tap: clear vhost_net backend on cleanup
[qemu/agraf.git] / target-m68k / helper.c
blob56de897c1df9da4df74871d0c5f0e0eab4308602
1 /*
2 * m68k op helpers
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <stdio.h>
22 #include <string.h>
24 #include "config.h"
25 #include "cpu.h"
26 #include "exec-all.h"
27 #include "qemu-common.h"
28 #include "gdbstub.h"
30 #include "helpers.h"
32 #define SIGNBIT (1u << 31)
34 enum m68k_cpuid {
35 M68K_CPUID_M5206,
36 M68K_CPUID_M5208,
37 M68K_CPUID_CFV4E,
38 M68K_CPUID_ANY,
41 typedef struct m68k_def_t m68k_def_t;
43 struct m68k_def_t {
44 const char * name;
45 enum m68k_cpuid id;
48 static m68k_def_t m68k_cpu_defs[] = {
49 {"m5206", M68K_CPUID_M5206},
50 {"m5208", M68K_CPUID_M5208},
51 {"cfv4e", M68K_CPUID_CFV4E},
52 {"any", M68K_CPUID_ANY},
53 {NULL, 0},
56 void m68k_cpu_list(FILE *f, fprintf_function cpu_fprintf)
58 unsigned int i;
60 for (i = 0; m68k_cpu_defs[i].name; i++) {
61 (*cpu_fprintf)(f, "%s\n", m68k_cpu_defs[i].name);
65 static int fpu_gdb_get_reg(CPUState *env, uint8_t *mem_buf, int n)
67 if (n < 8) {
68 stfq_p(mem_buf, env->fregs[n]);
69 return 8;
71 if (n < 11) {
72 /* FP control registers (not implemented) */
73 memset(mem_buf, 0, 4);
74 return 4;
76 return 0;
79 static int fpu_gdb_set_reg(CPUState *env, uint8_t *mem_buf, int n)
81 if (n < 8) {
82 env->fregs[n] = ldfq_p(mem_buf);
83 return 8;
85 if (n < 11) {
86 /* FP control registers (not implemented) */
87 return 4;
89 return 0;
92 static void m68k_set_feature(CPUM68KState *env, int feature)
94 env->features |= (1u << feature);
97 static int cpu_m68k_set_model(CPUM68KState *env, const char *name)
99 m68k_def_t *def;
101 for (def = m68k_cpu_defs; def->name; def++) {
102 if (strcmp(def->name, name) == 0)
103 break;
105 if (!def->name)
106 return -1;
108 switch (def->id) {
109 case M68K_CPUID_M5206:
110 m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
111 break;
112 case M68K_CPUID_M5208:
113 m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
114 m68k_set_feature(env, M68K_FEATURE_CF_ISA_APLUSC);
115 m68k_set_feature(env, M68K_FEATURE_BRAL);
116 m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
117 m68k_set_feature(env, M68K_FEATURE_USP);
118 break;
119 case M68K_CPUID_CFV4E:
120 m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
121 m68k_set_feature(env, M68K_FEATURE_CF_ISA_B);
122 m68k_set_feature(env, M68K_FEATURE_BRAL);
123 m68k_set_feature(env, M68K_FEATURE_CF_FPU);
124 m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
125 m68k_set_feature(env, M68K_FEATURE_USP);
126 break;
127 case M68K_CPUID_ANY:
128 m68k_set_feature(env, M68K_FEATURE_CF_ISA_A);
129 m68k_set_feature(env, M68K_FEATURE_CF_ISA_B);
130 m68k_set_feature(env, M68K_FEATURE_CF_ISA_APLUSC);
131 m68k_set_feature(env, M68K_FEATURE_BRAL);
132 m68k_set_feature(env, M68K_FEATURE_CF_FPU);
133 /* MAC and EMAC are mututally exclusive, so pick EMAC.
