assert.
1532 void memory_region_init_ram(MemoryRegion *mr,
1533 Object *owner,
1534 const char *name,
1535 uint64_t size,
1536 Error **errp);
1539 * memory_region_init_rom: Initialize a ROM memory region.
1541 * This has the same effect as calling memory_region_init_ram()
1542 * and then marking the resulting region read-only with
1543 * memory_region_set_readonly(). This includes arranging for the
1544 * contents to be migrated.
1546 * TODO: Currently we restrict @owner to being either NULL (for
1547 * global RAM regions with no owner) or devices, so that we can
1548 * give the RAM block a unique name for migration purposes.
1549 * We should lift this restriction and allow arbitrary Objects.
1550 * If you pass a non-NULL non-device @owner then we will assert.
1552 * @mr: the #MemoryRegion to be initialized.
1553 * @owner: the object that tracks the region's reference count
1554 * @name: Region name, becomes part of RAMBlock name used in migration stream
1555 * must be unique within any device
1556 * @size: size of the region.
1557 * @errp: pointer to Error*, to store an error if it happens.
1559 void memory_region_init_rom(MemoryRegion *mr,
1560 Object *owner,
1561 const char *name,
1562 uint64_t size,
1563 Error **errp);
1566 * memory_region_init_rom_device: Initialize a ROM memory region.
1567 * Writes are handled via callbacks.
1569 * This function initializes a memory region backed by RAM for reads
1570 * and callbacks for writes, and arranges for the RAM backing to
1571 * be migrated (by calling vmstate_register_ram()
1572 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1573 * @owner is NULL).
1575 * TODO: Currently we restrict @owner to being either NULL (for
1576 * global RAM regions with no owner) or devices, so that we can
1577 * give the RAM block a unique name for migration purposes.
1578 * We should lift this restriction and allow arbitrary Objects.
1579 * If you pass a non-NULL non-device @owner then we will assert.
1581 * @mr: the #MemoryRegion to be initialized.
1582 * @owner: the object that tracks the region's reference count
1583 * @ops: callbacks for write access handling (must not be NULL).
1584 * @opaque: passed to the read and write callbacks of the @ops structure.
1585 * @name: Region name, becomes part of RAMBlock name used in migration stream
1586 * must be unique within any device
1587 * @size: size of the region.
1588 * @errp: pointer to Error*, to store an error if it happens.
1590 void memory_region_init_rom_device(MemoryRegion *mr,
1591 Object *owner,
1592 const MemoryRegionOps *ops,
1593 void *opaque,
1594 const char *name,
1595 uint64_t size,
1596 Error **errp);
1600 * memory_region_owner: get a memory region's owner.
1602 * @mr: the memory region being queried.
1604 Object *memory_region_owner(MemoryRegion *mr);
1607 * memory_region_size: get a memory region's size.
1609 * @mr: the memory region being queried.
1611 uint64_t memory_region_size(MemoryRegion *mr);
1614 * memory_region_is_ram: check whether a memory region is random access
1616 * Returns %true if a memory region is random access.
1618 * @mr: the memory region being queried
1620 static inline bool memory_region_is_ram(MemoryRegion *mr)
1622 return mr->ram;
1626 * memory_region_is_ram_device: check whether a memory region is a ram device
1628 * Returns %true if a memory region is a device backed ram region
1630 * @mr: the memory region being queried
1632 bool memory_region_is_ram_device(MemoryRegion *mr);
1635 * memory_region_is_romd: check whether a memory region is in ROMD mode
1637 * Returns %true if a memory region is a ROM device and currently set to allow
1638 * direct reads.
1640 * @mr: the memory region being queried
1642 static inline bool memory_region_is_romd(MemoryRegion *mr)
1644 return mr->rom_device && mr->romd_mode;
1648 * memory_region_is_protected: check whether a memory region is protected
1650 * Returns %true if a memory region is protected RAM and cannot be accessed
1651 * via standard mechanisms, e.g. DMA.
1653 * @mr: the memory region being queried
1655 bool memory_region_is_protected(MemoryRegion *mr);
1658 * memory_region_get_iommu: check whether a memory region is an iommu
1660 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1661 * otherwise NULL.
1663 * @mr: the memory region being queried
1665 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1667 if (mr->alias) {
1668 return memory_region_get_iommu(mr->alias);
1670 if (mr->is_iommu) {
1671 return (IOMMUMemoryRegion *) mr;
1673 return NULL;
1677 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1678 * if an iommu or NULL if not
1680 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1681 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1683 * @iommu_mr: the memory region being queried
1685 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1686 IOMMUMemoryRegion *iommu_mr)
1688 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1691 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1694 * memory_region_iommu_get_min_page_size: get minimum supported page size
1695 * for an iommu
1697 * Returns minimum supported page size for an iommu.
1699 * @iommu_mr: the memory region being queried
1701 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1704 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1706 * Note: for any IOMMU implementation, an in-place mapping change
1707 * should be notified with an UNMAP followed by a MAP.
1709 * @iommu_mr: the memory region that was changed
1710 * @iommu_idx: the IOMMU index for the translation table which has changed
1711 * @event: TLB event with the new entry in the IOMMU translation table.
1712 * The entry replaces all old entries for the same virtual I/O address
1713 * range.
1715 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1716 int iommu_idx,
1717 IOMMUTLBEvent event);
1720 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1721 * entry to a single notifier
1723 * This works just like memory_region_notify_iommu(), but it only
1724 * notifies a specific notifier, not all of them.
