Common: Add quick access to first boot device
[qemu/agraf.git] / target-arm / neon_helper.c
blobb028cc2c93b2eacdd3d2210297a17c1101aed430
1 /*
2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GNU GPL v2.
8 */
9 #include <stdlib.h>
10 #include <stdio.h>
12 #include "cpu.h"
13 #include "exec/exec-all.h"
14 #include "helper.h"
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
21 #define NEON_TYPE1(name, type) \
22 typedef struct \
23 { \
24 type v1; \
25 } neon_##name;
26 #ifdef HOST_WORDS_BIGENDIAN
27 #define NEON_TYPE2(name, type) \
28 typedef struct \
29 { \
30 type v2; \
31 type v1; \
32 } neon_##name;
33 #define NEON_TYPE4(name, type) \
34 typedef struct \
35 { \
36 type v4; \
37 type v3; \
38 type v2; \
39 type v1; \
40 } neon_##name;
41 #else
42 #define NEON_TYPE2(name, type) \
43 typedef struct \
44 { \
45 type v1; \
46 type v2; \
47 } neon_##name;
48 #define NEON_TYPE4(name, type) \
49 typedef struct \
50 { \
51 type v1; \
52 type v2; \
53 type v3; \
54 type v4; \
55 } neon_##name;
56 #endif
58 NEON_TYPE4(s8, int8_t)
59 NEON_TYPE4(u8, uint8_t)
60 NEON_TYPE2(s16, int16_t)
61 NEON_TYPE2(u16, uint16_t)
62 NEON_TYPE1(s32, int32_t)
63 NEON_TYPE1(u32, uint32_t)
64 #undef NEON_TYPE4
65 #undef NEON_TYPE2
66 #undef NEON_TYPE1
68 /* Copy from a uint32_t to a vector structure type. */
69 #define NEON_UNPACK(vtype, dest, val) do { \
70 union { \
71 vtype v; \
72 uint32_t i; \
73 } conv_u; \
74 conv_u.i = (val); \
75 dest = conv_u.v; \
76 } while(0)
78 /* Copy from a vector structure type to a uint32_t. */
79 #define NEON_PACK(vtype, dest, val) do { \
80 union { \
81 vtype v; \
82 uint32_t i; \
83 } conv_u; \
84 conv_u.v = (val); \
85 dest = conv_u.i; \
86 } while(0)
88 #define NEON_DO1 \
89 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90 #define NEON_DO2 \
91 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
92 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93 #define NEON_DO4 \
94 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
95 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
96 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
97 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
99 #define NEON_VOP_BODY(vtype, n) \
101 uint32_t res; \
102 vtype vsrc1; \
103 vtype vsrc2; \
104 vtype vdest; \
105 NEON_UNPACK(vtype, vsrc1, arg1); \
106 NEON_UNPACK(vtype, vsrc2, arg2); \
107 NEON_DO##n; \
108 NEON_PACK(vtype, res, vdest); \
109 return res; \
112 #define NEON_VOP(name, vtype, n) \
113 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
114 NEON_VOP_BODY(vtype, n)
116 #define NEON_VOP_ENV(name, vtype, n) \
117 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
118 NEON_VOP_BODY(vtype, n)
120 /* Pairwise operations. */
121 /* For 32-bit elements each segment only contains a single element, so
122 the elementwise and pairwise operations are the same. */
123 #define NEON_PDO2 \
124 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
125 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126 #define NEON_PDO4 \
127 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
128 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
129 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
130 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
132 #define NEON_POP(name, vtype, n) \
133 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
135 uint32_t res; \
136 vtype vsrc1; \
137 vtype vsrc2; \
138 vtype vdest; \
139 NEON_UNPACK(vtype, vsrc1, arg1); \
140 NEON_UNPACK(vtype, vsrc2, arg2); \
141 NEON_PDO##n; \
142 NEON_PACK(vtype, res, vdest); \
143 return res; \
146 /* Unary operators. */
147 #define NEON_VOP1(name, vtype, n) \
148 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
150 vtype vsrc1; \
151 vtype vdest; \
152 NEON_UNPACK(vtype, vsrc1, arg); \
153 NEON_DO##n; \
154 NEON_PACK(vtype, arg, vdest); \
155 return arg; \
159 #define NEON_USAT(dest, src1, src2, type) do { \
160 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
161 if (tmp != (type)tmp) { \
162 SET_QC(); \
163 dest = ~0; \
164 } else { \
165 dest = tmp; \
166 }} while(0)
167 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
168 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
169 #undef NEON_FN
170 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
171 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
172 #undef NEON_FN
173 #undef NEON_USAT
175 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
