Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / linux-user / sparc / signal.c
blobb501750fe0f101525f4c4cb875f940b541f9cf9e
1 /*
2 * Emulation of Linux signals
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "user-internals.h"
22 #include "signal-common.h"
23 #include "linux-user/trace.h"
25 /* A Sparc register window */
26 struct target_reg_window {
27 abi_ulong locals[8];
28 abi_ulong ins[8];
31 /* A Sparc stack frame. */
32 struct target_stackf {
34 * Since qemu does not reference fp or callers_pc directly,
35 * it's simpler to treat fp and callers_pc as elements of ins[],
36 * and then bundle locals[] and ins[] into reg_window.
38 struct target_reg_window win;
40 * Similarly, bundle structptr and xxargs into xargs[].
41 * This portion of the struct is part of the function call abi,
42 * and belongs to the callee for spilling argument registers.
44 abi_ulong xargs[8];
47 struct target_siginfo_fpu {
48 #ifdef TARGET_SPARC64
49 uint64_t si_double_regs[32];
50 uint64_t si_fsr;
51 uint64_t si_gsr;
52 uint64_t si_fprs;
53 #else
54 /* It is more convenient for qemu to move doubles, not singles. */
55 uint64_t si_double_regs[16];
56 uint32_t si_fsr;
57 uint32_t si_fpqdepth;
58 struct {
59 uint32_t insn_addr;
60 uint32_t insn;
61 } si_fpqueue [16];
62 #endif
65 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
66 struct target_signal_frame {
67 struct target_stackf ss;
68 struct target_pt_regs regs;
69 uint32_t si_mask;
70 abi_ulong fpu_save;
71 uint32_t insns[2] QEMU_ALIGNED(8);
72 abi_ulong extramask[TARGET_NSIG_WORDS - 1];
73 abi_ulong extra_size; /* Should be 0 */
74 abi_ulong rwin_save;
76 #endif
78 struct target_rt_signal_frame {
79 struct target_stackf ss;
80 target_siginfo_t info;
81 struct target_pt_regs regs;
82 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
83 abi_ulong fpu_save;
84 target_stack_t stack;
85 target_sigset_t mask;
86 #else
87 target_sigset_t mask;
88 abi_ulong fpu_save;
89 uint32_t insns[2];
90 target_stack_t stack;
91 abi_ulong extra_size; /* Should be 0 */
92 #endif
93 abi_ulong rwin_save;
96 static abi_ulong get_sigframe(struct target_sigaction *sa,
97 CPUSPARCState *env,
98 size_t framesize)
100 abi_ulong sp = get_sp_from_cpustate(env);
103 * If we are on the alternate signal stack and would overflow it, don't.
104 * Return an always-bogus address instead so we will die with SIGSEGV.
106 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
107 return -1;
110 /* This is the X/Open sanctioned signal stack switching. */
111 sp = target_sigsp(sp, sa) - framesize;
114 * Always align the stack frame. This handles two cases. First,
115 * sigaltstack need not be mindful of platform specific stack
116 * alignment. Second, if we took this signal because the stack
117 * is not aligned properly, we'd like to take the signal cleanly
118 * and report that.
120 sp &= ~15UL;
122 return sp;
125 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
127 int i;
129 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
130 __put_user(sparc64_tstate(env), &regs->tstate);
131 /* TODO: magic should contain PT_REG_MAGIC + %tt. */
132 __put_user(0, &regs->magic);
133 #else
134 __put_user(cpu_get_psr(env), &regs->psr);
135 #endif
137 __put_user(env->pc, &regs->pc);
138 __put_user(env->npc, &regs->npc);
139 __put_user(env->y, &regs->y);
141 for (i = 0; i < 8; i++) {
142 __put_user(env->gregs[i], &regs->u_regs[i]);
144 for (i = 0; i < 8; i++) {
145 __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
149 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
151 int i;
153 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
154 /* User can only change condition codes and %asi in %tstate. */
155 uint64_t tstate;
156 __get_user(tstate, &regs->tstate);
157 cpu_put_ccr(env, tstate >> 32);
158 env->asi = extract64(tstate, 24, 8);
159 #else
161 * User can only change condition codes and FPU enabling in %psr.
162 * But don't bother with FPU enabling, since a real kernel would
163 * just re-enable the FPU upon the next fpu trap.