1726 * @notifier: the notifier to be notified
1727 * @event: TLB event with the new entry in the IOMMU translation table.
1728 * The entry replaces all old entries for the same virtual I/O address
1729 * range.
1731 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1732 IOMMUTLBEvent *event);
1735 * memory_region_register_iommu_notifier: register a notifier for changes to
1736 * IOMMU translation entries.
1738 * Returns 0 on success, or a negative errno otherwise. In particular,
1739 * -EINVAL indicates that at least one of the attributes of the notifier
1740 * is not supported (flag/range) by the IOMMU memory region. In case of error
1741 * the error object must be created.
1743 * @mr: the memory region to observe
1744 * @n: the IOMMUNotifier to be added; the notify callback receives a
1745 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1746 * ceases to be valid on exit from the notifier.
1747 * @errp: pointer to Error*, to store an error if it happens.
1749 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1750 IOMMUNotifier *n, Error **errp);
1753 * memory_region_iommu_replay: replay existing IOMMU translations to
1754 * a notifier with the minimum page granularity returned by
1755 * mr->iommu_ops->get_page_size().
1757 * Note: this is not related to record-and-replay functionality.
1759 * @iommu_mr: the memory region to observe
1760 * @n: the notifier to which to replay iommu mappings
1762 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1765 * memory_region_unregister_iommu_notifier: unregister a notifier for
1766 * changes to IOMMU translation entries.
1768 * @mr: the memory region which was observed and for which notity_stopped()
1769 * needs to be called
1770 * @n: the notifier to be removed.
1772 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1773 IOMMUNotifier *n);
1776 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1777 * defined on the IOMMU.
1779 * Returns 0 on success, or a negative errno otherwise. In particular,
1780 * -EINVAL indicates that the IOMMU does not support the requested
1781 * attribute.
1783 * @iommu_mr: the memory region
1784 * @attr: the requested attribute
1785 * @data: a pointer to the requested attribute data
1787 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1788 enum IOMMUMemoryRegionAttr attr,
1789 void *data);
1792 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1793 * use for translations with the given memory transaction attributes.
1795 * @iommu_mr: the memory region
1796 * @attrs: the memory transaction attributes
1798 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1799 MemTxAttrs attrs);
1802 * memory_region_iommu_num_indexes: return the total number of IOMMU
1803 * indexes that this IOMMU supports.
1805 * @iommu_mr: the memory region
1807 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1810 * memory_region_iommu_set_page_size_mask: set the supported page
1811 * sizes for a given IOMMU memory region
1813 * @iommu_mr: IOMMU memory region
1814 * @page_size_mask: supported page size mask
1815 * @errp: pointer to Error*, to store an error if it happens.
1817 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1818 uint64_t page_size_mask,
1819 Error **errp);
1822 * memory_region_name: get a memory region's name
1824 * Returns the string that was used to initialize the memory region.
1826 * @mr: the memory region being queried
1828 const char *memory_region_name(const MemoryRegion *mr);
1831 * memory_region_is_logging: return whether a memory region is logging writes
1833 * Returns %true if the memory region is logging writes for the given client
1835 * @mr: the memory region being queried
1836 * @client: the client being queried
1838 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1841 * memory_region_get_dirty_log_mask: return the clients for which a
1842 * memory region is logging writes.
1844 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1845 * are the bit indices.
1847 * @mr: the memory region being queried
1849 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1852 * memory_region_is_rom: check whether a memory region is ROM
1854 * Returns %true if a memory region is read-only memory.
1856 * @mr: the memory region being queried
1858 static inline bool memory_region_is_rom(MemoryRegion *mr)
1860 return mr->ram && mr->readonly;
1864 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1866 * Returns %true is a memory region is non-volatile memory.
1868 * @mr: the memory region being queried
1870 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1872 return mr->nonvolatile;
1876 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1878 * Returns a file descriptor backing a file-based RAM memory region,
1879 * or -1 if the region is not a file-based RAM memory region.
1881 * @mr: the RAM or alias memory region being queried.
1883 int memory_region_get_fd(MemoryRegion *mr);
1886 * memory_region_from_host: Convert a pointer into a RAM memory region
1887 * and an offset within it.
1889 * Given a host pointer inside a RAM memory region (created with
1890 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1891 * the MemoryRegion and the offset within it.
1893 * Use with care; by the time this function returns, the returned pointer is
1894 * not protected by RCU anymore. If the caller is not within an RCU critical
1895 * section and does not hold the iothread lock, it must have other means of
1896 * protecting the pointer, such as a reference to the region that includes
1897 * the incoming ram_addr_t.
1899 * @ptr: the host pointer to be converted
1900 * @offset: the offset within memory region
1902 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1905 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1907 * Returns a host pointer to a RAM memory region (created with
1908 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1910 * Use with care; by the time this function returns, the returned pointer is
1911 * not protected by RCU anymore. If the caller is not within an RCU critical
1912 * section and does not hold the iothread lock, it must have other means of
1913 * protecting the pointer, such as a reference to the region that includes
1914 * the incoming ram_addr_t.
1916 * @mr: the memory region being queried.
1918 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1920 /* memory_region_ram_resize: Resize a RAM region.
1922 * Resizing RAM while migrating can result in the migration being canceled.
1923 * Care has to be taken if the guest might have already detected the memory.