177 uint32_t res = a + b;
178 if (res < a) {
179 SET_QC();
180 res = ~0;
182 return res;
185 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
187 uint64_t res;
189 res = src1 + src2;
190 if (res < src1) {
191 SET_QC();
192 res = ~(uint64_t)0;
194 return res;
197 #define NEON_SSAT(dest, src1, src2, type) do { \
198 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
199 if (tmp != (type)tmp) { \
200 SET_QC(); \
201 if (src2 > 0) { \
202 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203 } else { \
204 tmp = 1 << (sizeof(type) * 8 - 1); \
207 dest = tmp; \
208 } while(0)
209 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
210 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
211 #undef NEON_FN
212 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
213 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
214 #undef NEON_FN
215 #undef NEON_SSAT
217 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
219 uint32_t res = a + b;
220 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221 SET_QC();
222 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
224 return res;
227 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
229 uint64_t res;
231 res = src1 + src2;
232 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233 SET_QC();
234 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
236 return res;
239 #define NEON_USAT(dest, src1, src2, type) do { \
240 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
241 if (tmp != (type)tmp) { \
242 SET_QC(); \
243 dest = 0; \
244 } else { \
245 dest = tmp; \
246 }} while(0)
247 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
248 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
249 #undef NEON_FN
250 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
251 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
252 #undef NEON_FN
253 #undef NEON_USAT
255 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
257 uint32_t res = a - b;
258 if (res > a) {
259 SET_QC();
260 res = 0;
262 return res;
265 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
267 uint64_t res;
269 if (src1 < src2) {
270 SET_QC();
271 res = 0;
272 } else {
273 res = src1 - src2;
275 return res;
278 #define NEON_SSAT(dest, src1, src2, type) do { \
279 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
280 if (tmp != (type)tmp) { \
281 SET_QC(); \
282 if (src2 < 0) { \
283 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
284 } else { \
285 tmp = 1 << (sizeof(type) * 8 - 1); \
288 dest = tmp; \
289 } while(0)
290 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
291 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
292 #undef NEON_FN
293 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
294 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
295 #undef NEON_FN
296 #undef NEON_SSAT
298 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
300 uint32_t res = a - b;
301 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
302 SET_QC();
303 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
305 return res;
308 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
310 uint64_t res;
312 res = src1 - src2;
313 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
314 SET_QC();
315 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
317 return res;
320 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
321 NEON_VOP(hadd_s8, neon_s8, 4)
322 NEON_VOP(hadd_u8, neon_u8, 4)
323 NEON_VOP(hadd_s16, neon_s16, 2)
324 NEON_VOP(hadd_u16, neon_u16, 2)
325 #undef NEON_FN
327 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
329 int32_t dest;
331 dest = (src1 >> 1) + (src2 >> 1);
332 if (src1 & src2 & 1)
333 dest++;
334 return dest;
337 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
339 uint32_t dest;
341 dest = (src1 >> 1) + (src2 >> 1);
342 if (src1 & src2 & 1)
343 dest++;
344 return dest;
347 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
348 NEON_VOP(rhadd_s8, neon_s8, 4)
349 NEON_VOP(rhadd_u8, neon_u8, 4)
350 NEON_VOP(rhadd_s16, neon_s16, 2)
351 NEON_VOP(rhadd_u16, neon_u16, 2)
352 #undef NEON_FN
354 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
356 int32_t dest;
358 dest = (src1 >> 1) + (src2 >> 1);
359 if ((src1 | src2) & 1)
360 dest++;
361 return dest;
364 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
366 uint32_t dest;
368 dest = (src1 >> 1) + (src2 >> 1);
369 if ((src1 | src2) & 1)
370 dest++;
371 return dest;
