Merge remote-tracking branch 'pmaydell/arm-devs.next' into staging
[qemu/agraf.git] / hw / char / cadence_uart.c
blobc2a783430b5c62c70493c41488324d3100ccd3ca
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38 * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK 0x0000001F
41 #define UART_INTR_ROVR 0x00000020
42 #define UART_INTR_FRAME 0x00000040
43 #define UART_INTR_PARE 0x00000080
44 #define UART_INTR_TIMEOUT 0x00000100
45 #define UART_INTR_DMSI 0x00000200
47 #define UART_SR_RACTIVE 0x00000400
48 #define UART_SR_TACTIVE 0x00000800
49 #define UART_SR_FDELT 0x00001000
51 #define UART_CR_RXRST 0x00000001
52 #define UART_CR_TXRST 0x00000002
53 #define UART_CR_RX_EN 0x00000004
54 #define UART_CR_RX_DIS 0x00000008
55 #define UART_CR_TX_EN 0x00000010
56 #define UART_CR_TX_DIS 0x00000020
57 #define UART_CR_RST_TO 0x00000040
58 #define UART_CR_STARTBRK 0x00000080
59 #define UART_CR_STOPBRK 0x00000100
61 #define UART_MR_CLKS 0x00000001
62 #define UART_MR_CHRL 0x00000006
63 #define UART_MR_CHRL_SH 1
64 #define UART_MR_PAR 0x00000038
65 #define UART_MR_PAR_SH 3
66 #define UART_MR_NBSTOP 0x000000C0
67 #define UART_MR_NBSTOP_SH 6
68 #define UART_MR_CHMODE 0x00000300
69 #define UART_MR_CHMODE_SH 8
70 #define UART_MR_UCLKEN 0x00000400
71 #define UART_MR_IRMODE 0x00000800
73 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
84 #define RX_FIFO_SIZE 16
85 #define TX_FIFO_SIZE 16
86 #define UART_INPUT_CLK 50000000
88 #define R_CR (0x00/4)
89 #define R_MR (0x04/4)
90 #define R_IER (0x08/4)
91 #define R_IDR (0x0C/4)
92 #define R_IMR (0x10/4)
93 #define R_CISR (0x14/4)
94 #define R_BRGR (0x18/4)
95 #define R_RTOR (0x1C/4)
96 #define R_RTRIG (0x20/4)
97 #define R_MCR (0x24/4)
98 #define R_MSR (0x28/4)
99 #define R_SR (0x2C/4)
100 #define R_TX_RX (0x30/4)
101 #define R_BDIV (0x34/4)
102 #define R_FDEL (0x38/4)
103 #define R_PMIN (0x3C/4)
104 #define R_PWID (0x40/4)
105 #define R_TTRIG (0x44/4)
107 #define R_MAX (R_TTRIG + 1)
109 typedef struct {
110 SysBusDevice busdev;
111 MemoryRegion iomem;
112 uint32_t r[R_MAX];
113 uint8_t r_fifo[RX_FIFO_SIZE];
114 uint32_t rx_wpos;
115 uint32_t rx_count;
116 uint64_t char_tx_time;
117 CharDriverState *chr;
118 qemu_irq irq;
119 struct QEMUTimer *fifo_trigger_handle;
120 struct QEMUTimer *tx_time_handle;
121 } UartState;
123 static void uart_update_status(UartState *s)
125 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
126 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
129 static void fifo_trigger_update(void *opaque)
131 UartState *s = (UartState *)opaque;
133 s->r[R_CISR] |= UART_INTR_TIMEOUT;
135 uart_update_status(s);
138 static void uart_tx_redo(UartState *s)
140 uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
142 qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
144 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
146 uart_update_status(s);
149 static void uart_tx_write(void *opaque)
151 UartState *s = (UartState *)opaque;
153 uart_tx_redo(s);
156 static void uart_rx_reset(UartState *s)
158 s->rx_wpos = 0;
159 s->rx_count = 0;
160 qemu_chr_accept_input(s->chr);
162 s->r[R_SR] |= UART_SR_INTR_REMPTY;
163 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
166 static void uart_tx_reset(UartState *s)
168 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
169 s->r[R_SR] &= ~UART_SR_INTR_TFUL;
172 static void uart_send_breaks(UartState *s)
174 int break_enabled = 1;
176 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
177 &break_enabled);
180 static void uart_parameters_setup(UartState *s)
182 QEMUSerialSetParams ssp;
183 unsigned int baud_rate, packet_size;
185 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