165 uint32_t psr;
166 __get_user(psr, &regs->psr);
167 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
168 #endif
170 /* Note that pc and npc are handled in the caller. */
172 __get_user(env->y, &regs->y);
174 for (i = 0; i < 8; i++) {
175 __get_user(env->gregs[i], &regs->u_regs[i]);
177 for (i = 0; i < 8; i++) {
178 __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
182 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
184 int i;
186 for (i = 0; i < 8; i++) {
187 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
189 for (i = 0; i < 8; i++) {
190 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
194 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
196 int i;
198 #ifdef TARGET_SPARC64
199 for (i = 0; i < 32; ++i) {
200 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
202 __put_user(env->fsr, &fpu->si_fsr);
203 __put_user(env->gsr, &fpu->si_gsr);
204 __put_user(env->fprs, &fpu->si_fprs);
205 #else
206 for (i = 0; i < 16; ++i) {
207 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
209 __put_user(env->fsr, &fpu->si_fsr);
210 __put_user(0, &fpu->si_fpqdepth);
211 #endif
214 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
216 int i;
218 #ifdef TARGET_SPARC64
219 uint64_t fprs;
220 __get_user(fprs, &fpu->si_fprs);
222 /* In case the user mucks about with FPRS, restore as directed. */
223 if (fprs & FPRS_DL) {
224 for (i = 0; i < 16; ++i) {
225 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
228 if (fprs & FPRS_DU) {
229 for (i = 16; i < 32; ++i) {
230 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
233 __get_user(env->fsr, &fpu->si_fsr);
234 __get_user(env->gsr, &fpu->si_gsr);
235 env->fprs |= fprs;
236 #else
237 for (i = 0; i < 16; ++i) {
238 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
240 __get_user(env->fsr, &fpu->si_fsr);
241 #endif
244 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
245 static void install_sigtramp(uint32_t *tramp, int syscall)
247 __put_user(0x82102000u + syscall, &tramp[0]); /* mov syscall, %g1 */
248 __put_user(0x91d02010u, &tramp[1]); /* t 0x10 */
251 void setup_frame(int sig, struct target_sigaction *ka,
252 target_sigset_t *set, CPUSPARCState *env)
254 abi_ulong sf_addr;
255 struct target_signal_frame *sf;
256 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
257 int i;
259 sf_addr = get_sigframe(ka, env, sf_size);
260 trace_user_setup_frame(env, sf_addr);
262 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
263 if (!sf) {
264 force_sigsegv(sig);
265 return;
268 /* 2. Save the current process state */
269 save_pt_regs(&sf->regs, env);
270 __put_user(0, &sf->extra_size);
272 save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
273 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
275 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
277 __put_user(set->sig[0], &sf->si_mask);
278 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
279 __put_user(set->sig[i + 1], &sf->extramask[i]);
282 save_reg_win(&sf->ss.win, env);
284 /* 3. signal handler back-trampoline and parameters */
285 env->regwptr[WREG_SP] = sf_addr;
286 env->regwptr[WREG_O0] = sig;
287 env->regwptr[WREG_O1] = sf_addr +
288 offsetof(struct target_signal_frame, regs);
289 env->regwptr[WREG_O2] = sf_addr +
290 offsetof(struct target_signal_frame, regs);
292 /* 4. signal handler */
293 env->pc = ka->_sa_handler;
294 env->npc = env->pc + 4;
296 /* 5. return to kernel instructions */
297 if (ka->ka_restorer) {
298 env->regwptr[WREG_O7] = ka->ka_restorer;
299 } else {
300 /* Not used, but retain for ABI compatibility. */
301 install_sigtramp(sf->insns, TARGET_NR_sigreturn);
302 env->regwptr[WREG_O7] = default_sigreturn;
304 unlock_user(sf, sf_addr, sf_size);
306 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */
308 void setup_rt_frame(int sig, struct target_sigaction *ka,
309 target_siginfo_t *info,
310 target_sigset_t *set, CPUSPARCState *env)
312 abi_ulong sf_addr;
313 struct target_rt_signal_frame *sf;
314 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
316 sf_addr = get_sigframe(ka, env, sf_size);
317 trace_user_setup_rt_frame(env, sf_addr);
319 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
320 if (!sf) {
