openpic: unify memory api subregions
[qemu/agraf.git] / target-alpha / int_helper.c
blob1d832f0b57698f2bcf2d57e64a3f8c2ed2d1d444
1 /*
2 * Helpers for integer and multimedia instructions.
4 * Copyright (c) 2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
22 #include "host-utils.h"
25 uint64_t helper_umulh(uint64_t op1, uint64_t op2)
27 uint64_t tl, th;
28 mulu64(&tl, &th, op1, op2);
29 return th;
32 uint64_t helper_ctpop(uint64_t arg)
34 return ctpop64(arg);
37 uint64_t helper_ctlz(uint64_t arg)
39 return clz64(arg);
42 uint64_t helper_cttz(uint64_t arg)
44 return ctz64(arg);
47 static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
49 uint64_t mask;
51 mask = 0;
52 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
53 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
54 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
55 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
56 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
57 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
58 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
59 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
61 return op & ~mask;
64 uint64_t helper_zap(uint64_t val, uint64_t mask)
66 return byte_zap(val, mask);
69 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
71 return byte_zap(val, ~mask);
74 uint64_t helper_cmpbge(uint64_t op1, uint64_t op2)
76 uint8_t opa, opb, res;
77 int i;
79 res = 0;
80 for (i = 0; i < 8; i++) {
81 opa = op1 >> (i * 8);
82 opb = op2 >> (i * 8);
83 if (opa >= opb) {
84 res |= 1 << i;
87 return res;
90 uint64_t helper_minub8(uint64_t op1, uint64_t op2)
92 uint64_t res = 0;
93 uint8_t opa, opb, opr;
94 int i;
96 for (i = 0; i < 8; ++i) {
97 opa = op1 >> (i * 8);
98 opb = op2 >> (i * 8);
99 opr = opa < opb ? opa : opb;
100 res |= (uint64_t)opr << (i * 8);
102 return res;
105 uint64_t helper_minsb8(uint64_t op1, uint64_t op2)
107 uint64_t res = 0;
108 int8_t opa, opb;
109 uint8_t opr;
110 int i;
112 for (i = 0; i < 8; ++i) {
113 opa = op1 >> (i * 8);
114 opb = op2 >> (i * 8);
115 opr = opa < opb ? opa : opb;
116 res |= (uint64_t)opr << (i * 8);
118 return res;
121 uint64_t helper_minuw4(uint64_t op1, uint64_t op2)
123 uint64_t res = 0;
124 uint16_t opa, opb, opr;
125 int i;
127 for (i = 0; i < 4; ++i) {
128 opa = op1 >> (i * 16);
129 opb = op2 >> (i * 16);
130 opr = opa < opb ? opa : opb;
131 res |= (uint64_t)opr << (i * 16);
133 return res;
136 uint64_t helper_minsw4(uint64_t op1, uint64_t op2)
138 uint64_t res = 0;
139 int16_t opa, opb;
140 uint16_t opr;
141 int i;
143 for (i = 0; i < 4; ++i) {
144 opa = op1 >> (i * 16);
145 opb = op2 >> (i * 16);
146 opr = opa < opb ? opa : opb;
147 res |= (uint64_t)opr << (i * 16);
149 return res;
152 uint64_t helper_maxub8(uint64_t op1, uint64_t op2)
154 uint64_t res = 0;
155 uint8_t opa, opb, opr;
156 int i;
158 for (i = 0; i < 8; ++i) {
159 opa = op1 >> (i * 8);
160 opb = op2 >> (i * 8);
161 opr = opa > opb ? opa : opb;
162 res |= (uint64_t)opr << (i * 8);
164 return res;
167 uint64_t helper_maxsb8(uint64_t op1, uint64_t op2)
169 uint64_t res = 0;
170 int8_t opa, opb;
171 uint8_t opr;
172 int i;
174 for (i = 0; i < 8; ++i) {
175 opa = op1 >> (i * 8);
176 opb = op2 >> (i * 8);
177 opr = opa > opb ? opa : opb;
178 res |= (uint64_t)opr << (i * 8);
180 return res;
183 uint64_t helper_maxuw4(uint64_t op1, uint64_t op2)
185 uint64_t res = 0;
186 uint16_t opa, opb, opr;
187 int i;
189 for (i = 0; i < 4; ++i) {
190 opa = op1 >> (i * 16);
191 opb = op2 >> (i * 16);
192 opr = opa > opb ? opa : opb;
193 res |= (uint64_t)opr << (i * 16);
195 return res;
198 uint64_t helper_maxsw4(uint64_t op1, uint64_t op2)
200 uint64_t res = 0;
201 int16_t opa, opb;
202 uint16_t opr;
203 int i;
205 for (i = 0; i < 4; ++i) {
206 opa = op1 >> (i * 16);
207 opb = op2 >> (i * 16);
208 opr = opa > opb ? opa : opb;
209 res |= (uint64_t)opr << (i * 16);
211 return res;
214 uint64_t helper_perr(uint64_t op1, uint64_t op2)
216 uint64_t res = 0;
217 uint8_t opa, opb, opr;
218 int i;
220 for (i = 0; i < 8; ++i) {
221 opa = op1 >> (i * 8);
222 opb = op2 >> (i * 8);
223 if (opa >= opb) {
224 opr = opa - opb;
225 } else {
226 opr = opb - opa;
228 res += opr;
230 return res;
233 uint64_t helper_pklb(uint64_t op1)
235 return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
238 uint64_t helper_pkwb(uint64_t op1)
240 return ((op1 & 0xff)
241 | ((op1 >> 8) & 0xff00)
242 | ((op1 >> 16) & 0xff0000)
243 | ((op1 >> 24) & 0xff000000));
246 uint64_t helper_unpkbl(uint64_t op1)
248 return (op1 & 0xff) | ((op1 & 0xff00) << 24);
251 uint64_t helper_unpkbw(uint64_t op1)
253 return ((op1 & 0xff)
254 | ((op1 & 0xff00) << 8)
255 | ((op1 & 0xff0000) << 16)
256 | ((op1 & 0xff000000) << 24));
259 uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
261 uint64_t tmp = op1;
262 op1 += op2;
263 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
264 arith_excp(env, GETPC(), EXC_M_IOV, 0);
266 return op1;
269 uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
271 uint64_t tmp = op1;
272 op1 = (uint32_t)(op1 + op2);
273 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
274 arith_excp(env, GETPC(), EXC_M_IOV, 0);
276 return op1;
279 uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
281 uint64_t res;
282 res = op1 - op2;
283 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
284 arith_excp(env, GETPC(), EXC_M_IOV, 0);
286 return res;
289 uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
291 uint32_t res;
292 res = op1 - op2;
293 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
294 arith_excp(env, GETPC(), EXC_M_IOV, 0);
296 return res;
299 uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
301 int64_t res = (int64_t)op1 * (int64_t)op2;
303 if (unlikely((int32_t)res != res)) {
304 arith_excp(env, GETPC(), EXC_M_IOV, 0);
306 return (int64_t)((int32_t)res);
309 uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
311 uint64_t tl, th;
313 muls64(&tl, &th, op1, op2);
314 /* If th != 0 && th != -1, then we had an overflow */
315 if (unlikely((th + 1) > 1)) {
316 arith_excp(env, GETPC(), EXC_M_IOV, 0);
318 return tl;