374 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
375 NEON_VOP(hsub_s8, neon_s8, 4)
376 NEON_VOP(hsub_u8, neon_u8, 4)
377 NEON_VOP(hsub_s16, neon_s16, 2)
378 NEON_VOP(hsub_u16, neon_u16, 2)
379 #undef NEON_FN
381 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
383 int32_t dest;
385 dest = (src1 >> 1) - (src2 >> 1);
386 if ((~src1) & src2 & 1)
387 dest--;
388 return dest;
391 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
393 uint32_t dest;
395 dest = (src1 >> 1) - (src2 >> 1);
396 if ((~src1) & src2 & 1)
397 dest--;
398 return dest;
401 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
402 NEON_VOP(cgt_s8, neon_s8, 4)
403 NEON_VOP(cgt_u8, neon_u8, 4)
404 NEON_VOP(cgt_s16, neon_s16, 2)
405 NEON_VOP(cgt_u16, neon_u16, 2)
406 NEON_VOP(cgt_s32, neon_s32, 1)
407 NEON_VOP(cgt_u32, neon_u32, 1)
408 #undef NEON_FN
410 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
411 NEON_VOP(cge_s8, neon_s8, 4)
412 NEON_VOP(cge_u8, neon_u8, 4)
413 NEON_VOP(cge_s16, neon_s16, 2)
414 NEON_VOP(cge_u16, neon_u16, 2)
415 NEON_VOP(cge_s32, neon_s32, 1)
416 NEON_VOP(cge_u32, neon_u32, 1)
417 #undef NEON_FN
419 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
420 NEON_VOP(min_s8, neon_s8, 4)
421 NEON_VOP(min_u8, neon_u8, 4)
422 NEON_VOP(min_s16, neon_s16, 2)
423 NEON_VOP(min_u16, neon_u16, 2)
424 NEON_VOP(min_s32, neon_s32, 1)
425 NEON_VOP(min_u32, neon_u32, 1)
426 NEON_POP(pmin_s8, neon_s8, 4)
427 NEON_POP(pmin_u8, neon_u8, 4)
428 NEON_POP(pmin_s16, neon_s16, 2)
429 NEON_POP(pmin_u16, neon_u16, 2)
430 #undef NEON_FN
432 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
433 NEON_VOP(max_s8, neon_s8, 4)
434 NEON_VOP(max_u8, neon_u8, 4)
435 NEON_VOP(max_s16, neon_s16, 2)
436 NEON_VOP(max_u16, neon_u16, 2)
437 NEON_VOP(max_s32, neon_s32, 1)
438 NEON_VOP(max_u32, neon_u32, 1)
439 NEON_POP(pmax_s8, neon_s8, 4)
440 NEON_POP(pmax_u8, neon_u8, 4)
441 NEON_POP(pmax_s16, neon_s16, 2)
442 NEON_POP(pmax_u16, neon_u16, 2)
443 #undef NEON_FN
445 #define NEON_FN(dest, src1, src2) \
446 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
447 NEON_VOP(abd_s8, neon_s8, 4)
448 NEON_VOP(abd_u8, neon_u8, 4)
449 NEON_VOP(abd_s16, neon_s16, 2)
450 NEON_VOP(abd_u16, neon_u16, 2)
451 NEON_VOP(abd_s32, neon_s32, 1)
452 NEON_VOP(abd_u32, neon_u32, 1)
453 #undef NEON_FN
455 #define NEON_FN(dest, src1, src2) do { \
456 int8_t tmp; \
457 tmp = (int8_t)src2; \
458 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
459 tmp <= -(ssize_t)sizeof(src1) * 8) { \
460 dest = 0; \
461 } else if (tmp < 0) { \
462 dest = src1 >> -tmp; \
463 } else { \
464 dest = src1 << tmp; \
465 }} while (0)
466 NEON_VOP(shl_u8, neon_u8, 4)
467 NEON_VOP(shl_u16, neon_u16, 2)
468 NEON_VOP(shl_u32, neon_u32, 1)
469 #undef NEON_FN
471 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
473 int8_t shift = (int8_t)shiftop;
474 if (shift >= 64 || shift <= -64) {
475 val = 0;
476 } else if (shift < 0) {
477 val >>= -shift;
478 } else {
479 val <<= shift;
481 return val;
484 #define NEON_FN(dest, src1, src2) do { \
485 int8_t tmp; \
486 tmp = (int8_t)src2; \
487 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
488 dest = 0; \
489 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
490 dest = src1 >> (sizeof(src1) * 8 - 1); \
491 } else if (tmp < 0) { \
492 dest = src1 >> -tmp; \
493 } else { \
494 dest = src1 << tmp; \
495 }} while (0)
496 NEON_VOP(shl_s8, neon_s8, 4)
497 NEON_VOP(shl_s16, neon_s16, 2)
498 NEON_VOP(shl_s32, neon_s32, 1)
499 #undef NEON_FN
501 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
503 int8_t shift = (int8_t)shiftop;
504 int64_t val = valop;
505 if (shift >= 64) {
506 val = 0;
507 } else if (shift <= -64) {
508 val >>= 63;
509 } else if (shift < 0) {
510 val >>= -shift;
511 } else {
512 val <<= shift;
514 return val;
517 #define NEON_FN(dest, src1, src2) do { \
518 int8_t tmp; \
519 tmp = (int8_t)src2; \
520 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
521 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
522 dest = 0; \
523 } else if (tmp < 0) { \
524 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
525 } else { \
526 dest = src1 << tmp; \
527 }} while (0)
528 NEON_VOP(rshl_s8, neon_s8, 4)
529 NEON_VOP(rshl_s16, neon_s16, 2)
530 #undef NEON_FN
532 /* The addition of the rounding constant may overflow, so we use an
533 * intermediate 64 bit accumulator. */
534 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
536 int32_t dest;