134 It's mostly backwards compatible. */
135 m68k_set_feature(env, M68K_FEATURE_CF_EMAC);
136 m68k_set_feature(env, M68K_FEATURE_CF_EMAC_B);
137 m68k_set_feature(env, M68K_FEATURE_USP);
138 m68k_set_feature(env, M68K_FEATURE_EXT_FULL);
139 m68k_set_feature(env, M68K_FEATURE_WORD_INDEX);
140 break;
143 register_m68k_insns(env);
144 if (m68k_feature (env, M68K_FEATURE_CF_FPU)) {
145 gdb_register_coprocessor(env, fpu_gdb_get_reg, fpu_gdb_set_reg,
146 11, "cf-fp.xml", 18);
148 /* TODO: Add [E]MAC registers. */
149 return 0;
152 void cpu_reset(CPUM68KState *env)
154 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
155 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
156 log_cpu_state(env, 0);
159 memset(env, 0, offsetof(CPUM68KState, breakpoints));
160 #if !defined (CONFIG_USER_ONLY)
161 env->sr = 0x2700;
162 #endif
163 m68k_switch_sp(env);
164 /* ??? FP regs should be initialized to NaN. */
165 env->cc_op = CC_OP_FLAGS;
166 /* TODO: We should set PC from the interrupt vector. */
167 env->pc = 0;
168 tlb_flush(env, 1);
171 CPUM68KState *cpu_m68k_init(const char *cpu_model)
173 CPUM68KState *env;
174 static int inited;
176 env = qemu_mallocz(sizeof(CPUM68KState));
177 cpu_exec_init(env);
178 if (!inited) {
179 inited = 1;
180 m68k_tcg_init();
183 env->cpu_model_str = cpu_model;
185 if (cpu_m68k_set_model(env, cpu_model) < 0) {
186 cpu_m68k_close(env);
187 return NULL;
190 cpu_reset(env);
191 qemu_init_vcpu(env);
192 return env;
195 void cpu_m68k_close(CPUM68KState *env)
197 qemu_free(env);
200 void cpu_m68k_flush_flags(CPUM68KState *env, int cc_op)
202 int flags;
203 uint32_t src;
204 uint32_t dest;
205 uint32_t tmp;
207 #define HIGHBIT 0x80000000u
209 #define SET_NZ(x) do { \
210 if ((x) == 0) \
211 flags |= CCF_Z; \
212 else if ((int32_t)(x) < 0) \
213 flags |= CCF_N; \
214 } while (0)
216 #define SET_FLAGS_SUB(type, utype) do { \
217 SET_NZ((type)dest); \
218 tmp = dest + src; \
219 if ((utype) tmp < (utype) src) \
220 flags |= CCF_C; \
221 if ((1u << (sizeof(type) * 8 - 1)) & (tmp ^ dest) & (tmp ^ src)) \
222 flags |= CCF_V; \
223 } while (0)
225 flags = 0;
226 src = env->cc_src;
227 dest = env->cc_dest;
228 switch (cc_op) {
229 case CC_OP_FLAGS:
230 flags = dest;
231 break;
232 case CC_OP_LOGIC:
233 SET_NZ(dest);
234 break;
235 case CC_OP_ADD:
236 SET_NZ(dest);
237 if (dest < src)
238 flags |= CCF_C;
239 tmp = dest - src;
240 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
241 flags |= CCF_V;
242 break;
243 case CC_OP_SUB:
244 SET_FLAGS_SUB(int32_t, uint32_t);
245 break;
246 case CC_OP_CMPB:
247 SET_FLAGS_SUB(int8_t, uint8_t);
248 break;
249 case CC_OP_CMPW:
250 SET_FLAGS_SUB(int16_t, uint16_t);
251 break;
252 case CC_OP_ADDX:
253 SET_NZ(dest);
254 if (dest <= src)
255 flags |= CCF_C;
256 tmp = dest - src - 1;
257 if (HIGHBIT & (src ^ dest) & ~(tmp ^ src))
258 flags |= CCF_V;
259 break;
260 case CC_OP_SUBX:
261 SET_NZ(dest);
262 tmp = dest + src + 1;
263 if (tmp <= src)
264 flags |= CCF_C;
265 if (HIGHBIT & (tmp ^ dest) & (tmp ^ src))