321 force_sigsegv(sig);
322 return;
325 /* 2. Save the current process state */
326 save_reg_win(&sf->ss.win, env);
327 save_pt_regs(&sf->regs, env);
329 save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
330 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
332 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
334 tswap_siginfo(&sf->info, info);
335 tswap_sigset(&sf->mask, set);
336 target_save_altstack(&sf->stack, env);
338 #ifdef TARGET_ABI32
339 __put_user(0, &sf->extra_size);
340 #endif
342 /* 3. signal handler back-trampoline and parameters */
343 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
344 env->regwptr[WREG_O0] = sig;
345 env->regwptr[WREG_O1] =
346 sf_addr + offsetof(struct target_rt_signal_frame, info);
347 #ifdef TARGET_ABI32
348 env->regwptr[WREG_O2] =
349 sf_addr + offsetof(struct target_rt_signal_frame, regs);
350 #else
351 env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
352 #endif
354 /* 4. signal handler */
355 env->pc = ka->_sa_handler;
356 env->npc = env->pc + 4;
358 /* 5. return to kernel instructions */
359 #ifdef TARGET_ABI32
360 if (ka->ka_restorer) {
361 env->regwptr[WREG_O7] = ka->ka_restorer;
362 } else {
363 /* Not used, but retain for ABI compatibility. */
364 install_sigtramp(sf->insns, TARGET_NR_rt_sigreturn);
365 env->regwptr[WREG_O7] = default_rt_sigreturn;
367 #else
368 env->regwptr[WREG_O7] = ka->ka_restorer;
369 #endif
371 unlock_user(sf, sf_addr, sf_size);
374 long do_sigreturn(CPUSPARCState *env)
376 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
377 abi_ulong sf_addr;
378 struct target_signal_frame *sf = NULL;
379 abi_ulong pc, npc, ptr;
380 target_sigset_t set;
381 sigset_t host_set;
382 int i;
384 sf_addr = env->regwptr[WREG_SP];
385 trace_user_do_sigreturn(env, sf_addr);
387 /* 1. Make sure we are not getting garbage from the user */
388 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
389 goto segv_and_exit;
392 /* Make sure stack pointer is aligned. */
393 __get_user(ptr, &sf->regs.u_regs[14]);
394 if (ptr & 7) {
395 goto segv_and_exit;
398 /* Make sure instruction pointers are aligned. */
399 __get_user(pc, &sf->regs.pc);
400 __get_user(npc, &sf->regs.npc);
401 if ((pc | npc) & 3) {
402 goto segv_and_exit;
405 /* 2. Restore the state */
406 restore_pt_regs(&sf->regs, env);
407 env->pc = pc;
408 env->npc = npc;
410 __get_user(ptr, &sf->fpu_save);
411 if (ptr) {
412 struct target_siginfo_fpu *fpu;
413 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
414 goto segv_and_exit;
416 restore_fpu(fpu, env);
417 unlock_user_struct(fpu, ptr, 0);
420 __get_user(ptr, &sf->rwin_save);
421 if (ptr) {
422 goto segv_and_exit; /* TODO: restore_rwin */
425 __get_user(set.sig[0], &sf->si_mask);
426 for (i = 1; i < TARGET_NSIG_WORDS; i++) {
427 __get_user(set.sig[i], &sf->extramask[i - 1]);
430 target_to_host_sigset_internal(&host_set, &set);
431 set_sigmask(&host_set);
433 unlock_user_struct(sf, sf_addr, 0);
434 return -QEMU_ESIGRETURN;
436 segv_and_exit:
437 unlock_user_struct(sf, sf_addr, 0);
438 force_sig(TARGET_SIGSEGV);
439 return -QEMU_ESIGRETURN;
440 #else
441 return -TARGET_ENOSYS;
442 #endif
445 long do_rt_sigreturn(CPUSPARCState *env)
447 abi_ulong sf_addr, tpc, tnpc, ptr;
448 struct target_rt_signal_frame *sf = NULL;
449 sigset_t set;
451 sf_addr = get_sp_from_cpustate(env);
452 trace_user_do_rt_sigreturn(env, sf_addr);
454 /* 1. Make sure we are not getting garbage from the user */
455 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
456 goto segv_and_exit;
459 /* Validate SP alignment. */
460 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
461 if ((ptr + TARGET_STACK_BIAS) & 7) {
462 goto segv_and_exit;
465 /* Validate PC and NPC alignment. */
466 __get_user(tpc, &sf->regs.pc);
467 __get_user(tnpc, &sf->regs.npc);
468 if ((tpc | tnpc) & 3) {
469 goto segv_and_exit;
472 /* 2. Restore the state */
473 restore_pt_regs(&sf->regs, env);
475 __get_user(ptr, &sf->fpu_save);
476 if (ptr) {
477 struct target_siginfo_fpu *fpu;
478 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
479 goto segv_and_exit;
481 restore_fpu(fpu, env);
482 unlock_user_struct(fpu, ptr, 0);
485 __get_user(ptr, &sf->rwin_save);