186 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
188 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
189 packet_size = 1;
191 switch (s->r[R_MR] & UART_MR_PAR) {
192 case UART_PARITY_EVEN:
193 ssp.parity = 'E';
194 packet_size++;
195 break;
196 case UART_PARITY_ODD:
197 ssp.parity = 'O';
198 packet_size++;
199 break;
200 default:
201 ssp.parity = 'N';
202 break;
205 switch (s->r[R_MR] & UART_MR_CHRL) {
206 case UART_DATA_BITS_6:
207 ssp.data_bits = 6;
208 break;
209 case UART_DATA_BITS_7:
210 ssp.data_bits = 7;
211 break;
212 default:
213 ssp.data_bits = 8;
214 break;
217 switch (s->r[R_MR] & UART_MR_NBSTOP) {
218 case UART_STOP_BITS_1:
219 ssp.stop_bits = 1;
220 break;
221 default:
222 ssp.stop_bits = 2;
223 break;
226 packet_size += ssp.data_bits + ssp.stop_bits;
227 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
228 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
231 static int uart_can_receive(void *opaque)
233 UartState *s = (UartState *)opaque;
235 return RX_FIFO_SIZE - s->rx_count;
238 static void uart_ctrl_update(UartState *s)
240 if (s->r[R_CR] & UART_CR_TXRST) {
241 uart_tx_reset(s);
244 if (s->r[R_CR] & UART_CR_RXRST) {
245 uart_rx_reset(s);
248 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
250 if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
251 uart_tx_redo(s);
254 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
255 uart_send_breaks(s);
259 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
261 UartState *s = (UartState *)opaque;
262 uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
263 int i;
265 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
266 return;
269 s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
271 if (s->rx_count == RX_FIFO_SIZE) {
272 s->r[R_CISR] |= UART_INTR_ROVR;
273 } else {
274 for (i = 0; i < size; i++) {
275 s->r_fifo[s->rx_wpos] = buf[i];
276 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
277 s->rx_count++;
279 if (s->rx_count == RX_FIFO_SIZE) {
280 s->r[R_SR] |= UART_SR_INTR_RFUL;
281 break;
284 if (s->rx_count >= s->r[R_RTRIG]) {
285 s->r[R_SR] |= UART_SR_INTR_RTRIG;
288 qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
289 (s->char_tx_time * 4));
291 uart_update_status(s);
294 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
296 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
297 return;
300 while (size) {
301 size -= qemu_chr_fe_write(s->chr, buf, size);
305 static void uart_receive(void *opaque, const uint8_t *buf, int size)
307 UartState *s = (UartState *)opaque;
308 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
310 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
311 uart_write_rx_fifo(opaque, buf, size);
313 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
314 uart_write_tx_fifo(s, buf, size);
318 static void uart_event(void *opaque, int event)
320 UartState *s = (UartState *)opaque;
321 uint8_t buf = '\0';
323 if (event == CHR_EVENT_BREAK) {
324 uart_write_rx_fifo(opaque, &buf, 1);
327 uart_update_status(s);
330 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
332 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
333 return;
336 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
338 if (s->rx_count) {
339 uint32_t rx_rpos =
340 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
341 *c = s->r_fifo[rx_rpos];
342 s->rx_count--;
344 if (!s->rx_count) {
345 s->r[R_SR] |= UART_SR_INTR_REMPTY;
347 qemu_chr_accept_input(s->chr);
348 } else {
349 *c = 0;
350 s->r[R_SR] |= UART_SR_INTR_REMPTY;
353 if (s->rx_count < s->r[R_RTRIG]) {
354 s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
356 uart_update_status(s);
359 static void uart_write(void *opaque, hwaddr offset,