266 flags |= CCF_V;
267 break;
268 case CC_OP_SHIFT:
269 SET_NZ(dest);
270 if (src)
271 flags |= CCF_C;
272 break;
273 default:
274 cpu_abort(env, "Bad CC_OP %d", cc_op);
276 env->cc_op = CC_OP_FLAGS;
277 env->cc_dest = flags;
280 void HELPER(movec)(CPUM68KState *env, uint32_t reg, uint32_t val)
282 switch (reg) {
283 case 0x02: /* CACR */
284 env->cacr = val;
285 m68k_switch_sp(env);
286 break;
287 case 0x04: case 0x05: case 0x06: case 0x07: /* ACR[0-3] */
288 /* TODO: Implement Access Control Registers. */
289 break;
290 case 0x801: /* VBR */
291 env->vbr = val;
292 break;
293 /* TODO: Implement control registers. */
294 default:
295 cpu_abort(env, "Unimplemented control register write 0x%x = 0x%x\n",
296 reg, val);
300 void HELPER(set_macsr)(CPUM68KState *env, uint32_t val)
302 uint32_t acc;
303 int8_t exthigh;
304 uint8_t extlow;
305 uint64_t regval;
306 int i;
307 if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) {
308 for (i = 0; i < 4; i++) {
309 regval = env->macc[i];
310 exthigh = regval >> 40;
311 if (env->macsr & MACSR_FI) {
312 acc = regval >> 8;
313 extlow = regval;
314 } else {
315 acc = regval;
316 extlow = regval >> 32;
318 if (env->macsr & MACSR_FI) {
319 regval = (((uint64_t)acc) << 8) | extlow;
320 regval |= ((int64_t)exthigh) << 40;
321 } else if (env->macsr & MACSR_SU) {
322 regval = acc | (((int64_t)extlow) << 32);
323 regval |= ((int64_t)exthigh) << 40;
324 } else {
325 regval = acc | (((uint64_t)extlow) << 32);
326 regval |= ((uint64_t)(uint8_t)exthigh) << 40;
328 env->macc[i] = regval;
331 env->macsr = val;
334 void m68k_switch_sp(CPUM68KState *env)
336 int new_sp;
338 env->sp[env->current_sp] = env->aregs[7];
339 new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP)
340 ? M68K_SSP : M68K_USP;
341 env->aregs[7] = env->sp[new_sp];
342 env->current_sp = new_sp;
345 #if defined(CONFIG_USER_ONLY)
347 int cpu_m68k_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
348 int mmu_idx, int is_softmmu)
350 env->exception_index = EXCP_ACCESS;
351 env->mmu.ar = address;
352 return 1;
355 #else
357 /* MMU */
359 /* TODO: This will need fixing once the MMU is implemented. */
360 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
362 return addr;
365 int cpu_m68k_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
366 int mmu_idx, int is_softmmu)
368 int prot;
370 address &= TARGET_PAGE_MASK;
371 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
372 tlb_set_page(env, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
373 return 0;
376 /* Notify CPU of a pending interrupt. Prioritization and vectoring should
377 be handled by the interrupt controller. Real hardware only requests
378 the vector when the interrupt is acknowledged by the CPU. For
379 simplicitly we calculate it when the interrupt is signalled. */
380 void m68k_set_irq_level(CPUM68KState *env, int level, uint8_t vector)
382 env->pending_level = level;
383 env->pending_vector = vector;
384 if (level)