1925 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1926 * @newsize: the new size the region
1927 * @errp: pointer to Error*, to store an error if it happens.
1929 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1930 Error **errp);
1933 * memory_region_msync: Synchronize selected address range of
1934 * a memory mapped region
1936 * @mr: the memory region to be msync
1937 * @addr: the initial address of the range to be sync
1938 * @size: the size of the range to be sync
1940 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1943 * memory_region_writeback: Trigger cache writeback for
1944 * selected address range
1946 * @mr: the memory region to be updated
1947 * @addr: the initial address of the range to be written back
1948 * @size: the size of the range to be written back
1950 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1953 * memory_region_set_log: Turn dirty logging on or off for a region.
1955 * Turns dirty logging on or off for a specified client (display, migration).
1956 * Only meaningful for RAM regions.
1958 * @mr: the memory region being updated.
1959 * @log: whether dirty logging is to be enabled or disabled.
1960 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1962 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1965 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1967 * Marks a range of bytes as dirty, after it has been dirtied outside
1968 * guest code.
1970 * @mr: the memory region being dirtied.
1971 * @addr: the address (relative to the start of the region) being dirtied.
1972 * @size: size of the range being dirtied.
1974 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1975 hwaddr size);
1978 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1980 * This function is called when the caller wants to clear the remote
1981 * dirty bitmap of a memory range within the memory region. This can
1982 * be used by e.g. KVM to manually clear dirty log when
1983 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1984 * kernel.
1986 * @mr: the memory region to clear the dirty log upon
1987 * @start: start address offset within the memory region
1988 * @len: length of the memory region to clear dirty bitmap
1990 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1991 hwaddr len);
1994 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1995 * bitmap and clear it.
1997 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1998 * returns the snapshot. The snapshot can then be used to query dirty
1999 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2000 * querying the same page multiple times, which is especially useful for
2001 * display updates where the scanlines often are not page aligned.
2003 * The dirty bitmap region which gets copied into the snapshot (and
2004 * cleared afterwards) can be larger than requested. The boundaries
2005 * are rounded up/down so complete bitmap longs (covering 64 pages on
2006 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2007 * isn't a problem for display updates as the extra pages are outside
2008 * the visible area, and in case the visible area changes a full
2009 * display redraw is due anyway. Should other use cases for this
2010 * function emerge we might have to revisit this implementation
2011 * detail.
2013 * Use g_free to release DirtyBitmapSnapshot.
2015 * @mr: the memory region being queried.
2016 * @addr: the address (relative to the start of the region) being queried.
2017 * @size: the size of the range being queried.
2018 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2020 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2021 hwaddr addr,
2022 hwaddr size,
2023 unsigned client);
2026 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2027 * in the specified dirty bitmap snapshot.
2029 * @mr: the memory region being queried.
2030 * @snap: the dirty bitmap snapshot
2031 * @addr: the address (relative to the start of the region) being queried.
2032 * @size: the size of the range being queried.
2034 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2035 DirtyBitmapSnapshot *snap,
2036 hwaddr addr, hwaddr size);
2039 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2040 * client.
2042 * Marks a range of pages as no longer dirty.
2044 * @mr: the region being updated.
2045 * @addr: the start of the subrange being cleaned.
2046 * @size: the size of the subrange being cleaned.
2047 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2048 * %DIRTY_MEMORY_VGA.
2050 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2051 hwaddr size, unsigned client);
2054 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2055 * TBs (for self-modifying code).
2057 * The MemoryRegionOps->write() callback of a ROM device must use this function
2058 * to mark byte ranges that have been modified internally, such as by directly
2059 * accessing the memory returned by memory_region_get_ram_ptr().
2061 * This function marks the range dirty and invalidates TBs so that TCG can
2062 * detect self-modifying code.
2064 * @mr: the region being flushed.
2065 * @addr: the start, relative to the start of the region, of the range being
2066 * flushed.
2067 * @size: the size, in bytes, of the range being flushed.
2069 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2072 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2074 * Allows a memory region to be marked as read-only (turning it into a ROM).
2075 * only useful on RAM regions.
2077 * @mr: the region being updated.
2078 * @readonly: whether rhe region is to be ROM or RAM.
2080 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2083 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2085 * Allows a memory region to be marked as non-volatile.
2086 * only useful on RAM regions.
2088 * @mr: the region being updated.
2089 * @nonvolatile: whether rhe region is to be non-volatile.
2091 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2094 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2096 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2097 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2098 * device is mapped to guest memory and satisfies read access directly.
2099 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2100 * Writes are always handled by the #MemoryRegion.write function.
2102 * @mr: the memory region to be updated
2103 * @romd_mode: %true to put the region into ROMD mode
2105 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2108 * memory_region_set_coalescing: Enable memory coalescing for the region.
2110 * Enabled writes to a region to be queued for later processing. MMIO ->write
2111 * callbacks may be delayed until a non-coalesced MMIO is issued.
2112 * Only useful for IO regions. Roughly similar to write-combining hardware.
2114 * @mr: the memory region to be write coalesced
2116 void memory_region_set_coalescing(MemoryRegion *mr);
2119 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2120 * a region.
2122 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2123 * Multiple calls can be issued coalesced disjoint ranges.
2125 * @mr: the memory region to be updated.
2126 * @offset: the start of the range within the region to be coalesced.
2127 * @size: the size of the subrange to be coalesced.