360 uint64_t value, unsigned size)
362 UartState *s = (UartState *)opaque;
364 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
365 offset >>= 2;
366 switch (offset) {
367 case R_IER: /* ier (wts imr) */
368 s->r[R_IMR] |= value;
369 break;
370 case R_IDR: /* idr (wtc imr) */
371 s->r[R_IMR] &= ~value;
372 break;
373 case R_IMR: /* imr (read only) */
374 break;
375 case R_CISR: /* cisr (wtc) */
376 s->r[R_CISR] &= ~value;
377 break;
378 case R_TX_RX: /* UARTDR */
379 switch (s->r[R_MR] & UART_MR_CHMODE) {
380 case NORMAL_MODE:
381 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
382 break;
383 case LOCAL_LOOPBACK:
384 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
385 break;
387 break;
388 default:
389 s->r[offset] = value;
392 switch (offset) {
393 case R_CR:
394 uart_ctrl_update(s);
395 break;
396 case R_MR:
397 uart_parameters_setup(s);
398 break;
402 static uint64_t uart_read(void *opaque, hwaddr offset,
403 unsigned size)
405 UartState *s = (UartState *)opaque;
406 uint32_t c = 0;
408 offset >>= 2;
409 if (offset >= R_MAX) {
410 c = 0;
411 } else if (offset == R_TX_RX) {
412 uart_read_rx_fifo(s, &c);
413 } else {
414 c = s->r[offset];
417 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
418 return c;
421 static const MemoryRegionOps uart_ops = {
422 .read = uart_read,
423 .write = uart_write,
424 .endianness = DEVICE_NATIVE_ENDIAN,
427 static void cadence_uart_reset(UartState *s)
429 s->r[R_CR] = 0x00000128;
430 s->r[R_IMR] = 0;
431 s->r[R_CISR] = 0;
432 s->r[R_RTRIG] = 0x00000020;
433 s->r[R_BRGR] = 0x0000000F;
434 s->r[R_TTRIG] = 0x00000020;
436 uart_rx_reset(s);
437 uart_tx_reset(s);
439 s->rx_count = 0;
440 s->rx_wpos = 0;
443 static int cadence_uart_init(SysBusDevice *dev)
445 UartState *s = FROM_SYSBUS(UartState, dev);
447 memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
448 sysbus_init_mmio(dev, &s->iomem);
449 sysbus_init_irq(dev, &s->irq);
451 s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
452 (QEMUTimerCB *)fifo_trigger_update, s);
454 s->tx_time_handle = qemu_new_timer_ns(vm_clock,
455 (QEMUTimerCB *)uart_tx_write, s);
457 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
459 s->chr = qemu_char_get_next_serial();
461 cadence_uart_reset(s);
463 if (s->chr) {
464 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
465 uart_event, s);
468 return 0;
471 static int cadence_uart_post_load(void *opaque, int version_id)
473 UartState *s = opaque;
475 uart_parameters_setup(s);
476 uart_update_status(s);
477 return 0;
480 static const VMStateDescription vmstate_cadence_uart = {
481 .name = "cadence_uart",
482 .version_id = 1,
483 .minimum_version_id = 1,
484 .minimum_version_id_old = 1,
485 .post_load = cadence_uart_post_load,
486 .fields = (VMStateField[]) {
487 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
488 VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
489 VMSTATE_UINT32(rx_count, UartState),
490 VMSTATE_UINT32(rx_wpos, UartState),
491 VMSTATE_TIMER(fifo_trigger_handle, UartState),
492 VMSTATE_TIMER(tx_time_handle, UartState),
493 VMSTATE_END_OF_LIST()
497 static void cadence_uart_class_init(ObjectClass *klass, void *data)
499 DeviceClass *dc = DEVICE_CLASS(klass);
500 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
502 sdc->init = cadence_uart_init;
503 dc->vmsd = &vmstate_cadence_uart;
506 static const TypeInfo cadence_uart_info = {
507 .name = "cadence_uart",
508 .parent = TYPE_SYS_BUS_DEVICE,
509 .instance_size = sizeof(UartState),
510 .class_init = cadence_uart_class_init,
513 static void cadence_uart_register_types(void)
515 type_register_static(&cadence_uart_info);
518 type_init(cadence_uart_register_types)