537 int32_t val = (int32_t)valop;
538 int8_t shift = (int8_t)shiftop;
539 if ((shift >= 32) || (shift <= -32)) {
540 dest = 0;
541 } else if (shift < 0) {
542 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
543 dest = big_dest >> -shift;
544 } else {
545 dest = val << shift;
547 return dest;
550 /* Handling addition overflow with 64 bit input values is more
551 * tricky than with 32 bit values. */
552 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
554 int8_t shift = (int8_t)shiftop;
555 int64_t val = valop;
556 if ((shift >= 64) || (shift <= -64)) {
557 val = 0;
558 } else if (shift < 0) {
559 val >>= (-shift - 1);
560 if (val == INT64_MAX) {
561 /* In this case, it means that the rounding constant is 1,
562 * and the addition would overflow. Return the actual
563 * result directly. */
564 val = 0x4000000000000000LL;
565 } else {
566 val++;
567 val >>= 1;
569 } else {
570 val <<= shift;
572 return val;
575 #define NEON_FN(dest, src1, src2) do { \
576 int8_t tmp; \
577 tmp = (int8_t)src2; \
578 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
579 tmp < -(ssize_t)sizeof(src1) * 8) { \
580 dest = 0; \
581 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
582 dest = src1 >> (-tmp - 1); \
583 } else if (tmp < 0) { \
584 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
585 } else { \
586 dest = src1 << tmp; \
587 }} while (0)
588 NEON_VOP(rshl_u8, neon_u8, 4)
589 NEON_VOP(rshl_u16, neon_u16, 2)
590 #undef NEON_FN
592 /* The addition of the rounding constant may overflow, so we use an
593 * intermediate 64 bit accumulator. */
594 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
596 uint32_t dest;
597 int8_t shift = (int8_t)shiftop;
598 if (shift >= 32 || shift < -32) {
599 dest = 0;
600 } else if (shift == -32) {
601 dest = val >> 31;
602 } else if (shift < 0) {
603 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
604 dest = big_dest >> -shift;
605 } else {
606 dest = val << shift;
608 return dest;
611 /* Handling addition overflow with 64 bit input values is more
612 * tricky than with 32 bit values. */
613 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
615 int8_t shift = (uint8_t)shiftop;
616 if (shift >= 64 || shift < -64) {
617 val = 0;
618 } else if (shift == -64) {
619 /* Rounding a 1-bit result just preserves that bit. */
620 val >>= 63;
621 } else if (shift < 0) {
622 val >>= (-shift - 1);
623 if (val == UINT64_MAX) {
624 /* In this case, it means that the rounding constant is 1,
625 * and the addition would overflow. Return the actual
626 * result directly. */
627 val = 0x8000000000000000ULL;
628 } else {
629 val++;
630 val >>= 1;
632 } else {
633 val <<= shift;
635 return val;
638 #define NEON_FN(dest, src1, src2) do { \
639 int8_t tmp; \
640 tmp = (int8_t)src2; \
641 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
642 if (src1) { \
643 SET_QC(); \
644 dest = ~0; \
645 } else { \
646 dest = 0; \
648 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
649 dest = 0; \
650 } else if (tmp < 0) { \
651 dest = src1 >> -tmp; \
652 } else { \
653 dest = src1 << tmp; \
654 if ((dest >> tmp) != src1) { \
655 SET_QC(); \
656 dest = ~0; \
658 }} while (0)
659 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
660 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
661 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
662 #undef NEON_FN
664 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
666 int8_t shift = (int8_t)shiftop;
667 if (shift >= 64) {
668 if (val) {
669 val = ~(uint64_t)0;
670 SET_QC();
672 } else if (shift <= -64) {
673 val = 0;
674 } else if (shift < 0) {
675 val >>= -shift;
676 } else {
677 uint64_t tmp = val;
678 val <<= shift;
679 if ((val >> shift) != tmp) {
680 SET_QC();
681 val = ~(uint64_t)0;
684 return val;
687 #define NEON_FN(dest, src1, src2) do { \
688 int8_t tmp; \
689 tmp = (int8_t)src2; \
690 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
691 if (src1) { \
692 SET_QC(); \
693 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
694 if (src1 > 0) { \
695 dest--; \
697 } else { \
698 dest = src1; \
700 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
701 dest = src1 >> 31; \
702 } else if (tmp < 0) { \
703 dest = src1 >> -tmp; \
704 } else { \
705 dest = src1 << tmp; \
706 if ((dest >> tmp) != src1) { \
707 SET_QC(); \
708 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
709 if (src1 > 0) { \
710 dest--; \
713 }} while (0)
