Merge remote-tracking branch 'pmaydell/arm-devs.next' into staging
[qemu/agraf.git] / hw / block / m25p80.c
blobb3ca19ae520268ef22b572b9566f64c46bd4d3fa
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
30 #endif
32 #define DB_PRINT_L(level, ...) do { \
33 if (M25P80_ERR_DEBUG > (level)) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } \
37 } while (0);
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
47 #define WR_1 0x100
49 typedef struct FlashPartInfo {
50 const char *part_name;
51 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52 uint32_t jedec;
53 /* extended jedec code */
54 uint16_t ext_jedec;
55 /* there is confusion between manufacturers as to what a sector is. In this
56 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57 * command (opcode 0xd8).
59 uint32_t sector_size;
60 uint32_t n_sectors;
61 uint32_t page_size;
62 uint8_t flags;
63 } FlashPartInfo;
65 /* adapted from linux */
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68 .part_name = (_part_name),\
69 .jedec = (_jedec),\
70 .ext_jedec = (_ext_jedec),\
71 .sector_size = (_sector_size),\
72 .n_sectors = (_n_sectors),\
73 .page_size = 256,\
74 .flags = (_flags),\
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
80 static const FlashPartInfo known_devices[] = {
81 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
83 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
85 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
86 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
87 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
89 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
90 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
91 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
92 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
94 /* EON -- en25xxx */
95 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
96 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
97 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
98 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
100 /* Intel/Numonyx -- xxxs33b */
101 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
102 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
103 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
105 /* Macronix */
106 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
107 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
108 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
109 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
110 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
111 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
112 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
113 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
114 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
116 /* Spansion -- single (large) sector size only, at least
117 * for the chips listed here (without boot sectors).
119 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
120 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
121 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
122 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
123 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
124 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
125 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
126 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
127 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
128 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
129 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
130 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
131 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
132 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
133 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
134 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
136 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
137 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
138 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
139 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
140 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
141 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
142 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
143 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
144 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
146 /* ST Microelectronics -- newer production may have feature updates */
147 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
148 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
149 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
150 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
151 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
152 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
153 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
154 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
155 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
157 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
158 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
159 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
161 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
162 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
164 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
165 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
166 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
167 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
169 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
170 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
171 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
172 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
173 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
174 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
175 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
176 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
177 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
178 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
180 /* Numonyx -- n25q128 */
181 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
184 typedef enum {
185 NOP = 0,
186 WRSR = 0x1,
187 WRDI = 0x4,
188 RDSR = 0x5,
189 WREN = 0x6,
190 JEDEC_READ = 0x9f,
191 BULK_ERASE = 0xc7,
193 READ = 0x3,
194 FAST_READ = 0xb,
195 DOR = 0x3b,
196 QOR = 0x6b,
197 DIOR = 0xbb,
198 QIOR = 0xeb,
200 PP = 0x2,
201 DPP = 0xa2,
202 QPP = 0x32,
204 ERASE_4K = 0x20,
205 ERASE_32K = 0x52,
206 ERASE_SECTOR = 0xd8,
207 } FlashCMD;
209 typedef enum {
210 STATE_IDLE,
211 STATE_PAGE_PROGRAM,
212 STATE_READ,
213 STATE_COLLECTING_DATA,
214 STATE_READING_DATA,
215 } CMDState;
217 typedef struct Flash {
218 SSISlave ssidev;
219 uint32_t r;
221 BlockDriverState *bdrv;
223 uint8_t *storage;
224 uint32_t size;
225 int page_size;
227 uint8_t state;
228 uint8_t data[16];
229 uint32_t len;
230 uint32_t pos;
231 uint8_t needed_bytes;
232 uint8_t cmd_in_progress;
233 uint64_t cur_addr;
234 bool write_enable;
236 int64_t dirty_page;
238 const FlashPartInfo *pi;
240 } Flash;
242 typedef struct M25P80Class {
243 SSISlaveClass parent_class;
244 FlashPartInfo *pi;
245 } M25P80Class;
247 #define TYPE_M25P80 "m25p80-generic"
248 #define M25P80(obj) \
249 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
250 #define M25P80_CLASS(klass) \
251 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
252 #define M25P80_GET_CLASS(obj) \
253 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
255 static void bdrv_sync_complete(void *opaque, int ret)
257 /* do nothing. Masters do not directly interact with the backing store,
258 * only the working copy so no mutexing required.