385 cpu_interrupt(env, CPU_INTERRUPT_HARD);
386 else
387 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
390 #endif
392 uint32_t HELPER(bitrev)(uint32_t x)
394 x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau);
395 x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu);
396 x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u);
397 return bswap32(x);
400 uint32_t HELPER(ff1)(uint32_t x)
402 int n;
403 for (n = 32; x; n--)
404 x >>= 1;
405 return n;
408 uint32_t HELPER(sats)(uint32_t val, uint32_t ccr)
410 /* The result has the opposite sign to the original value. */
411 if (ccr & CCF_V)
412 val = (((int32_t)val) >> 31) ^ SIGNBIT;
413 return val;
416 uint32_t HELPER(subx_cc)(CPUState *env, uint32_t op1, uint32_t op2)
418 uint32_t res;
419 uint32_t old_flags;
421 old_flags = env->cc_dest;
422 if (env->cc_x) {
423 env->cc_x = (op1 <= op2);
424 env->cc_op = CC_OP_SUBX;
425 res = op1 - (op2 + 1);
426 } else {
427 env->cc_x = (op1 < op2);
428 env->cc_op = CC_OP_SUB;
429 res = op1 - op2;
431 env->cc_dest = res;
432 env->cc_src = op2;
433 cpu_m68k_flush_flags(env, env->cc_op);
434 /* !Z is sticky. */
435 env->cc_dest &= (old_flags | ~CCF_Z);
436 return res;
439 uint32_t HELPER(addx_cc)(CPUState *env, uint32_t op1, uint32_t op2)
441 uint32_t res;
442 uint32_t old_flags;
444 old_flags = env->cc_dest;
445 if (env->cc_x) {
446 res = op1 + op2 + 1;
447 env->cc_x = (res <= op2);
448 env->cc_op = CC_OP_ADDX;
449 } else {
450 res = op1 + op2;
451 env->cc_x = (res < op2);
452 env->cc_op = CC_OP_ADD;
454 env->cc_dest = res;
455 env->cc_src = op2;
456 cpu_m68k_flush_flags(env, env->cc_op);
457 /* !Z is sticky. */
458 env->cc_dest &= (old_flags | ~CCF_Z);
459 return res;
462 uint32_t HELPER(xflag_lt)(uint32_t a, uint32_t b)
464 return a < b;
467 void HELPER(set_sr)(CPUState *env, uint32_t val)
469 env->sr = val & 0xffff;
470 m68k_switch_sp(env);
473 uint32_t HELPER(shl_cc)(CPUState *env, uint32_t val, uint32_t shift)
475 uint32_t result;
476 uint32_t cf;
478 shift &= 63;
479 if (shift == 0) {
480 result = val;
481 cf = env->cc_src & CCF_C;
482 } else if (shift < 32) {
483 result = val << shift;
484 cf = (val >> (32 - shift)) & 1;
485 } else if (shift == 32) {
486 result = 0;
487 cf = val & 1;
488 } else /* shift > 32 */ {
489 result = 0;
490 cf = 0;
492 env->cc_src = cf;
493 env->cc_x = (cf != 0);
494 env->cc_dest = result;
495 return result;
498 uint32_t HELPER(shr_cc)(CPUState *env, uint32_t val, uint32_t shift)
500 uint32_t result;
501 uint32_t cf;
503 shift &= 63;
504 if (shift == 0) {
505 result = val;
506 cf = env->cc_src & CCF_C;
507 } else if (shift < 32) {
508 result = val >> shift;
509 cf = (val >> (shift - 1)) & 1;
510 } else if (shift == 32) {
511 result = 0;
512 cf = val >> 31;
513 } else /* shift > 32 */ {
514 result = 0;
515 cf = 0;
517 env->cc_src = cf;
518 env->cc_x = (cf != 0);
519 env->cc_dest = result;
520 return result;
523 uint32_t HELPER(sar_cc)(CPUState *env, uint32_t val, uint32_t shift)
525 uint32_t result;
526 uint32_t cf;