714 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
715 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
716 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
717 #undef NEON_FN
719 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
721 int8_t shift = (uint8_t)shiftop;
722 int64_t val = valop;
723 if (shift >= 64) {
724 if (val) {
725 SET_QC();
726 val = (val >> 63) ^ ~SIGNBIT64;
728 } else if (shift <= -64) {
729 val >>= 63;
730 } else if (shift < 0) {
731 val >>= -shift;
732 } else {
733 int64_t tmp = val;
734 val <<= shift;
735 if ((val >> shift) != tmp) {
736 SET_QC();
737 val = (tmp >> 63) ^ ~SIGNBIT64;
740 return val;
743 #define NEON_FN(dest, src1, src2) do { \
744 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
745 SET_QC(); \
746 dest = 0; \
747 } else { \
748 int8_t tmp; \
749 tmp = (int8_t)src2; \
750 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
751 if (src1) { \
752 SET_QC(); \
753 dest = ~0; \
754 } else { \
755 dest = 0; \
757 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
758 dest = 0; \
759 } else if (tmp < 0) { \
760 dest = src1 >> -tmp; \
761 } else { \
762 dest = src1 << tmp; \
763 if ((dest >> tmp) != src1) { \
764 SET_QC(); \
765 dest = ~0; \
768 }} while (0)
769 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
770 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
771 #undef NEON_FN
773 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
775 if ((int32_t)valop < 0) {
776 SET_QC();
777 return 0;
779 return helper_neon_qshl_u32(env, valop, shiftop);
782 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
784 if ((int64_t)valop < 0) {
785 SET_QC();
786 return 0;
788 return helper_neon_qshl_u64(env, valop, shiftop);
791 #define NEON_FN(dest, src1, src2) do { \
792 int8_t tmp; \
793 tmp = (int8_t)src2; \
794 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
795 if (src1) { \
796 SET_QC(); \
797 dest = ~0; \
798 } else { \
799 dest = 0; \
801 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
802 dest = 0; \
803 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
804 dest = src1 >> (sizeof(src1) * 8 - 1); \
805 } else if (tmp < 0) { \
806 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
807 } else { \
808 dest = src1 << tmp; \
809 if ((dest >> tmp) != src1) { \
810 SET_QC(); \
811 dest = ~0; \
813 }} while (0)
814 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
815 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
816 #undef NEON_FN
818 /* The addition of the rounding constant may overflow, so we use an
819 * intermediate 64 bit accumulator. */
820 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
822 uint32_t dest;
823 int8_t shift = (int8_t)shiftop;
824 if (shift >= 32) {
825 if (val) {
826 SET_QC();
827 dest = ~0;
828 } else {
829 dest = 0;
831 } else if (shift < -32) {
832 dest = 0;
833 } else if (shift == -32) {
834 dest = val >> 31;
835 } else if (shift < 0) {
836 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
837 dest = big_dest >> -shift;
838 } else {
839 dest = val << shift;
840 if ((dest >> shift) != val) {
841 SET_QC();
842 dest = ~0;
845 return dest;
848 /* Handling addition overflow with 64 bit input values is more
849 * tricky than with 32 bit values. */
850 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
852 int8_t shift = (int8_t)shiftop;
853 if (shift >= 64) {
854 if (val) {
855 SET_QC();
856 val = ~0;
858 } else if (shift < -64) {
859 val = 0;
860 } else if (shift == -64) {
861 val >>= 63;
862 } else if (shift < 0) {
863 val >>= (-shift - 1);
864 if (val == UINT64_MAX) {
865 /* In this case, it means that the rounding constant is 1,
866 * and the addition would overflow. Return the actual
867 * result directly. */
868 val = 0x8000000000000000ULL;
869 } else {
870 val++;
871 val >>= 1;
873 } else { \
874 uint64_t tmp = val;
875 val <<= shift;
876 if ((val >> shift) != tmp) {
877 SET_QC();
878 val = ~0;
881 return val;
884 #define NEON_FN(dest, src1, src2) do { \
885 int8_t tmp; \
886 tmp = (int8_t)src2; \
887 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
888 if (src1) { \
889 SET_QC(); \
890 dest = (1 << (sizeof(src1) * 8 - 1)); \
891 if (src1 > 0) { \
892 dest--; \
894 } else { \
895 dest = 0; \
897 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
898 dest = 0; \
899 } else if (tmp < 0) { \
900 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
901 } else { \
902 dest = src1 << tmp; \
903 if ((dest >> tmp) != src1) { \