2129 void memory_region_add_coalescing(MemoryRegion *mr,
2130 hwaddr offset,
2131 uint64_t size);
2134 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2136 * Disables any coalescing caused by memory_region_set_coalescing() or
2137 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2138 * hardware.
2140 * @mr: the memory region to be updated.
2142 void memory_region_clear_coalescing(MemoryRegion *mr);
2145 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2146 * accesses.
2148 * Ensure that pending coalesced MMIO request are flushed before the memory
2149 * region is accessed. This property is automatically enabled for all regions
2150 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2152 * @mr: the memory region to be updated.
2154 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2157 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2158 * accesses.
2160 * Clear the automatic coalesced MMIO flushing enabled via
2161 * memory_region_set_flush_coalesced. Note that this service has no effect on
2162 * memory regions that have MMIO coalescing enabled for themselves. For them,
2163 * automatic flushing will stop once coalescing is disabled.
2165 * @mr: the memory region to be updated.
2167 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2170 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2171 * is written to a location.
2173 * Marks a word in an IO region (initialized with memory_region_init_io())
2174 * as a trigger for an eventfd event. The I/O callback will not be called.
2175 * The caller must be prepared to handle failure (that is, take the required
2176 * action if the callback _is_ called).
2178 * @mr: the memory region being updated.
2179 * @addr: the address within @mr that is to be monitored
2180 * @size: the size of the access to trigger the eventfd
2181 * @match_data: whether to match against @data, instead of just @addr
2182 * @data: the data to match against the guest write
2183 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2185 void memory_region_add_eventfd(MemoryRegion *mr,
2186 hwaddr addr,
2187 unsigned size,
2188 bool match_data,
2189 uint64_t data,
2190 EventNotifier *e);
2193 * memory_region_del_eventfd: Cancel an eventfd.
2195 * Cancels an eventfd trigger requested by a previous
2196 * memory_region_add_eventfd() call.
2198 * @mr: the memory region being updated.
2199 * @addr: the address within @mr that is to be monitored
2200 * @size: the size of the access to trigger the eventfd
2201 * @match_data: whether to match against @data, instead of just @addr
2202 * @data: the data to match against the guest write
2203 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2205 void memory_region_del_eventfd(MemoryRegion *mr,
2206 hwaddr addr,
2207 unsigned size,
2208 bool match_data,
2209 uint64_t data,
2210 EventNotifier *e);
2213 * memory_region_add_subregion: Add a subregion to a container.
2215 * Adds a subregion at @offset. The subregion may not overlap with other
2216 * subregions (except for those explicitly marked as overlapping). A region
2217 * may only be added once as a subregion (unless removed with
2218 * memory_region_del_subregion()); use memory_region_init_alias() if you
2219 * want a region to be a subregion in multiple locations.
2221 * @mr: the region to contain the new subregion; must be a container
2222 * initialized with memory_region_init().
2223 * @offset: the offset relative to @mr where @subregion is added.
2224 * @subregion: the subregion to be added.
2226 void memory_region_add_subregion(MemoryRegion *mr,
2227 hwaddr offset,
2228 MemoryRegion *subregion);
2230 * memory_region_add_subregion_overlap: Add a subregion to a container
2231 * with overlap.
2233 * Adds a subregion at @offset. The subregion may overlap with other
2234 * subregions. Conflicts are resolved by having a higher @priority hide a
2235 * lower @priority. Subregions without priority are taken as @priority 0.
2236 * A region may only be added once as a subregion (unless removed with
2237 * memory_region_del_subregion()); use memory_region_init_alias() if you
2238 * want a region to be a subregion in multiple locations.
2240 * @mr: the region to contain the new subregion; must be a container
2241 * initialized with memory_region_init().
2242 * @offset: the offset relative to @mr where @subregion is added.
2243 * @subregion: the subregion to be added.
2244 * @priority: used for resolving overlaps; highest priority wins.
2246 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2247 hwaddr offset,
2248 MemoryRegion *subregion,
2249 int priority);
2252 * memory_region_get_ram_addr: Get the ram address associated with a memory
2253 * region
2255 * @mr: the region to be queried
2257 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2259 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2261 * memory_region_del_subregion: Remove a subregion.
2263 * Removes a subregion from its container.
2265 * @mr: the container to be updated.
2266 * @subregion: the region being removed; must be a current subregion of @mr.
2268 void memory_region_del_subregion(MemoryRegion *mr,
2269 MemoryRegion *subregion);
2272 * memory_region_set_enabled: dynamically enable or disable a region
2274 * Enables or disables a memory region. A disabled memory region
2275 * ignores all accesses to itself and its subregions. It does not
2276 * obscure sibling subregions with lower priority - it simply behaves as
2277 * if it was removed from the hierarchy.
2279 * Regions default to being enabled.
2281 * @mr: the region to be updated
2282 * @enabled: whether to enable or disable the region
2284 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2287 * memory_region_set_address: dynamically update the address of a region
2289 * Dynamically updates the address of a region, relative to its container.
2290 * May be used on regions are currently part of a memory hierarchy.
2292 * @mr: the region to be updated
2293 * @addr: new address, relative to container region
2295 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2298 * memory_region_set_size: dynamically update the size of a region.
2300 * Dynamically updates the size of a region.
2302 * @mr: the region to be updated
2303 * @size: used size of the region.
2305 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2308 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2310 * Dynamically updates the offset into the target region that an alias points
2311 * to, as if the fourth argument to memory_region_init_alias() has changed.
