4 #include "qemu-common.h"
8 typedef struct QEMUClock QEMUClock
;
9 typedef void QEMUTimerCB(void *opaque
);
11 /* The real time clock should be used only for stuff which does not
12 change the virtual machine state, as it is run even if the virtual
13 machine is stopped. The real time clock has a frequency of 1000
15 extern QEMUClock
*rt_clock
;
17 /* The virtual clock is only run during the emulation. It is stopped
18 when the virtual machine is stopped. Virtual timers use a high
19 precision clock, usually cpu cycles (use ticks_per_sec). */
20 extern QEMUClock
*vm_clock
;
22 /* The host clock should be use for device models that emulate accurate
23 real time sources. It will continue to run when the virtual machine
24 is suspended, and it will reflect system time changes the host may
25 undergo (e.g. due to NTP). The host clock has the same precision as
27 extern QEMUClock
*host_clock
;
29 int64_t qemu_get_clock(QEMUClock
*clock
);
30 int64_t qemu_get_clock_ns(QEMUClock
*clock
);
31 void qemu_clock_enable(QEMUClock
*clock
, int enabled
);
33 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
);
34 void qemu_free_timer(QEMUTimer
*ts
);
35 void qemu_del_timer(QEMUTimer
*ts
);
36 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
);
37 int qemu_timer_pending(QEMUTimer
*ts
);
38 int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
);
40 void qemu_run_all_timers(void);
41 int qemu_alarm_pending(void);
42 int64_t qemu_next_deadline(void);
43 void configure_alarms(char const *opt
);
44 void configure_icount(const char *option
);
45 int qemu_calculate_timeout(void);
46 void init_clocks(void);
47 int init_timer_alarm(void);
48 void quit_timers(void);
50 static inline int64_t get_ticks_per_sec(void)
56 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
);
57 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
);
60 typedef struct ptimer_state ptimer_state
;
61 typedef void (*ptimer_cb
)(void *opaque
);
63 ptimer_state
*ptimer_init(QEMUBH
*bh
);
64 void ptimer_set_period(ptimer_state
*s
, int64_t period
);
65 void ptimer_set_freq(ptimer_state
*s
, uint32_t freq
);
66 void ptimer_set_limit(ptimer_state
*s
, uint64_t limit
, int reload
);
67 uint64_t ptimer_get_count(ptimer_state
*s
);
68 void ptimer_set_count(ptimer_state
*s
, uint64_t count
);
69 void ptimer_run(ptimer_state
*s
, int oneshot
);
70 void ptimer_stop(ptimer_state
*s
);
71 void qemu_put_ptimer(QEMUFile
*f
, ptimer_state
*s
);
72 void qemu_get_ptimer(QEMUFile
*f
, ptimer_state
*s
);
75 int64_t qemu_icount_round(int64_t count
);
76 extern int64_t qemu_icount
;
77 extern int use_icount
;
78 extern int icount_time_shift
;
79 extern int64_t qemu_icount_bias
;
80 int64_t cpu_get_icount(void);
82 /*******************************************/
83 /* host CPU ticks (if available) */
85 #if defined(_ARCH_PPC)
87 static inline int64_t cpu_get_real_ticks(void)
91 /* This reads timebase in one 64bit go and includes Cell workaround from:
92 http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
94 __asm__
__volatile__ ("mftb %0\n\t"
99 /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
101 __asm__
__volatile__ ("mfspr %1,269\n\t" /* mftbu */
102 "mfspr %L0,268\n\t" /* mftb */
103 "mfspr %0,269\n\t" /* mftbu */
106 : "=r" (retval
), "=r" (junk
));
111 #elif defined(__i386__)
113 static inline int64_t cpu_get_real_ticks(void)
116 asm volatile ("rdtsc" : "=A" (val
));
120 #elif defined(__x86_64__)
122 static inline int64_t cpu_get_real_ticks(void)
126 asm volatile("rdtsc" : "=a" (low
), "=d" (high
));
133 #elif defined(__hppa__)
135 static inline int64_t cpu_get_real_ticks(void)
138 asm volatile ("mfctl %%cr16, %0" : "=r"(val
));
142 #elif defined(__ia64)
144 static inline int64_t cpu_get_real_ticks(void)
147 asm volatile ("mov %0 = ar.itc" : "=r"(val
) :: "memory");
151 #elif defined(__s390__)
153 static inline int64_t cpu_get_real_ticks(void)
156 asm volatile("stck 0(%1)" : "=m" (val
) : "a" (&val
) : "cc");
160 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
162 static inline int64_t cpu_get_real_ticks (void)
166 asm volatile("rd %%tick,%0" : "=r"(rval
));
176 asm volatile("rd %%tick,%1; srlx %1,32,%0"
177 : "=r"(rval
.i32
.high
), "=r"(rval
.i32
.low
));
182 #elif defined(__mips__) && \
183 ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
185 * binutils wants to use rdhwr only on mips32r2
186 * but as linux kernel emulate it, it's fine
190 #define MIPS_RDHWR(rd, value) { \
191 __asm__ __volatile__ (".set push\n\t" \
192 ".set mips32r2\n\t" \
193 "rdhwr %0, "rd"\n\t" \
198 static inline int64_t cpu_get_real_ticks(void)
200 /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
202 static uint32_t cyc_per_count
= 0;
204 if (!cyc_per_count
) {
205 MIPS_RDHWR("$3", cyc_per_count
);
208 MIPS_RDHWR("$2", count
);
209 return (int64_t)(count
* cyc_per_count
);
213 /* The host CPU doesn't have an easily accessible cycle counter.
214 Just return a monotonically increasing value. This will be
215 totally wrong, but hopefully better than nothing. */
216 static inline int64_t cpu_get_real_ticks (void)
218 static int64_t ticks
= 0;
224 /* Deterministic execution requires that IO only be performed on the last
225 instruction of a TB so that interrupts take effect immediately. */
226 static inline int can_do_io(CPUState
*env
)
231 /* If not executing code then assume we are ok. */
232 if (!env
->current_tb
)
235 return env
->can_do_io
!= 0;