SPARC: Add asr17 register support
[qemu/agraf.git] / linux-user / qemu.h
blob32de2413f8f2d15f2ce7fe07c7646b3dcaa34477
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #include <stdlib.h>
12 #endif /* DEBUG_REMAP */
14 #include "qemu-types.h"
16 #include "thunk.h"
17 #include "syscall_defs.h"
18 #include "syscall.h"
19 #include "target_signal.h"
20 #include "gdbstub.h"
21 #include "qemu-queue.h"
23 #if defined(CONFIG_USE_NPTL)
24 #define THREAD __thread
25 #else
26 #define THREAD
27 #endif
29 /* This struct is used to hold certain information about the image.
30 * Basically, it replicates in user space what would be certain
31 * task_struct fields in the kernel
33 struct image_info {
34 abi_ulong load_bias;
35 abi_ulong load_addr;
36 abi_ulong start_code;
37 abi_ulong end_code;
38 abi_ulong start_data;
39 abi_ulong end_data;
40 abi_ulong start_brk;
41 abi_ulong brk;
42 abi_ulong start_mmap;
43 abi_ulong mmap;
44 abi_ulong rss;
45 abi_ulong start_stack;
46 abi_ulong stack_limit;
47 abi_ulong entry;
48 abi_ulong code_offset;
49 abi_ulong data_offset;
50 abi_ulong saved_auxv;
51 abi_ulong arg_start;
52 abi_ulong arg_end;
53 int personality;
56 #ifdef TARGET_I386
57 /* Information about the current linux thread */
58 struct vm86_saved_state {
59 uint32_t eax; /* return code */
60 uint32_t ebx;
61 uint32_t ecx;
62 uint32_t edx;
63 uint32_t esi;
64 uint32_t edi;
65 uint32_t ebp;
66 uint32_t esp;
67 uint32_t eflags;
68 uint32_t eip;
69 uint16_t cs, ss, ds, es, fs, gs;
71 #endif
73 #ifdef TARGET_ARM
74 /* FPU emulator */
75 #include "nwfpe/fpa11.h"
76 #endif
78 #define MAX_SIGQUEUE_SIZE 1024
80 struct sigqueue {
81 struct sigqueue *next;
82 target_siginfo_t info;
85 struct emulated_sigtable {
86 int pending; /* true if signal is pending */
87 struct sigqueue *first;
88 struct sigqueue info; /* in order to always have memory for the
89 first signal, we put it here */
92 /* NOTE: we force a big alignment so that the stack stored after is
93 aligned too */
94 typedef struct TaskState {
95 pid_t ts_tid; /* tid (or pid) of this task */
96 #ifdef TARGET_ARM
97 /* FPA state */
98 FPA11 fpa;
99 int swi_errno;
100 #endif
101 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
102 abi_ulong target_v86;
103 struct vm86_saved_state vm86_saved_regs;
104 struct target_vm86plus_struct vm86plus;
105 uint32_t v86flags;
106 uint32_t v86mask;
107 #endif
108 #ifdef CONFIG_USE_NPTL
109 abi_ulong child_tidptr;
110 #endif
111 #ifdef TARGET_M68K
112 int sim_syscalls;
113 #endif
114 #if defined(TARGET_ARM) || defined(TARGET_M68K)
115 /* Extra fields for semihosted binaries. */
116 uint32_t stack_base;
117 uint32_t heap_base;
118 uint32_t heap_limit;
119 #endif
120 int used; /* non zero if used */
121 struct image_info *info;
122 struct linux_binprm *bprm;
124 struct emulated_sigtable sigtab[TARGET_NSIG];
125 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
126 struct sigqueue *first_free; /* first free siginfo queue entry */
127 int signal_pending; /* non zero if a signal may be pending */
128 } __attribute__((aligned(16))) TaskState;
130 extern char *exec_path;
131 void init_task_state(TaskState *ts);
132 void task_settid(TaskState *);
133 void stop_all_tasks(void);
134 extern const char *qemu_uname_release;
135 extern unsigned long mmap_min_addr;
137 /* ??? See if we can avoid exposing so much of the loader internals. */
139 * MAX_ARG_PAGES defines the number of pages allocated for arguments
140 * and envelope for the new program. 32 should suffice, this gives
141 * a maximum env+arg of 128kB w/4KB pages!