904 SET_QC(); \
905 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
906 if (src1 > 0) { \
907 dest--; \
910 }} while (0)
911 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
912 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
913 #undef NEON_FN
915 /* The addition of the rounding constant may overflow, so we use an
916 * intermediate 64 bit accumulator. */
917 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
919 int32_t dest;
920 int32_t val = (int32_t)valop;
921 int8_t shift = (int8_t)shiftop;
922 if (shift >= 32) {
923 if (val) {
924 SET_QC();
925 dest = (val >> 31) ^ ~SIGNBIT;
926 } else {
927 dest = 0;
929 } else if (shift <= -32) {
930 dest = 0;
931 } else if (shift < 0) {
932 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
933 dest = big_dest >> -shift;
934 } else {
935 dest = val << shift;
936 if ((dest >> shift) != val) {
937 SET_QC();
938 dest = (val >> 31) ^ ~SIGNBIT;
941 return dest;
944 /* Handling addition overflow with 64 bit input values is more
945 * tricky than with 32 bit values. */
946 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
948 int8_t shift = (uint8_t)shiftop;
949 int64_t val = valop;
951 if (shift >= 64) {
952 if (val) {
953 SET_QC();
954 val = (val >> 63) ^ ~SIGNBIT64;
956 } else if (shift <= -64) {
957 val = 0;
958 } else if (shift < 0) {
959 val >>= (-shift - 1);
960 if (val == INT64_MAX) {
961 /* In this case, it means that the rounding constant is 1,
962 * and the addition would overflow. Return the actual
963 * result directly. */
964 val = 0x4000000000000000ULL;
965 } else {
966 val++;
967 val >>= 1;
969 } else {
970 int64_t tmp = val;
971 val <<= shift;
972 if ((val >> shift) != tmp) {
973 SET_QC();
974 val = (tmp >> 63) ^ ~SIGNBIT64;
977 return val;
980 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
982 uint32_t mask;
983 mask = (a ^ b) & 0x80808080u;
984 a &= ~0x80808080u;
985 b &= ~0x80808080u;
986 return (a + b) ^ mask;
989 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
991 uint32_t mask;
992 mask = (a ^ b) & 0x80008000u;
993 a &= ~0x80008000u;
994 b &= ~0x80008000u;
995 return (a + b) ^ mask;
998 #define NEON_FN(dest, src1, src2) dest = src1 + src2
999 NEON_POP(padd_u8, neon_u8, 4)
1000 NEON_POP(padd_u16, neon_u16, 2)
1001 #undef NEON_FN
1003 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1004 NEON_VOP(sub_u8, neon_u8, 4)
1005 NEON_VOP(sub_u16, neon_u16, 2)
1006 #undef NEON_FN
1008 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1009 NEON_VOP(mul_u8, neon_u8, 4)
1010 NEON_VOP(mul_u16, neon_u16, 2)
1011 #undef NEON_FN
1013 /* Polynomial multiplication is like integer multiplication except the
1014 partial products are XORed, not added. */
1015 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1017 uint32_t mask;
1018 uint32_t result;
1019 result = 0;
1020 while (op1) {
1021 mask = 0;
1022 if (op1 & 1)
1023 mask |= 0xff;
1024 if (op1 & (1 << 8))
1025 mask |= (0xff << 8);
1026 if (op1 & (1 << 16))
1027 mask |= (0xff << 16);
1028 if (op1 & (1 << 24))
1029 mask |= (0xff << 24);
1030 result ^= op2 & mask;
1031 op1 = (op1 >> 1) & 0x7f7f7f7f;
1032 op2 = (op2 << 1) & 0xfefefefe;
1034 return result;
1037 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1039 uint64_t result = 0;
1040 uint64_t mask;
1041 uint64_t op2ex = op2;
1042 op2ex = (op2ex & 0xff) |
1043 ((op2ex & 0xff00) << 8) |
1044 ((op2ex & 0xff0000) << 16) |
1045 ((op2ex & 0xff000000) << 24);
1046 while (op1) {
1047 mask = 0;
1048 if (op1 & 1) {
1049 mask |= 0xffff;
1051 if (op1 & (1 << 8)) {
1052 mask |= (0xffffU << 16);
1054 if (op1 & (1 << 16)) {
1055 mask |= (0xffffULL << 32);
1057 if (op1 & (1 << 24)) {
1058 mask |= (0xffffULL << 48);
1060 result ^= op2ex & mask;
1061 op1 = (op1 >> 1) & 0x7f7f7f7f;
1062 op2ex <<= 1;
1064 return result;
1067 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1068 NEON_VOP(tst_u8, neon_u8, 4)
1069 NEON_VOP(tst_u16, neon_u16, 2)
1070 NEON_VOP(tst_u32, neon_u32, 1)
1071 #undef NEON_FN
1073 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1074 NEON_VOP(ceq_u8, neon_u8, 4)
1075 NEON_VOP(ceq_u16, neon_u16, 2)
1076 NEON_VOP(ceq_u32, neon_u32, 1)
1077 #undef NEON_FN
1079 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1080 NEON_VOP1(abs_s8, neon_s8, 4)
1081 NEON_VOP1(abs_s16, neon_s16, 2)
1082 #undef NEON_FN
1084 /* Count Leading Sign/Zero Bits. */
1085 static inline int do_clz8(uint8_t x)
1087 int n;
1088 for (n = 8; x; n--)
1089 x >>= 1;