486 if (ptr) {
487 goto segv_and_exit; /* TODO: restore_rwin_state */
490 target_restore_altstack(&sf->stack, env);
491 target_to_host_sigset(&set, &sf->mask);
492 set_sigmask(&set);
494 env->pc = tpc;
495 env->npc = tnpc;
497 unlock_user_struct(sf, sf_addr, 0);
498 return -QEMU_ESIGRETURN;
500 segv_and_exit:
501 unlock_user_struct(sf, sf_addr, 0);
502 force_sig(TARGET_SIGSEGV);
503 return -QEMU_ESIGRETURN;
506 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
507 #define SPARC_MC_TSTATE 0
508 #define SPARC_MC_PC 1
509 #define SPARC_MC_NPC 2
510 #define SPARC_MC_Y 3
511 #define SPARC_MC_G1 4
512 #define SPARC_MC_G2 5
513 #define SPARC_MC_G3 6
514 #define SPARC_MC_G4 7
515 #define SPARC_MC_G5 8
516 #define SPARC_MC_G6 9
517 #define SPARC_MC_G7 10
518 #define SPARC_MC_O0 11
519 #define SPARC_MC_O1 12
520 #define SPARC_MC_O2 13
521 #define SPARC_MC_O3 14
522 #define SPARC_MC_O4 15
523 #define SPARC_MC_O5 16
524 #define SPARC_MC_O6 17
525 #define SPARC_MC_O7 18
526 #define SPARC_MC_NGREG 19
528 typedef abi_ulong target_mc_greg_t;
529 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
531 struct target_mc_fq {
532 abi_ulong mcfq_addr;
533 uint32_t mcfq_insn;
537 * Note the manual 16-alignment; the kernel gets this because it
538 * includes a "long double qregs[16]" in the mcpu_fregs union,
539 * which we can't do.
541 struct target_mc_fpu {
542 union {
543 uint32_t sregs[32];
544 uint64_t dregs[32];
545 //uint128_t qregs[16];
546 } mcfpu_fregs;
547 abi_ulong mcfpu_fsr;
548 abi_ulong mcfpu_fprs;
549 abi_ulong mcfpu_gsr;
550 abi_ulong mcfpu_fq;
551 unsigned char mcfpu_qcnt;
552 unsigned char mcfpu_qentsz;
553 unsigned char mcfpu_enab;
554 } __attribute__((aligned(16)));
555 typedef struct target_mc_fpu target_mc_fpu_t;
557 typedef struct {
558 target_mc_gregset_t mc_gregs;
559 target_mc_greg_t mc_fp;
560 target_mc_greg_t mc_i7;
561 target_mc_fpu_t mc_fpregs;
562 } target_mcontext_t;
564 struct target_ucontext {
565 abi_ulong tuc_link;
566 abi_ulong tuc_flags;
567 target_sigset_t tuc_sigmask;
568 target_mcontext_t tuc_mcontext;
571 /* {set, get}context() needed for 64-bit SparcLinux userland. */
572 void sparc64_set_context(CPUSPARCState *env)
574 abi_ulong ucp_addr;
575 struct target_ucontext *ucp;
576 target_mc_gregset_t *grp;
577 target_mc_fpu_t *fpup;
578 abi_ulong pc, npc, tstate;
579 unsigned int i;
580 unsigned char fenab;
582 ucp_addr = env->regwptr[WREG_O0];
583 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
584 goto do_sigsegv;
586 grp = &ucp->tuc_mcontext.mc_gregs;
587 __get_user(pc, &((*grp)[SPARC_MC_PC]));
588 __get_user(npc, &((*grp)[SPARC_MC_NPC]));
589 if ((pc | npc) & 3) {
590 goto do_sigsegv;
592 if (env->regwptr[WREG_O1]) {
593 target_sigset_t target_set;
594 sigset_t set;
596 if (TARGET_NSIG_WORDS == 1) {
597 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
598 } else {
599 abi_ulong *src, *dst;
600 src = ucp->tuc_sigmask.sig;
601 dst = target_set.sig;
602 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
603 __get_user(*dst, src);
606 target_to_host_sigset_internal(&set, &target_set);
607 set_sigmask(&set);
609 env->pc = pc;
610 env->npc = npc;
611 __get_user(env->y, &((*grp)[SPARC_MC_Y]));
612 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
613 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
614 env->asi = (tstate >> 24) & 0xff;
615 cpu_put_ccr(env, (tstate >> 32) & 0xff);
616 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
617 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
618 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
619 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
620 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
621 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
622 /* Skip g7 as that's the thread register in userspace */
625 * Note that unlike the kernel, we didn't need to mess with the
626 * guest register window state to save it into a pt_regs to run
627 * the kernel. So for us the guest's O regs are still in WREG_O*
628 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
629 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
630 * need to be written back to userspace memory.