2313 * @mr: the #MemoryRegion to be updated; should be an alias.
2314 * @offset: the new offset into the target memory region
2316 void memory_region_set_alias_offset(MemoryRegion *mr,
2317 hwaddr offset);
2320 * memory_region_present: checks if an address relative to a @container
2321 * translates into #MemoryRegion within @container
2323 * Answer whether a #MemoryRegion within @container covers the address
2324 * @addr.
2326 * @container: a #MemoryRegion within which @addr is a relative address
2327 * @addr: the area within @container to be searched
2329 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2332 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2333 * into another memory region, which does not necessarily imply that it is
2334 * mapped into an address space.
2336 * @mr: a #MemoryRegion which should be checked if it's mapped
2338 bool memory_region_is_mapped(MemoryRegion *mr);
2341 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2342 * #MemoryRegion
2344 * The #RamDiscardManager cannot change while a memory region is mapped.
2346 * @mr: the #MemoryRegion
2348 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2351 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2352 * #RamDiscardManager assigned
2354 * @mr: the #MemoryRegion
2356 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2358 return !!memory_region_get_ram_discard_manager(mr);
2362 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2363 * #MemoryRegion
2365 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2366 * that does not cover RAM, or a #MemoryRegion that already has a
2367 * #RamDiscardManager assigned.
2369 * @mr: the #MemoryRegion
2370 * @rdm: #RamDiscardManager to set
2372 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2373 RamDiscardManager *rdm);
2376 * memory_region_find: translate an address/size relative to a
2377 * MemoryRegion into a #MemoryRegionSection.
2379 * Locates the first #MemoryRegion within @mr that overlaps the range
2380 * given by @addr and @size.
2382 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2383 * It will have the following characteristics:
2384 * - @size = 0 iff no overlap was found
2385 * - @mr is non-%NULL iff an overlap was found
2387 * Remember that in the return value the @offset_within_region is
2388 * relative to the returned region (in the .@mr field), not to the
2389 * @mr argument.
2391 * Similarly, the .@offset_within_address_space is relative to the
2392 * address space that contains both regions, the passed and the
2393 * returned one. However, in the special case where the @mr argument
2394 * has no container (and thus is the root of the address space), the
2395 * following will hold:
2396 * - @offset_within_address_space >= @addr
2397 * - @offset_within_address_space + .@size <= @addr + @size
2399 * @mr: a MemoryRegion within which @addr is a relative address
2400 * @addr: start of the area within @as to be searched
2401 * @size: size of the area to be searched
2403 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2404 hwaddr addr, uint64_t size);
2407 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2409 * Synchronizes the dirty page log for all address spaces.
2411 void memory_global_dirty_log_sync(void);
2414 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2416 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2417 * This function must be called after the dirty log bitmap is cleared, and
2418 * before dirty guest memory pages are read. If you are using
2419 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2420 * care of doing this.
2422 void memory_global_after_dirty_log_sync(void);
2425 * memory_region_transaction_begin: Start a transaction.
2427 * During a transaction, changes will be accumulated and made visible
2428 * only when the transaction ends (is committed).
2430 void memory_region_transaction_begin(void);
2433 * memory_region_transaction_commit: Commit a transaction and make changes
2434 * visible to the guest.
2436 void memory_region_transaction_commit(void);
2439 * memory_listener_register: register callbacks to be called when memory
2440 * sections are mapped or unmapped into an address
2441 * space
2443 * @listener: an object containing the callbacks to be called
2444 * @filter: if non-%NULL, only regions in this address space will be observed
2446 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2449 * memory_listener_unregister: undo the effect of memory_listener_register()
2451 * @listener: an object containing the callbacks to be removed
2453 void memory_listener_unregister(MemoryListener *listener);
2456 * memory_global_dirty_log_start: begin dirty logging for all regions
2458 * @flags: purpose of starting dirty log, migration or dirty rate
2460 void memory_global_dirty_log_start(unsigned int flags);
2463 * memory_global_dirty_log_stop: end dirty logging for all regions
2465 * @flags: purpose of stopping dirty log, migration or dirty rate
2467 void memory_global_dirty_log_stop(unsigned int flags);
2469 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2471 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2472 unsigned size, bool is_write,
2473 MemTxAttrs attrs);
2476 * memory_region_dispatch_read: perform a read directly to the specified
2477 * MemoryRegion.
2479 * @mr: #MemoryRegion to access
2480 * @addr: address within that region
2481 * @pval: pointer to uint64_t which the data is written to
2482 * @op: size, sign, and endianness of the memory operation
2483 * @attrs: memory transaction attributes to use for the access
2485 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2486 hwaddr addr,
2487 uint64_t *pval,
2488 MemOp op,
2489 MemTxAttrs attrs);
2491 * memory_region_dispatch_write: perform a write directly to the specified
2492 * MemoryRegion.
2494 * @mr: #MemoryRegion to access
2495 * @addr: address within that region
2496 * @data: data to write
2497 * @op: size, sign, and endianness of the memory operation
2498 * @attrs: memory transaction attributes to use for the access
2500 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2501 hwaddr addr,
2502 uint64_t data,
2503 MemOp op,
2504 MemTxAttrs attrs);
2507 * address_space_init: initializes an address space
2509 * @as: an uninitialized #AddressSpace
2510 * @root: a #MemoryRegion that routes addresses for the address space
2511 * @name: an address space name. The name is only used for debugging
2512 * output.