1090 return n;
1093 static inline int do_clz16(uint16_t x)
1095 int n;
1096 for (n = 16; x; n--)
1097 x >>= 1;
1098 return n;
1101 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1102 NEON_VOP1(clz_u8, neon_u8, 4)
1103 #undef NEON_FN
1105 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1106 NEON_VOP1(clz_u16, neon_u16, 2)
1107 #undef NEON_FN
1109 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1110 NEON_VOP1(cls_s8, neon_s8, 4)
1111 #undef NEON_FN
1113 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1114 NEON_VOP1(cls_s16, neon_s16, 2)
1115 #undef NEON_FN
1117 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1119 int count;
1120 if ((int32_t)x < 0)
1121 x = ~x;
1122 for (count = 32; x; count--)
1123 x = x >> 1;
1124 return count - 1;
1127 /* Bit count. */
1128 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1130 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1131 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1132 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1133 return x;
1136 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1137 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1138 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1139 SET_QC(); \
1140 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1141 } else { \
1142 tmp <<= 1; \
1144 if (round) { \
1145 int32_t old = tmp; \
1146 tmp += 1 << 15; \
1147 if ((int32_t)tmp < old) { \
1148 SET_QC(); \
1149 tmp = SIGNBIT - 1; \
1152 dest = tmp >> 16; \
1153 } while(0)
1154 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1155 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1156 #undef NEON_FN
1157 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1158 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1159 #undef NEON_FN
1160 #undef NEON_QDMULH16
1162 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1163 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1164 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1165 SET_QC(); \
1166 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1167 } else { \
1168 tmp <<= 1; \
1170 if (round) { \
1171 int64_t old = tmp; \
1172 tmp += (int64_t)1 << 31; \
1173 if ((int64_t)tmp < old) { \
1174 SET_QC(); \
1175 tmp = SIGNBIT64 - 1; \
1178 dest = tmp >> 32; \
1179 } while(0)
1180 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1181 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1182 #undef NEON_FN
1183 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1184 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1185 #undef NEON_FN
1186 #undef NEON_QDMULH32
1188 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1190 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1191 | ((x >> 24) & 0xff000000u);
1194 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1196 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1199 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1201 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1202 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1205 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1207 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1210 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1212 x &= 0xff80ff80ff80ff80ull;
1213 x += 0x0080008000800080ull;
1214 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1215 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1218 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1220 x &= 0xffff8000ffff8000ull;
1221 x += 0x0000800000008000ull;
1222 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1225 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1227 uint16_t s;
1228 uint8_t d;
1229 uint32_t res = 0;
1230 #define SAT8(n) \
1231 s = x >> n; \
1232 if (s & 0x8000) { \
1233 SET_QC(); \
1234 } else { \
1235 if (s > 0xff) { \
1236 d = 0xff; \
1237 SET_QC(); \
1238 } else { \
1239 d = s; \
1241 res |= (uint32_t)d << (n / 2); \
1244 SAT8(0);
1245 SAT8(16);
1246 SAT8(32);
1247 SAT8(48);
1248 #undef SAT8
1249 return res;
1252 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1254 uint16_t s;
1255 uint8_t d;
1256 uint32_t res = 0;
1257 #define SAT8(n) \
1258 s = x >> n; \
1259 if (s > 0xff) { \
1260 d = 0xff; \
1261 SET_QC(); \
1262 } else { \
1263 d = s; \
1265 res |= (uint32_t)d << (n / 2);
1267 SAT8(0);
1268 SAT8(16);
1269 SAT8(32);
1270 SAT8(48);
1271 #undef SAT8
1272 return res;
1275 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1277 int16_t s;