528 shift &= 63;
529 if (shift == 0) {
530 result = val;
531 cf = (env->cc_src & CCF_C) != 0;
532 } else if (shift < 32) {
533 result = (int32_t)val >> shift;
534 cf = (val >> (shift - 1)) & 1;
535 } else /* shift >= 32 */ {
536 result = (int32_t)val >> 31;
537 cf = val >> 31;
539 env->cc_src = cf;
540 env->cc_x = cf;
541 env->cc_dest = result;
542 return result;
545 /* FPU helpers. */
546 uint32_t HELPER(f64_to_i32)(CPUState *env, float64 val)
548 return float64_to_int32(val, &env->fp_status);
551 float32 HELPER(f64_to_f32)(CPUState *env, float64 val)
553 return float64_to_float32(val, &env->fp_status);
556 float64 HELPER(i32_to_f64)(CPUState *env, uint32_t val)
558 return int32_to_float64(val, &env->fp_status);
561 float64 HELPER(f32_to_f64)(CPUState *env, float32 val)
563 return float32_to_float64(val, &env->fp_status);
566 float64 HELPER(iround_f64)(CPUState *env, float64 val)
568 return float64_round_to_int(val, &env->fp_status);
571 float64 HELPER(itrunc_f64)(CPUState *env, float64 val)
573 return float64_trunc_to_int(val, &env->fp_status);
576 float64 HELPER(sqrt_f64)(CPUState *env, float64 val)
578 return float64_sqrt(val, &env->fp_status);
581 float64 HELPER(abs_f64)(float64 val)
583 return float64_abs(val);
586 float64 HELPER(chs_f64)(float64 val)
588 return float64_chs(val);
591 float64 HELPER(add_f64)(CPUState *env, float64 a, float64 b)
593 return float64_add(a, b, &env->fp_status);
596 float64 HELPER(sub_f64)(CPUState *env, float64 a, float64 b)
598 return float64_sub(a, b, &env->fp_status);
601 float64 HELPER(mul_f64)(CPUState *env, float64 a, float64 b)
603 return float64_mul(a, b, &env->fp_status);
606 float64 HELPER(div_f64)(CPUState *env, float64 a, float64 b)
608 return float64_div(a, b, &env->fp_status);
611 float64 HELPER(sub_cmp_f64)(CPUState *env, float64 a, float64 b)
613 /* ??? This may incorrectly raise exceptions. */
614 /* ??? Should flush denormals to zero. */
615 float64 res;
616 res = float64_sub(a, b, &env->fp_status);
617 if (float64_is_nan(res)) {
618 /* +/-inf compares equal against itself, but sub returns nan. */
619 if (!float64_is_nan(a)
620 && !float64_is_nan(b)) {
621 res = float64_zero;
622 if (float64_lt_quiet(a, res, &env->fp_status))
623 res = float64_chs(res);
626 return res;
629 uint32_t HELPER(compare_f64)(CPUState *env, float64 val)
631 return float64_compare_quiet(val, float64_zero, &env->fp_status);
634 /* MAC unit. */
635 /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers
636 take values, others take register numbers and manipulate the contents
637 in-place. */
638 void HELPER(mac_move)(CPUState *env, uint32_t dest, uint32_t src)
640 uint32_t mask;
641 env->macc[dest] = env->macc[src];
642 mask = MACSR_PAV0 << dest;
643 if (env->macsr & (MACSR_PAV0 << src))
644 env->macsr |= mask;
645 else
646 env->macsr &= ~mask;
649 uint64_t HELPER(macmuls)(CPUState *env, uint32_t op1, uint32_t op2)
651 int64_t product;
652 int64_t res;
654 product = (uint64_t)op1 * op2;
655 res = (product << 24) >> 24;