262 static void flash_sync_page(Flash *s, int page)
264 if (s->bdrv) {
265 int bdrv_sector, nb_sectors;
266 QEMUIOVector iov;
268 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
269 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
270 qemu_iovec_init(&iov, 1);
271 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
272 nb_sectors * BDRV_SECTOR_SIZE);
273 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
274 bdrv_sync_complete, NULL);
278 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
280 int64_t start, end, nb_sectors;
281 QEMUIOVector iov;
283 if (!s->bdrv) {
284 return;
287 assert(!(len % BDRV_SECTOR_SIZE));
288 start = off / BDRV_SECTOR_SIZE;
289 end = (off + len) / BDRV_SECTOR_SIZE;
290 nb_sectors = end - start;
291 qemu_iovec_init(&iov, 1);
292 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
293 nb_sectors * BDRV_SECTOR_SIZE);
294 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
297 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
299 uint32_t len;
300 uint8_t capa_to_assert = 0;
302 switch (cmd) {
303 case ERASE_4K:
304 len = 4 << 10;
305 capa_to_assert = ER_4K;
306 break;
307 case ERASE_32K:
308 len = 32 << 10;
309 capa_to_assert = ER_32K;
310 break;
311 case ERASE_SECTOR:
312 len = s->pi->sector_size;
313 break;
314 case BULK_ERASE:
315 len = s->size;
316 break;
317 default:
318 abort();
321 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
322 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
323 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
324 " device\n", len);
327 if (!s->write_enable) {
328 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
329 return;
331 memset(s->storage + offset, 0xff, len);
332 flash_sync_area(s, offset, len);
335 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
337 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
338 flash_sync_page(s, s->dirty_page);
339 s->dirty_page = newpage;
343 static inline
344 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
346 int64_t page = addr / s->pi->page_size;
347 uint8_t prev = s->storage[s->cur_addr];
349 if (!s->write_enable) {
350 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
353 if ((prev ^ data) & data) {
354 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
355 " -> %" PRIx8 "\n", addr, prev, data);
358 if (s->pi->flags & WR_1) {
359 s->storage[s->cur_addr] = data;
360 } else {
361 s->storage[s->cur_addr] &= data;
364 flash_sync_dirty(s, page);
365 s->dirty_page = page;
368 static void complete_collecting_data(Flash *s)
370 s->cur_addr = s->data[0] << 16;
371 s->cur_addr |= s->data[1] << 8;
372 s->cur_addr |= s->data[2];
374 s->state = STATE_IDLE;
376 switch (s->cmd_in_progress) {
377 case DPP:
378 case QPP:
379 case PP:
380 s->state = STATE_PAGE_PROGRAM;
381 break;
382 case READ:
383 case FAST_READ:
384 case DOR:
385 case QOR:
386 case DIOR:
387 case QIOR:
388 s->state = STATE_READ;
389 break;
390 case ERASE_4K:
391 case ERASE_32K:
392 case ERASE_SECTOR:
393 flash_erase(s, s->cur_addr, s->cmd_in_progress);
394 break;
395 case WRSR:
396 if (s->write_enable) {
397 s->write_enable = false;
399 break;
400 default:
401 break;
405 static void decode_new_cmd(Flash *s, uint32_t value)
407 s->cmd_in_progress = value;
408 DB_PRINT_L(0, "decoded new command:%x\n", value);
410 switch (value) {
412 case ERASE_4K:
413 case ERASE_32K:
414 case ERASE_SECTOR:
415 case READ:
416 case DPP:
417 case QPP:
418 case PP:
419 s->needed_bytes = 3;
420 s->pos = 0;
421 s->len = 0;
422 s->state = STATE_COLLECTING_DATA;
423 break;
425 case FAST_READ:
426 case DOR:
427 case QOR:
428 s->needed_bytes = 4;
429 s->pos = 0;
430 s->len = 0;
431 s->state = STATE_COLLECTING_DATA;
432 break;
434 case DIOR:
435 switch ((s->pi->jedec >> 16) & 0xFF) {
436 case JEDEC_WINBOND:
437 case JEDEC_SPANSION:
438 s->needed_bytes = 4;
439 break;
440 case JEDEC_NUMONYX:
441 default:
442 s->needed_bytes = 5;
444 s->pos = 0;
445 s->len = 0;
446 s->state = STATE_COLLECTING_DATA;
447 break;
449 case QIOR:
450 switch ((s->pi->jedec >> 16) & 0xFF) {
451 case JEDEC_WINBOND:
452 case JEDEC_SPANSION:
453 s->needed_bytes = 6;
454 break;
455 case JEDEC_NUMONYX:
456 default:
457 s->needed_bytes = 8;
459 s->pos = 0;
460 s->len = 0;
461 s->state = STATE_COLLECTING_DATA;
462 break;
464 case WRSR:
465 if (s->write_enable) {
466 s->needed_bytes = 1;
467 s->pos = 0;
468 s->len = 0;
469 s->state = STATE_COLLECTING_DATA;
471 break;
473 case WRDI:
474 s->write_enable = false;
475 break;
476 case WREN:
477 s->write_enable = true;
478 break;
480 case RDSR:
481 s->data[0] = (!!s->write_enable) << 1;
482 s->pos = 0;
483 s->len = 1;
484 s->state = STATE_READING_DATA;
485 break;
487 case JEDEC_READ:
488 DB_PRINT_L(0, "populated jedec code\n");
489 s->data[0] = (s->pi->jedec >> 16) & 0xff;
490 s->data[1] = (s->pi->jedec >> 8) & 0xff;
491 s->data[2] = s->pi->jedec & 0xff;
492 if (s->pi->ext_jedec) {
493 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
494 s->data[4] = s->pi->ext_jedec & 0xff;
495 s->len = 5;
496 } else {
497 s->len = 3;
499 s->pos = 0;
500 s->state = STATE_READING_DATA;
501 break;
503 case BULK_ERASE:
504 if (s->write_enable) {
505 DB_PRINT_L(0, "chip erase\n");
506 flash_erase(s, 0, BULK_ERASE);
507 } else {
508 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
509 "protect!\n");
511 break;
512 case NOP:
513 break;
514 default:
515 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
516 break;
520 static int m25p80_cs(SSISlave *ss, bool select)
522 Flash *s = FROM_SSI_SLAVE(Flash, ss);
524 if (select) {
525 s->len = 0;
526 s->pos = 0;
527 s->state = STATE_IDLE;
528 flash_sync_dirty(s, -1);
531 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
533 return 0;
536 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
538 Flash *s = FROM_SSI_SLAVE(Flash, ss);
539 uint32_t r = 0;
541 switch (s->state) {
543 case STATE_PAGE_PROGRAM:
544 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
545 s->cur_addr, (uint8_t)tx);
546 flash_write8(s, s->cur_addr, (uint8_t)tx);
547 s->cur_addr++;
548 break;
550 case STATE_READ:
551 r = s->storage[s->cur_addr];
552 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
553 (uint8_t)r);
554 s->cur_addr = (s->cur_addr + 1) % s->size;
555 break;
557 case STATE_COLLECTING_DATA:
558 s->data[s->len] = (uint8_t)tx;
559 s->len++;
561 if (s->len == s->needed_bytes) {
562 complete_collecting_data(s);
564 break;
566 case STATE_READING_DATA:
567 r = s->data[s->pos];
568 s->pos++;
569 if (s->pos == s->len) {
570 s->pos = 0;
571 s->state = STATE_IDLE;
573 break;
575 default:
576 case STATE_IDLE:
577 decode_new_cmd(s, (uint8_t)tx);
578 break;
581 return r;
584 static int m25p80_init(SSISlave *ss)
586 DriveInfo *dinfo;
587 Flash *s = FROM_SSI_SLAVE(Flash, ss);
588 M25P80Class *mc = M25P80_GET_CLASS(s);
590 s->pi = mc->pi;
592 s->size = s->pi->sector_size * s->pi->n_sectors;
593 s->dirty_page = -1;
594 s->storage = qemu_blockalign(s->bdrv, s->size);
596 dinfo = drive_get_next(IF_MTD);
598 if (dinfo && dinfo->bdrv) {
599 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
600 s->bdrv = dinfo->bdrv;
601 /* FIXME: Move to late init */
602 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
603 BDRV_SECTOR_SIZE))) {
604 fprintf(stderr, "Failed to initialize SPI flash!\n");
605 return 1;
607 } else {
608 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
609 memset(s->storage, 0xFF, s->size);
612 return 0;
615 static void m25p80_pre_save(void *opaque)
617 flash_sync_dirty((Flash *)opaque, -1);
620 static const VMStateDescription vmstate_m25p80 = {
621 .name = "xilinx_spi",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
625 .pre_save = m25p80_pre_save,
626 .fields = (VMStateField[]) {
627 VMSTATE_UINT8(state, Flash),
628 VMSTATE_UINT8_ARRAY(data, Flash, 16),
629 VMSTATE_UINT32(len, Flash),
630 VMSTATE_UINT32(pos, Flash),
631 VMSTATE_UINT8(needed_bytes, Flash),
632 VMSTATE_UINT8(cmd_in_progress, Flash),
633 VMSTATE_UINT64(cur_addr, Flash),
634 VMSTATE_BOOL(write_enable, Flash),
635 VMSTATE_END_OF_LIST()
639 static void m25p80_class_init(ObjectClass *klass, void *data)
641 DeviceClass *dc = DEVICE_CLASS(klass);
642 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
643 M25P80Class *mc = M25P80_CLASS(klass);
645 k->init = m25p80_init;
646 k->transfer = m25p80_transfer8;
647 k->set_cs = m25p80_cs;
648 k->cs_polarity = SSI_CS_LOW;
649 dc->vmsd = &vmstate_m25p80;
650 mc->pi = data;
653 static const TypeInfo m25p80_info = {
654 .name = TYPE_M25P80,
655 .parent = TYPE_SSI_SLAVE,
656 .instance_size = sizeof(Flash),
657 .class_size = sizeof(M25P80Class),
658 .abstract = true,
661 static void m25p80_register_types(void)
663 int i;
665 type_register_static(&m25p80_info);
666 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
667 TypeInfo ti = {
668 .name = known_devices[i].part_name,
669 .parent = TYPE_M25P80,
670 .class_init = m25p80_class_init,
671 .class_data = (void *)&known_devices[i],
673 type_register(&ti);
677 type_init(m25p80_register_types)