2514 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2517 * address_space_destroy: destroy an address space
2519 * Releases all resources associated with an address space. After an address space
2520 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2521 * as well.
2523 * @as: address space to be destroyed
2525 void address_space_destroy(AddressSpace *as);
2528 * address_space_remove_listeners: unregister all listeners of an address space
2530 * Removes all callbacks previously registered with memory_listener_register()
2531 * for @as.
2533 * @as: an initialized #AddressSpace
2535 void address_space_remove_listeners(AddressSpace *as);
2538 * address_space_rw: read from or write to an address space.
2540 * Return a MemTxResult indicating whether the operation succeeded
2541 * or failed (eg unassigned memory, device rejected the transaction,
2542 * IOMMU fault).
2544 * @as: #AddressSpace to be accessed
2545 * @addr: address within that address space
2546 * @attrs: memory transaction attributes
2547 * @buf: buffer with the data transferred
2548 * @len: the number of bytes to read or write
2549 * @is_write: indicates the transfer direction
2551 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2552 MemTxAttrs attrs, void *buf,
2553 hwaddr len, bool is_write);
2556 * address_space_write: write to address space.
2558 * Return a MemTxResult indicating whether the operation succeeded
2559 * or failed (eg unassigned memory, device rejected the transaction,
2560 * IOMMU fault).
2562 * @as: #AddressSpace to be accessed
2563 * @addr: address within that address space
2564 * @attrs: memory transaction attributes
2565 * @buf: buffer with the data transferred
2566 * @len: the number of bytes to write
2568 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2569 MemTxAttrs attrs,
2570 const void *buf, hwaddr len);
2573 * address_space_write_rom: write to address space, including ROM.
2575 * This function writes to the specified address space, but will
2576 * write data to both ROM and RAM. This is used for non-guest
2577 * writes like writes from the gdb debug stub or initial loading
2578 * of ROM contents.
2580 * Note that portions of the write which attempt to write data to
2581 * a device will be silently ignored -- only real RAM and ROM will
2582 * be written to.
2584 * Return a MemTxResult indicating whether the operation succeeded
2585 * or failed (eg unassigned memory, device rejected the transaction,
2586 * IOMMU fault).
2588 * @as: #AddressSpace to be accessed
2589 * @addr: address within that address space
2590 * @attrs: memory transaction attributes
2591 * @buf: buffer with the data transferred
2592 * @len: the number of bytes to write
2594 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2595 MemTxAttrs attrs,
2596 const void *buf, hwaddr len);
2598 /* address_space_ld*: load from an address space
2599 * address_space_st*: store to an address space
2601 * These functions perform a load or store of the byte, word,
2602 * longword or quad to the specified address within the AddressSpace.
2603 * The _le suffixed functions treat the data as little endian;
2604 * _be indicates big endian; no suffix indicates "same endianness
2605 * as guest CPU".
2607 * The "guest CPU endianness" accessors are deprecated for use outside
2608 * target-* code; devices should be CPU-agnostic and use either the LE
2609 * or the BE accessors.
2611 * @as #AddressSpace to be accessed
2612 * @addr: address within that address space
2613 * @val: data value, for stores
2614 * @attrs: memory transaction attributes
2615 * @result: location to write the success/failure of the transaction;
2616 * if NULL, this information is discarded
2619 #define SUFFIX
2620 #define ARG1 as
2621 #define ARG1_DECL AddressSpace *as
2622 #include "exec/memory_ldst.h.inc"
2624 #define SUFFIX
2625 #define ARG1 as
2626 #define ARG1_DECL AddressSpace *as
2627 #include "exec/memory_ldst_phys.h.inc"
2629 struct MemoryRegionCache {
2630 void *ptr;
2631 hwaddr xlat;
2632 hwaddr len;
2633 FlatView *fv;
2634 MemoryRegionSection mrs;
2635 bool is_write;
2638 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2641 /* address_space_ld*_cached: load from a cached #MemoryRegion
2642 * address_space_st*_cached: store into a cached #MemoryRegion
2644 * These functions perform a load or store of the byte, word,
2645 * longword or quad to the specified address. The address is
2646 * a physical address in the AddressSpace, but it must lie within
2647 * a #MemoryRegion that was mapped with address_space_cache_init.
2649 * The _le suffixed functions treat the data as little endian;
2650 * _be indicates big endian; no suffix indicates "same endianness
2651 * as guest CPU".
2653 * The "guest CPU endianness" accessors are deprecated for use outside
2654 * target-* code; devices should be CPU-agnostic and use either the LE
2655 * or the BE accessors.