656 if (res != product) {
657 env->macsr |= MACSR_V;
658 if (env->macsr & MACSR_OMC) {
659 /* Make sure the accumulate operation overflows. */
660 if (product < 0)
661 res = ~(1ll << 50);
662 else
663 res = 1ll << 50;
666 return res;
669 uint64_t HELPER(macmulu)(CPUState *env, uint32_t op1, uint32_t op2)
671 uint64_t product;
673 product = (uint64_t)op1 * op2;
674 if (product & (0xffffffull << 40)) {
675 env->macsr |= MACSR_V;
676 if (env->macsr & MACSR_OMC) {
677 /* Make sure the accumulate operation overflows. */
678 product = 1ll << 50;
679 } else {
680 product &= ((1ull << 40) - 1);
683 return product;
686 uint64_t HELPER(macmulf)(CPUState *env, uint32_t op1, uint32_t op2)
688 uint64_t product;
689 uint32_t remainder;
691 product = (uint64_t)op1 * op2;
692 if (env->macsr & MACSR_RT) {
693 remainder = product & 0xffffff;
694 product >>= 24;
695 if (remainder > 0x800000)
696 product++;
697 else if (remainder == 0x800000)
698 product += (product & 1);
699 } else {
700 product >>= 24;
702 return product;
705 void HELPER(macsats)(CPUState *env, uint32_t acc)
707 int64_t tmp;
708 int64_t result;
709 tmp = env->macc[acc];
710 result = ((tmp << 16) >> 16);
711 if (result != tmp) {
712 env->macsr |= MACSR_V;
714 if (env->macsr & MACSR_V) {
715 env->macsr |= MACSR_PAV0 << acc;
716 if (env->macsr & MACSR_OMC) {
717 /* The result is saturated to 32 bits, despite overflow occuring
718 at 48 bits. Seems weird, but that's what the hardware docs
719 say. */
720 result = (result >> 63) ^ 0x7fffffff;
723 env->macc[acc] = result;
726 void HELPER(macsatu)(CPUState *env, uint32_t acc)
728 uint64_t val;
730 val = env->macc[acc];
731 if (val & (0xffffull << 48)) {
732 env->macsr |= MACSR_V;
734 if (env->macsr & MACSR_V) {
735 env->macsr |= MACSR_PAV0 << acc;
736 if (env->macsr & MACSR_OMC) {
737 if (val > (1ull << 53))
738 val = 0;
739 else
740 val = (1ull << 48) - 1;
741 } else {
742 val &= ((1ull << 48) - 1);
745 env->macc[acc] = val;
748 void HELPER(macsatf)(CPUState *env, uint32_t acc)
750 int64_t sum;
751 int64_t result;
753 sum = env->macc[acc];
754 result = (sum << 16) >> 16;
755 if (result != sum) {
756 env->macsr |= MACSR_V;
758 if (env->macsr & MACSR_V) {
759 env->macsr |= MACSR_PAV0 << acc;
760 if (env->macsr & MACSR_OMC) {
761 result = (result >> 63) ^ 0x7fffffffffffll;
764 env->macc[acc] = result;
767 void HELPER(mac_set_flags)(CPUState *env, uint32_t acc)
769 uint64_t val;
770 val = env->macc[acc];
771 if (val == 0) {
772 env->macsr |= MACSR_Z;
773 } else if (val & (1ull << 47)) {
774 env->macsr |= MACSR_N;
776 if (env->macsr & (MACSR_PAV0 << acc)) {
777 env->macsr |= MACSR_V;
779 if (env->macsr & MACSR_FI) {
780 val = ((int64_t)val) >> 40;
781 if (val != 0 && val != -1)
782 env->macsr |= MACSR_EV;
783 } else if (env->macsr & MACSR_SU) {
784 val = ((int64_t)val) >> 32;
785 if (val != 0 && val != -1)
786 env->macsr |= MACSR_EV;
787 } else {
788 if ((val >> 32) != 0)
789 env->macsr |= MACSR_EV;