632 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
633 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
634 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
635 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
636 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
637 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
638 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
639 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
641 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
642 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
644 fpup = &ucp->tuc_mcontext.mc_fpregs;
646 __get_user(fenab, &(fpup->mcfpu_enab));
647 if (fenab) {
648 abi_ulong fprs;
651 * We use the FPRS from the guest only in deciding whether
652 * to restore the upper, lower, or both banks of the FPU regs.
653 * The kernel here writes the FPU register data into the
654 * process's current_thread_info state and unconditionally
655 * clears FPRS and TSTATE_PEF: this disables the FPU so that the
656 * next FPU-disabled trap will copy the data out of
657 * current_thread_info and into the real FPU registers.
658 * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
659 * so we always load the data directly into the FPU registers
660 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
661 * Note that because we (and the kernel) always write zeroes for
662 * the fenab and fprs in sparc64_get_context() none of this code
663 * will execute unless the guest manually constructed or changed
664 * the context structure.
666 __get_user(fprs, &(fpup->mcfpu_fprs));
667 if (fprs & FPRS_DL) {
668 for (i = 0; i < 16; i++) {
669 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
672 if (fprs & FPRS_DU) {
673 for (i = 16; i < 32; i++) {
674 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
677 __get_user(env->fsr, &(fpup->mcfpu_fsr));
678 __get_user(env->gsr, &(fpup->mcfpu_gsr));
680 unlock_user_struct(ucp, ucp_addr, 0);
681 return;
682 do_sigsegv:
683 unlock_user_struct(ucp, ucp_addr, 0);
684 force_sig(TARGET_SIGSEGV);
687 void sparc64_get_context(CPUSPARCState *env)
689 abi_ulong ucp_addr;
690 struct target_ucontext *ucp;
691 target_mc_gregset_t *grp;
692 target_mcontext_t *mcp;
693 int err;
694 unsigned int i;
695 target_sigset_t target_set;
696 sigset_t set;
698 ucp_addr = env->regwptr[WREG_O0];
699 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
700 goto do_sigsegv;
703 memset(ucp, 0, sizeof(*ucp));
705 mcp = &ucp->tuc_mcontext;
706 grp = &mcp->mc_gregs;
708 /* Skip over the trap instruction, first. */
709 env->pc = env->npc;
710 env->npc += 4;
712 /* If we're only reading the signal mask then do_sigprocmask()
713 * is guaranteed not to fail, which is important because we don't
714 * have any way to signal a failure or restart this operation since
715 * this is not a normal syscall.
717 err = do_sigprocmask(0, NULL, &set);
718 assert(err == 0);
719 host_to_target_sigset_internal(&target_set, &set);
720 if (TARGET_NSIG_WORDS == 1) {
721 __put_user(target_set.sig[0],
722 (abi_ulong *)&ucp->tuc_sigmask);
723 } else {
724 abi_ulong *src, *dst;
725 src = target_set.sig;
726 dst = ucp->tuc_sigmask.sig;
727 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
728 __put_user(*src, dst);
732 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
733 __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
734 __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
735 __put_user(env->y, &((*grp)[SPARC_MC_Y]));
736 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
737 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
738 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
739 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
740 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
741 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
742 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
745 * Note that unlike the kernel, we didn't need to mess with the
746 * guest register window state to save it into a pt_regs to run
747 * the kernel. So for us the guest's O regs are still in WREG_O*
748 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
749 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
750 * need to be fished out of userspace memory.
752 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
753 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
754 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
755 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
756 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
757 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
758 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
759 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
761 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
762 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
765 * We don't write out the FPU state. This matches the kernel's
766 * implementation (which has the code for doing this but
767 * hidden behind an "if (fenab)" where fenab is always 0).
770 unlock_user_struct(ucp, ucp_addr, 1);
771 return;
772 do_sigsegv:
773 unlock_user_struct(ucp, ucp_addr, 1);
774 force_sig(TARGET_SIGSEGV);
776 #else
777 void setup_sigtramp(abi_ulong sigtramp_page)
779 uint32_t *tramp = lock_user(VERIFY_WRITE, sigtramp_page, 2 * 8, 0);
780 assert(tramp != NULL);
782 default_sigreturn = sigtramp_page;
783 install_sigtramp(tramp, TARGET_NR_sigreturn);
785 default_rt_sigreturn = sigtramp_page + 8;
786 install_sigtramp(tramp + 2, TARGET_NR_rt_sigreturn);
788 unlock_user(tramp, sigtramp_page, 2 * 8);
790 #endif