2657 * @cache: previously initialized #MemoryRegionCache to be accessed
2658 * @addr: address within the address space
2659 * @val: data value, for stores
2660 * @attrs: memory transaction attributes
2661 * @result: location to write the success/failure of the transaction;
2662 * if NULL, this information is discarded
2665 #define SUFFIX _cached_slow
2666 #define ARG1 cache
2667 #define ARG1_DECL MemoryRegionCache *cache
2668 #include "exec/memory_ldst.h.inc"
2670 /* Inline fast path for direct RAM access. */
2671 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2672 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2674 assert(addr < cache->len);
2675 if (likely(cache->ptr)) {
2676 return ldub_p(cache->ptr + addr);
2677 } else {
2678 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2682 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2683 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2685 assert(addr < cache->len);
2686 if (likely(cache->ptr)) {
2687 stb_p(cache->ptr + addr, val);
2688 } else {
2689 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2693 #define ENDIANNESS _le
2694 #include "exec/memory_ldst_cached.h.inc"
2696 #define ENDIANNESS _be
2697 #include "exec/memory_ldst_cached.h.inc"
2699 #define SUFFIX _cached
2700 #define ARG1 cache
2701 #define ARG1_DECL MemoryRegionCache *cache
2702 #include "exec/memory_ldst_phys.h.inc"
2704 /* address_space_cache_init: prepare for repeated access to a physical
2705 * memory region
2707 * @cache: #MemoryRegionCache to be filled
2708 * @as: #AddressSpace to be accessed
2709 * @addr: address within that address space
2710 * @len: length of buffer
2711 * @is_write: indicates the transfer direction
2713 * Will only work with RAM, and may map a subset of the requested range by
2714 * returning a value that is less than @len. On failure, return a negative
2715 * errno value.
2717 * Because it only works with RAM, this function can be used for
2718 * read-modify-write operations. In this case, is_write should be %true.
2720 * Note that addresses passed to the address_space_*_cached functions
2721 * are relative to @addr.
2723 int64_t address_space_cache_init(MemoryRegionCache *cache,
2724 AddressSpace *as,
2725 hwaddr addr,
2726 hwaddr len,
2727 bool is_write);
2730 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2732 * @cache: The #MemoryRegionCache to operate on.
2733 * @addr: The first physical address that was written, relative to the
2734 * address that was passed to @address_space_cache_init.
2735 * @access_len: The number of bytes that were written starting at @addr.
2737 void address_space_cache_invalidate(MemoryRegionCache *cache,
2738 hwaddr addr,
2739 hwaddr access_len);
2742 * address_space_cache_destroy: free a #MemoryRegionCache
2744 * @cache: The #MemoryRegionCache whose memory should be released.
2746 void address_space_cache_destroy(MemoryRegionCache *cache);
2748 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2749 * entry. Should be called from an RCU critical section.
2751 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2752 bool is_write, MemTxAttrs attrs);
2754 /* address_space_translate: translate an address range into an address space
2755 * into a MemoryRegion and an address range into that section. Should be
2756 * called from an RCU critical section, to avoid that the last reference
2757 * to the returned region disappears after address_space_translate returns.
2759 * @fv: #FlatView to be accessed
2760 * @addr: address within that address space
2761 * @xlat: pointer to address within the returned memory region section's
2762 * #MemoryRegion.
2763 * @len: pointer to length
2764 * @is_write: indicates the transfer direction
2765 * @attrs: memory attributes
2767 MemoryRegion *flatview_translate(FlatView *fv,
2768 hwaddr addr, hwaddr *xlat,
2769 hwaddr *len, bool is_write,
2770 MemTxAttrs attrs);
2772 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2773 hwaddr addr, hwaddr *xlat,
2774 hwaddr *len, bool is_write,
2775 MemTxAttrs attrs)
2777 return flatview_translate(address_space_to_flatview(as),
2778 addr, xlat, len, is_write, attrs);
2781 /* address_space_access_valid: check for validity of accessing an address
2782 * space range
2784 * Check whether memory is assigned to the given address space range, and
2785 * access is permitted by any IOMMU regions that are active for the address
2786 * space.
2788 * For now, addr and len should be aligned to a page size. This limitation
2789 * will be lifted in the future.
2791 * @as: #AddressSpace to be accessed
2792 * @addr: address within that address space
2793 * @len: length of the area to be checked
2794 * @is_write: indicates the transfer direction
2795 * @attrs: memory attributes
2797 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2798 bool is_write, MemTxAttrs attrs);
2800 /* address_space_map: map a physical memory region into a host virtual address
2802 * May map a subset of the requested range, given by and returned in @plen.
2803 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2804 * the mapping are exhausted.
2805 * Use only for reads OR writes - not for read-modify-write operations.
2806 * Use cpu_register_map_client() to know when retrying the map operation is
2807 * likely to succeed.
2809 * @as: #AddressSpace to be accessed
2810 * @addr: address within that address space
2811 * @plen: pointer to length of buffer; updated on return
2812 * @is_write: indicates the transfer direction
2813 * @attrs: memory attributes
2815 void *address_space_map(AddressSpace *as, hwaddr addr,
2816 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2818 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2820 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2821 * the amount of memory that was actually read or written by the caller.
2823 * @as: #AddressSpace used
2824 * @buffer: host pointer as returned by address_space_map()
2825 * @len: buffer length as returned by address_space_map()
2826 * @access_len: amount of data actually transferred
2827 * @is_write: indicates the transfer direction
2829 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2830 bool is_write, hwaddr access_len);
2833 /* Internal functions, part of the implementation of address_space_read. */
2834 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2835 MemTxAttrs attrs, void *buf, hwaddr len);
2836 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2837 MemTxAttrs attrs, void *buf,
2838 hwaddr len, hwaddr addr1, hwaddr l,
2839 MemoryRegion *mr);
2840 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2842 /* Internal functions, part of the implementation of address_space_read_cached
2843 * and address_space_write_cached. */
2844 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2845 hwaddr addr, void *buf, hwaddr len);
2846 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2847 hwaddr addr, const void *buf,
2848 hwaddr len);
2850 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2851 bool prepare_mmio_access(MemoryRegion *mr);
2853 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2855 if (is_write) {
2856 return memory_region_is_ram(mr) && !mr->readonly &&
2857 !mr->rom_device && !memory_region_is_ram_device(mr);
2858 } else {
2859 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2860 memory_region_is_romd(mr);
2865 * address_space_read: read from an address space.
