target-ppc: Set instruction flags on CPU family classes
[qemu/agraf.git] / main-loop.c
blob8c9b58c14c897766313558bd8839d612fb5749c9
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "slirp/slirp.h"
28 #include "qemu/main-loop.h"
29 #include "block/aio.h"
31 #ifndef _WIN32
33 #include "qemu/compatfd.h"
35 /* If we have signalfd, we mask out the signals we want to handle and then
36 * use signalfd to listen for them. We rely on whatever the current signal
37 * handler is to dispatch the signals when we receive them.
39 static void sigfd_handler(void *opaque)
41 int fd = (intptr_t)opaque;
42 struct qemu_signalfd_siginfo info;
43 struct sigaction action;
44 ssize_t len;
46 while (1) {
47 do {
48 len = read(fd, &info, sizeof(info));
49 } while (len == -1 && errno == EINTR);
51 if (len == -1 && errno == EAGAIN) {
52 break;
55 if (len != sizeof(info)) {
56 printf("read from sigfd returned %zd: %m\n", len);
57 return;
60 sigaction(info.ssi_signo, NULL, &action);
61 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
62 action.sa_sigaction(info.ssi_signo,
63 (siginfo_t *)&info, NULL);
64 } else if (action.sa_handler) {
65 action.sa_handler(info.ssi_signo);
70 static int qemu_signal_init(void)
72 int sigfd;
73 sigset_t set;
76 * SIG_IPI must be blocked in the main thread and must not be caught
77 * by sigwait() in the signal thread. Otherwise, the cpu thread will
78 * not catch it reliably.
80 sigemptyset(&set);
81 sigaddset(&set, SIG_IPI);
82 sigaddset(&set, SIGIO);
83 sigaddset(&set, SIGALRM);
84 sigaddset(&set, SIGBUS);
85 pthread_sigmask(SIG_BLOCK, &set, NULL);
87 sigdelset(&set, SIG_IPI);
88 sigfd = qemu_signalfd(&set);
89 if (sigfd == -1) {
90 fprintf(stderr, "failed to create signalfd\n");
91 return -errno;
94 fcntl_setfl(sigfd, O_NONBLOCK);
96 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
97 (void *)(intptr_t)sigfd);
99 return 0;
102 #else /* _WIN32 */
104 static int qemu_signal_init(void)
106 return 0;
108 #endif
110 static AioContext *qemu_aio_context;
112 void qemu_notify_event(void)
114 if (!qemu_aio_context) {
115 return;
117 aio_notify(qemu_aio_context);
120 static GArray *gpollfds;
122 int qemu_init_main_loop(void)
124 int ret;
125 GSource *src;
127 init_clocks();
128 if (init_timer_alarm() < 0) {
129 fprintf(stderr, "could not initialize alarm timer\n");
130 exit(1);
133 ret = qemu_signal_init();
134 if (ret) {
135 return ret;
138 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD));
139 qemu_aio_context = aio_context_new();
140 src = aio_get_g_source(qemu_aio_context);
141 g_source_attach(src, NULL);
142 g_source_unref(src);
143 return 0;
146 static int max_priority;
148 #ifndef _WIN32
149 static int glib_pollfds_idx;
150 static int glib_n_poll_fds;
152 static void glib_pollfds_fill(uint32_t *cur_timeout)
154 GMainContext *context = g_main_context_default();
155 int timeout = 0;
156 int n;
158 g_main_context_prepare(context, &max_priority);
160 glib_pollfds_idx = gpollfds->len;
161 n = glib_n_poll_fds;
162 do {
163 GPollFD *pfds;
164 glib_n_poll_fds = n;
165 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds);
166 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
167 n = g_main_context_query(context, max_priority, &timeout, pfds,
168 glib_n_poll_fds);
169 } while (n != glib_n_poll_fds);
171 if (timeout >= 0 && timeout < *cur_timeout) {
172 *cur_timeout = timeout;
176 static void glib_pollfds_poll(void)
178 GMainContext *context = g_main_context_default();
179 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
181 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) {
182 g_main_context_dispatch(context);
186 static int os_host_main_loop_wait(uint32_t timeout)
188 int ret;
190 glib_pollfds_fill(&timeout);
192 if (timeout > 0) {
193 qemu_mutex_unlock_iothread();
196 ret = g_poll((GPollFD *)gpollfds->data, gpollfds->len, timeout);
198 if (timeout > 0) {
199 qemu_mutex_lock_iothread();
202 glib_pollfds_poll();
203 return ret;
205 #else
206 /***********************************************************/
207 /* Polling handling */
209 typedef struct PollingEntry {
210 PollingFunc *func;
211 void *opaque;
212 struct PollingEntry *next;
213 } PollingEntry;
215 static PollingEntry *first_polling_entry;
217 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
219 PollingEntry **ppe, *pe;
220 pe = g_malloc0(sizeof(PollingEntry));
221 pe->func = func;
222 pe->opaque = opaque;
223 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
224 *ppe = pe;
225 return 0;
228 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
230 PollingEntry **ppe, *pe;
231 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
232 pe = *ppe;
233 if (pe->func == func && pe->opaque == opaque) {
234 *ppe = pe->next;
235 g_free(pe);
236 break;
241 /***********************************************************/
242 /* Wait objects support */
243 typedef struct WaitObjects {
244 int num;
245 int revents[MAXIMUM_WAIT_OBJECTS + 1];
246 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
247 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
248 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
249 } WaitObjects;
251 static WaitObjects wait_objects = {0};
253 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