793 void HELPER(flush_flags)(CPUState *env, uint32_t cc_op)
795 cpu_m68k_flush_flags(env, cc_op);
798 uint32_t HELPER(get_macf)(CPUState *env, uint64_t val)
800 int rem;
801 uint32_t result;
803 if (env->macsr & MACSR_SU) {
804 /* 16-bit rounding. */
805 rem = val & 0xffffff;
806 val = (val >> 24) & 0xffffu;
807 if (rem > 0x800000)
808 val++;
809 else if (rem == 0x800000)
810 val += (val & 1);
811 } else if (env->macsr & MACSR_RT) {
812 /* 32-bit rounding. */
813 rem = val & 0xff;
814 val >>= 8;
815 if (rem > 0x80)
816 val++;
817 else if (rem == 0x80)
818 val += (val & 1);
819 } else {
820 /* No rounding. */
821 val >>= 8;
823 if (env->macsr & MACSR_OMC) {
824 /* Saturate. */
825 if (env->macsr & MACSR_SU) {
826 if (val != (uint16_t) val) {
827 result = ((val >> 63) ^ 0x7fff) & 0xffff;
828 } else {
829 result = val & 0xffff;
831 } else {
832 if (val != (uint32_t)val) {
833 result = ((uint32_t)(val >> 63) & 0x7fffffff);
834 } else {
835 result = (uint32_t)val;
838 } else {
839 /* No saturation. */
840 if (env->macsr & MACSR_SU) {
841 result = val & 0xffff;
842 } else {
843 result = (uint32_t)val;
846 return result;
849 uint32_t HELPER(get_macs)(uint64_t val)
851 if (val == (int32_t)val) {
852 return (int32_t)val;
853 } else {
854 return (val >> 61) ^ ~SIGNBIT;
858 uint32_t HELPER(get_macu)(uint64_t val)
860 if ((val >> 32) == 0) {
861 return (uint32_t)val;
862 } else {
863 return 0xffffffffu;
867 uint32_t HELPER(get_mac_extf)(CPUState *env, uint32_t acc)
869 uint32_t val;
870 val = env->macc[acc] & 0x00ff;
871 val = (env->macc[acc] >> 32) & 0xff00;
872 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
873 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
874 return val;
877 uint32_t HELPER(get_mac_exti)(CPUState *env, uint32_t acc)
879 uint32_t val;
880 val = (env->macc[acc] >> 32) & 0xffff;
881 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
882 return val;
885 void HELPER(set_mac_extf)(CPUState *env, uint32_t val, uint32_t acc)
887 int64_t res;
888 int32_t tmp;
889 res = env->macc[acc] & 0xffffffff00ull;
890 tmp = (int16_t)(val & 0xff00);
891 res |= ((int64_t)tmp) << 32;
892 res |= val & 0xff;
893 env->macc[acc] = res;
894 res = env->macc[acc + 1] & 0xffffffff00ull;
895 tmp = (val & 0xff000000);
896 res |= ((int64_t)tmp) << 16;
897 res |= (val >> 16) & 0xff;
898 env->macc[acc + 1] = res;
901 void HELPER(set_mac_exts)(CPUState *env, uint32_t val, uint32_t acc)
903 int64_t res;
904 int32_t tmp;
905 res = (uint32_t)env->macc[acc];
906 tmp = (int16_t)val;
907 res |= ((int64_t)tmp) << 32;
908 env->macc[acc] = res;
909 res = (uint32_t)env->macc[acc + 1];
910 tmp = val & 0xffff0000;
911 res |= (int64_t)tmp << 16;
912 env->macc[acc + 1] = res;
915 void HELPER(set_mac_extu)(CPUState *env, uint32_t val, uint32_t acc)
917 uint64_t res;
918 res = (uint32_t)env->macc[acc];
919 res |= ((uint64_t)(val & 0xffff)) << 32;
920 env->macc[acc] = res;
921 res = (uint32_t)env->macc[acc + 1];
922 res |= (uint64_t)(val & 0xffff0000) << 16;
923 env->macc[acc + 1] = res;