143 #define MAX_ARG_PAGES 33
145 /* Read a good amount of data initially, to hopefully get all the
146 program headers loaded. */
147 #define BPRM_BUF_SIZE 1024
150 * This structure is used to hold the arguments that are
151 * used when loading binaries.
153 struct linux_binprm {
154 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
155 void *page[MAX_ARG_PAGES];
156 abi_ulong p;
157 int fd;
158 int e_uid, e_gid;
159 int argc, envc;
160 char **argv;
161 char **envp;
162 char * filename; /* Name of binary */
163 int (*core_dump)(int, const CPUState *); /* coredump routine */
166 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
167 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
168 abi_ulong stringp, int push_ptr);
169 int loader_exec(const char * filename, char ** argv, char ** envp,
170 struct target_pt_regs * regs, struct image_info *infop,
171 struct linux_binprm *);
173 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
174 struct image_info * info);
175 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
176 struct image_info * info);
178 abi_long memcpy_to_target(abi_ulong dest, const void *src,
179 unsigned long len);
180 void target_set_brk(abi_ulong new_brk);
181 abi_long do_brk(abi_ulong new_brk);
182 void syscall_init(void);
183 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
184 abi_long arg2, abi_long arg3, abi_long arg4,
185 abi_long arg5, abi_long arg6);
186 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
187 extern THREAD CPUState *thread_env;
188 void cpu_loop(CPUState *env);
189 char *target_strerror(int err);
190 int get_osversion(void);
191 void fork_start(void);
192 void fork_end(int child);
194 #include "qemu-log.h"
196 /* strace.c */
197 void print_syscall(int num,
198 abi_long arg1, abi_long arg2, abi_long arg3,
199 abi_long arg4, abi_long arg5, abi_long arg6);
200 void print_syscall_ret(int num, abi_long arg1);
201 extern int do_strace;
203 /* signal.c */
204 void process_pending_signals(CPUState *cpu_env);
205 void signal_init(void);
206 int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
207 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
208 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
209 int target_to_host_signal(int sig);
210 int host_to_target_signal(int sig);
211 long do_sigreturn(CPUState *env);
212 long do_rt_sigreturn(CPUState *env);
213 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
215 #ifdef TARGET_I386
216 /* vm86.c */
217 void save_v86_state(CPUX86State *env);
218 void handle_vm86_trap(CPUX86State *env, int trapno);
219 void handle_vm86_fault(CPUX86State *env);
220 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
221 #elif defined(TARGET_SPARC64)
222 void sparc64_set_context(CPUSPARCState *env);
223 void sparc64_get_context(CPUSPARCState *env);
224 #endif
226 /* mmap.c */
227 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
228 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
229 int flags, int fd, abi_ulong offset);
230 int target_munmap(abi_ulong start, abi_ulong len);
231 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
232 abi_ulong new_size, unsigned long flags,
233 abi_ulong new_addr);
234 int target_msync(abi_ulong start, abi_ulong len, int flags);
235 extern unsigned long last_brk;
236 void mmap_lock(void);
237 void mmap_unlock(void);
238 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
239 void cpu_list_lock(void);
240 void cpu_list_unlock(void);
241 #if defined(CONFIG_USE_NPTL)
242 void mmap_fork_start(void);
243 void mmap_fork_end(int child);
244 #endif
246 /* main.c */
247 extern unsigned long guest_stack_size;
249 /* user access */
251 #define VERIFY_READ 0
252 #define VERIFY_WRITE 1 /* implies read access */
254 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
256 return page_check_range((target_ulong)addr, size,
257 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
260 /* NOTE __get_user and __put_user use host pointers and don't check access. */
261 /* These are usually used to access struct data members once the
262 * struct has been locked - usually with lock_user_struct().