255 WaitObjects *w = &wait_objects;
256 if (w->num >= MAXIMUM_WAIT_OBJECTS) {
257 return -1;
259 w->events[w->num] = handle;
260 w->func[w->num] = func;
261 w->opaque[w->num] = opaque;
262 w->revents[w->num] = 0;
263 w->num++;
264 return 0;
267 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
269 int i, found;
270 WaitObjects *w = &wait_objects;
272 found = 0;
273 for (i = 0; i < w->num; i++) {
274 if (w->events[i] == handle) {
275 found = 1;
277 if (found) {
278 w->events[i] = w->events[i + 1];
279 w->func[i] = w->func[i + 1];
280 w->opaque[i] = w->opaque[i + 1];
281 w->revents[i] = w->revents[i + 1];
284 if (found) {
285 w->num--;
289 void qemu_fd_register(int fd)
291 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier),
292 FD_READ | FD_ACCEPT | FD_CLOSE |
293 FD_CONNECT | FD_WRITE | FD_OOB);
296 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds,
297 fd_set *xfds)
299 int nfds = -1;
300 int i;
302 for (i = 0; i < pollfds->len; i++) {
303 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
304 int fd = pfd->fd;
305 int events = pfd->events;
306 if (events & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
307 FD_SET(fd, rfds);
308 nfds = MAX(nfds, fd);
310 if (events & (G_IO_OUT | G_IO_ERR)) {
311 FD_SET(fd, wfds);
312 nfds = MAX(nfds, fd);
314 if (events & G_IO_PRI) {
315 FD_SET(fd, xfds);
316 nfds = MAX(nfds, fd);
319 return nfds;
322 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds,
323 fd_set *wfds, fd_set *xfds)
325 int i;
327 for (i = 0; i < pollfds->len; i++) {
328 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
329 int fd = pfd->fd;
330 int revents = 0;
332 if (FD_ISSET(fd, rfds)) {
333 revents |= G_IO_IN | G_IO_HUP | G_IO_ERR;
335 if (FD_ISSET(fd, wfds)) {
336 revents |= G_IO_OUT | G_IO_ERR;
338 if (FD_ISSET(fd, xfds)) {
339 revents |= G_IO_PRI;
341 pfd->revents = revents & pfd->events;
345 static int os_host_main_loop_wait(uint32_t timeout)
347 GMainContext *context = g_main_context_default();
348 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
349 int select_ret = 0;
350 int g_poll_ret, ret, i, n_poll_fds;
351 PollingEntry *pe;
352 WaitObjects *w = &wait_objects;
353 gint poll_timeout;
354 static struct timeval tv0;
355 fd_set rfds, wfds, xfds;
356 int nfds;
358 /* XXX: need to suppress polling by better using win32 events */
359 ret = 0;
360 for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
361 ret |= pe->func(pe->opaque);
363 if (ret != 0) {
364 return ret;
367 g_main_context_prepare(context, &max_priority);
368 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
369 poll_fds, ARRAY_SIZE(poll_fds));
370 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
372 for (i = 0; i < w->num; i++) {
373 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
374 poll_fds[n_poll_fds + i].events = G_IO_IN;
377 if (poll_timeout < 0 || timeout < poll_timeout) {
378 poll_timeout = timeout;
381 qemu_mutex_unlock_iothread();
382 g_poll_ret = g_poll(poll_fds, n_poll_fds + w->num, poll_timeout);
383 qemu_mutex_lock_iothread();
384 if (g_poll_ret > 0) {
385 for (i = 0; i < w->num; i++) {
386 w->revents[i] = poll_fds[n_poll_fds + i].revents;
388 for (i = 0; i < w->num; i++) {
389 if (w->revents[i] && w->func[i]) {
390 w->func[i](w->opaque[i]);
395 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
396 g_main_context_dispatch(context);
399 /* Call select after g_poll to avoid a useless iteration and therefore
400 * improve socket latency.
403 FD_ZERO(&rfds);
404 FD_ZERO(&wfds);
405 FD_ZERO(&xfds);
406 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds);
407 if (nfds >= 0) {
408 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
409 if (select_ret != 0) {
410 timeout = 0;
412 if (select_ret > 0) {
413 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds);
417 return select_ret || g_poll_ret;
419 #endif
421 int main_loop_wait(int nonblocking)
423 int ret;
424 uint32_t timeout = UINT32_MAX;
426 if (nonblocking) {
427 timeout = 0;
430 /* poll any events */
431 g_array_set_size(gpollfds, 0); /* reset for new iteration */
432 /* XXX: separate device handlers from system ones */
433 #ifdef CONFIG_SLIRP
434 slirp_update_timeout(&timeout);
435 slirp_pollfds_fill(gpollfds);
436 #endif
437 qemu_iohandler_fill(gpollfds);
438 ret = os_host_main_loop_wait(timeout);
439 qemu_iohandler_poll(gpollfds, ret);
440 #ifdef CONFIG_SLIRP
441 slirp_pollfds_poll(gpollfds, (ret < 0));
442 #endif
444 qemu_run_all_timers();
446 return ret;
449 /* Functions to operate on the main QEMU AioContext. */
451 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
453 return aio_bh_new(qemu_aio_context, cb, opaque);
456 bool qemu_aio_wait(void)
458 return aio_poll(qemu_aio_context, true);
461 #ifdef CONFIG_POSIX
462 void qemu_aio_set_fd_handler(int fd,
463 IOHandler *io_read,
464 IOHandler *io_write,
465 AioFlushHandler *io_flush,
466 void *opaque)
468 aio_set_fd_handler(qemu_aio_context, fd, io_read, io_write, io_flush,
469 opaque);
471 #endif
473 void qemu_aio_set_event_notifier(EventNotifier *notifier,
474 EventNotifierHandler *io_read,
475 AioFlushEventNotifierHandler *io_flush)
477 aio_set_event_notifier(qemu_aio_context, notifier, io_read, io_flush);