2867 * Return a MemTxResult indicating whether the operation succeeded
2868 * or failed (eg unassigned memory, device rejected the transaction,
2869 * IOMMU fault). Called within RCU critical section.
2871 * @as: #AddressSpace to be accessed
2872 * @addr: address within that address space
2873 * @attrs: memory transaction attributes
2874 * @buf: buffer with the data transferred
2875 * @len: length of the data transferred
2877 static inline __attribute__((__always_inline__))
2878 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2879 MemTxAttrs attrs, void *buf,
2880 hwaddr len)
2882 MemTxResult result = MEMTX_OK;
2883 hwaddr l, addr1;
2884 void *ptr;
2885 MemoryRegion *mr;
2886 FlatView *fv;
2888 if (__builtin_constant_p(len)) {
2889 if (len) {
2890 RCU_READ_LOCK_GUARD();
2891 fv = address_space_to_flatview(as);
2892 l = len;
2893 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2894 if (len == l && memory_access_is_direct(mr, false)) {
2895 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2896 memcpy(buf, ptr, len);
2897 } else {
2898 result = flatview_read_continue(fv, addr, attrs, buf, len,
2899 addr1, l, mr);
2902 } else {
2903 result = address_space_read_full(as, addr, attrs, buf, len);
2905 return result;
2909 * address_space_read_cached: read from a cached RAM region
2911 * @cache: Cached region to be addressed
2912 * @addr: address relative to the base of the RAM region
2913 * @buf: buffer with the data transferred
2914 * @len: length of the data transferred
2916 static inline MemTxResult
2917 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2918 void *buf, hwaddr len)
2920 assert(addr < cache->len && len <= cache->len - addr);
2921 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2922 if (likely(cache->ptr)) {
2923 memcpy(buf, cache->ptr + addr, len);
2924 return MEMTX_OK;
2925 } else {
2926 return address_space_read_cached_slow(cache, addr, buf, len);
2931 * address_space_write_cached: write to a cached RAM region
2933 * @cache: Cached region to be addressed
2934 * @addr: address relative to the base of the RAM region
2935 * @buf: buffer with the data transferred
2936 * @len: length of the data transferred
2938 static inline MemTxResult
2939 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2940 const void *buf, hwaddr len)
2942 assert(addr < cache->len && len <= cache->len - addr);
2943 if (likely(cache->ptr)) {
2944 memcpy(cache->ptr + addr, buf, len);
2945 return MEMTX_OK;
2946 } else {
2947 return address_space_write_cached_slow(cache, addr, buf, len);
2952 * address_space_set: Fill address space with a constant byte.
2954 * Return a MemTxResult indicating whether the operation succeeded
2955 * or failed (eg unassigned memory, device rejected the transaction,
2956 * IOMMU fault).
2958 * @as: #AddressSpace to be accessed
2959 * @addr: address within that address space
2960 * @c: constant byte to fill the memory
2961 * @len: the number of bytes to fill with the constant byte
2962 * @attrs: memory transaction attributes
2964 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2965 uint8_t c, hwaddr len, MemTxAttrs attrs);
2967 #ifdef NEED_CPU_H
2968 /* enum device_endian to MemOp. */
2969 static inline MemOp devend_memop(enum device_endian end)
2971 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2972 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2974 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2975 /* Swap if non-host endianness or native (target) endianness */
2976 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2977 #else
2978 const int non_host_endianness =
2979 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2981 /* In this case, native (target) endianness needs no swap. */
2982 return (end == non_host_endianness) ? MO_BSWAP : 0;
2983 #endif
2985 #endif
2988 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2989 * to manage the actual amount of memory consumed by the VM (then, the memory
2990 * provided by RAM blocks might be bigger than the desired memory consumption).
2991 * This *must* be set if:
2992 * - Discarding parts of a RAM blocks does not result in the change being
2993 * reflected in the VM and the pages getting freed.
2994 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2995 * discards blindly.
2996 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2997 * encrypted VMs).
2998 * Technologies that only temporarily pin the current working set of a
2999 * driver are fine, because we don't expect such pages to be discarded
3000 * (esp. based on guest action like balloon inflation).
3002 * This is *not* to be used to protect from concurrent discards (esp.,
3003 * postcopy).
3005 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3006 * discards to work reliably is active.
3008 int ram_block_discard_disable(bool state);
3011 * See ram_block_discard_disable(): only disable uncoordinated discards,
3012 * keeping coordinated discards (via the RamDiscardManager) enabled.
3014 int ram_block_uncoordinated_discard_disable(bool state);
3017 * Inhibit technologies that disable discarding of pages in RAM blocks.
3019 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3020 * broken.
3022 int ram_block_discard_require(bool state);
3025 * See ram_block_discard_require(): only inhibit technologies that disable
3026 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3027 * technologies that only inhibit uncoordinated discards (via the
3028 * RamDiscardManager).
3030 int ram_block_coordinated_discard_require(bool state);
3033 * Test if any discarding of memory in ram blocks is disabled.
3035 bool ram_block_discard_is_disabled(void);
3038 * Test if any discarding of memory in ram blocks is required to work reliably.
3040 bool ram_block_discard_is_required(void);
3042 #endif
3044 #endif