264 #define __put_user(x, hptr)\
266 switch(sizeof(*hptr)) {\
267 case 1:\
268 *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
269 break;\
270 case 2:\
271 *(uint16_t *)(hptr) = tswap16((uint16_t)(typeof(*hptr))(x));\
272 break;\
273 case 4:\
274 *(uint32_t *)(hptr) = tswap32((uint32_t)(typeof(*hptr))(x));\
275 break;\
276 case 8:\
277 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
278 break;\
279 default:\
280 abort();\
285 #define __get_user(x, hptr) \
287 switch(sizeof(*hptr)) {\
288 case 1:\
289 x = (typeof(*hptr))*(uint8_t *)(hptr);\
290 break;\
291 case 2:\
292 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
293 break;\
294 case 4:\
295 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
296 break;\
297 case 8:\
298 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
299 break;\
300 default:\
301 /* avoid warning */\
302 x = 0;\
303 abort();\
308 /* put_user()/get_user() take a guest address and check access */
309 /* These are usually used to access an atomic data type, such as an int,
310 * that has been passed by address. These internally perform locking
311 * and unlocking on the data type.
313 #define put_user(x, gaddr, target_type) \
314 ({ \
315 abi_ulong __gaddr = (gaddr); \
316 target_type *__hptr; \
317 abi_long __ret; \
318 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
319 __ret = __put_user((x), __hptr); \
320 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
321 } else \
322 __ret = -TARGET_EFAULT; \
323 __ret; \
326 #define get_user(x, gaddr, target_type) \
327 ({ \
328 abi_ulong __gaddr = (gaddr); \
329 target_type *__hptr; \
330 abi_long __ret; \
331 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
332 __ret = __get_user((x), __hptr); \
333 unlock_user(__hptr, __gaddr, 0); \
334 } else { \
335 /* avoid warning */ \
336 (x) = 0; \
337 __ret = -TARGET_EFAULT; \
339 __ret; \
342 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
343 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
344 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
345 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
346 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
347 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
348 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
349 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
350 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
351 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
353 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
354 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
355 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
356 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
357 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
358 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
359 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
360 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
361 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
362 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
364 /* copy_from_user() and copy_to_user() are usually used to copy data
365 * buffers between the target and host. These internally perform
366 * locking/unlocking of the memory.
368 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
369 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
371 /* Functions for accessing guest memory. The tget and tput functions
372 read/write single values, byteswapping as neccessary. The lock_user
373 gets a pointer to a contiguous area of guest memory, but does not perform
374 and byteswapping. lock_user may return either a pointer to the guest
375 memory, or a temporary buffer. */
377 /* Lock an area of guest memory into the host. If copy is true then the
378 host area will have the same contents as the guest. */
379 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
381 if (!access_ok(type, guest_addr, len))
382 return NULL;
383 #ifdef DEBUG_REMAP
385 void *addr;
386 addr = malloc(len);
387 if (copy)
388 memcpy(addr, g2h(guest_addr), len);
389 else
390 memset(addr, 0, len);
391 return addr;
393 #else
394 return g2h(guest_addr);
395 #endif
398 /* Unlock an area of guest memory. The first LEN bytes must be
399 flushed back to guest memory. host_ptr = NULL is explicitly
400 allowed and does nothing. */
401 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
402 long len)
405 #ifdef DEBUG_REMAP
406 if (!host_ptr)
407 return;
408 if (host_ptr == g2h(guest_addr))
409 return;
410 if (len > 0)
411 memcpy(g2h(guest_addr), host_ptr, len);
412 free(host_ptr);
413 #endif
416 /* Return the length of a string in target memory or -TARGET_EFAULT if
417 access error. */
418 abi_long target_strlen(abi_ulong gaddr);
420 /* Like lock_user but for null terminated strings. */
421 static inline void *lock_user_string(abi_ulong guest_addr)
423 abi_long len;
424 len = target_strlen(guest_addr);
425 if (len < 0)
426 return NULL;
427 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
430 /* Helper macros for locking/ulocking a target struct. */
431 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
432 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
433 #define unlock_user_struct(host_ptr, guest_addr, copy) \
434 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
436 #if defined(CONFIG_USE_NPTL)
437 #include <pthread.h>
438 #endif
440 #endif /* QEMU_H */