1278 uint8_t d;
1279 uint32_t res = 0;
1280 #define SAT8(n) \
1281 s = x >> n; \
1282 if (s != (int8_t)s) { \
1283 d = (s >> 15) ^ 0x7f; \
1284 SET_QC(); \
1285 } else { \
1286 d = s; \
1288 res |= (uint32_t)d << (n / 2);
1290 SAT8(0);
1291 SAT8(16);
1292 SAT8(32);
1293 SAT8(48);
1294 #undef SAT8
1295 return res;
1298 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1300 uint32_t high;
1301 uint32_t low;
1302 low = x;
1303 if (low & 0x80000000) {
1304 low = 0;
1305 SET_QC();
1306 } else if (low > 0xffff) {
1307 low = 0xffff;
1308 SET_QC();
1310 high = x >> 32;
1311 if (high & 0x80000000) {
1312 high = 0;
1313 SET_QC();
1314 } else if (high > 0xffff) {
1315 high = 0xffff;
1316 SET_QC();
1318 return low | (high << 16);
1321 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1323 uint32_t high;
1324 uint32_t low;
1325 low = x;
1326 if (low > 0xffff) {
1327 low = 0xffff;
1328 SET_QC();
1330 high = x >> 32;
1331 if (high > 0xffff) {
1332 high = 0xffff;
1333 SET_QC();
1335 return low | (high << 16);
1338 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1340 int32_t low;
1341 int32_t high;
1342 low = x;
1343 if (low != (int16_t)low) {
1344 low = (low >> 31) ^ 0x7fff;
1345 SET_QC();
1347 high = x >> 32;
1348 if (high != (int16_t)high) {
1349 high = (high >> 31) ^ 0x7fff;
1350 SET_QC();
1352 return (uint16_t)low | (high << 16);
1355 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1357 if (x & 0x8000000000000000ull) {
1358 SET_QC();
1359 return 0;
1361 if (x > 0xffffffffu) {
1362 SET_QC();
1363 return 0xffffffffu;
1365 return x;
1368 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1370 if (x > 0xffffffffu) {
1371 SET_QC();
1372 return 0xffffffffu;
1374 return x;
1377 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1379 if ((int64_t)x != (int32_t)x) {
1380 SET_QC();
1381 return ((int64_t)x >> 63) ^ 0x7fffffff;
1383 return x;
1386 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1388 uint64_t tmp;
1389 uint64_t ret;
1390 ret = (uint8_t)x;
1391 tmp = (uint8_t)(x >> 8);
1392 ret |= tmp << 16;
1393 tmp = (uint8_t)(x >> 16);
1394 ret |= tmp << 32;
1395 tmp = (uint8_t)(x >> 24);
1396 ret |= tmp << 48;
1397 return ret;
1400 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1402 uint64_t tmp;
1403 uint64_t ret;
1404 ret = (uint16_t)(int8_t)x;
1405 tmp = (uint16_t)(int8_t)(x >> 8);
1406 ret |= tmp << 16;
1407 tmp = (uint16_t)(int8_t)(x >> 16);
1408 ret |= tmp << 32;
1409 tmp = (uint16_t)(int8_t)(x >> 24);
1410 ret |= tmp << 48;
1411 return ret;
1414 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1416 uint64_t high = (uint16_t)(x >> 16);
1417 return ((uint16_t)x) | (high << 32);
1420 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1422 uint64_t high = (int16_t)(x >> 16);
1423 return ((uint32_t)(int16_t)x) | (high << 32);
1426 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1428 uint64_t mask;
1429 mask = (a ^ b) & 0x8000800080008000ull;
1430 a &= ~0x8000800080008000ull;
1431 b &= ~0x8000800080008000ull;
1432 return (a + b) ^ mask;
1435 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1437 uint64_t mask;
1438 mask = (a ^ b) & 0x8000000080000000ull;
1439 a &= ~0x8000000080000000ull;
1440 b &= ~0x8000000080000000ull;
1441 return (a + b) ^ mask;
1444 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1446 uint64_t tmp;
1447 uint64_t tmp2;
1449 tmp = a & 0x0000ffff0000ffffull;
1450 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1451 tmp2 = b & 0xffff0000ffff0000ull;
1452 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1453 return ( tmp & 0xffff)
1454 | ((tmp >> 16) & 0xffff0000ull)
1455 | ((tmp2 << 16) & 0xffff00000000ull)
1456 | ( tmp2 & 0xffff000000000000ull);
1459 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1461 uint32_t low = a + (a >> 32);
1462 uint32_t high = b + (b >> 32);
1463 return low + ((uint64_t)high << 32);
1466 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1468 uint64_t mask;
1469 mask = (a ^ ~b) & 0x8000800080008000ull;
1470 a |= 0x8000800080008000ull;
1471 b &= ~0x8000800080008000ull;
1472 return (a - b) ^ mask;
1475 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1477 uint64_t mask;
1478 mask = (a ^ ~b) & 0x8000000080000000ull;
1479 a |= 0x8000000080000000ull;
1480 b &= ~0x8000000080000000ull;
1481 return (a - b) ^ mask;
1484 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1486 uint32_t x, y;
1487 uint32_t low, high;
1489 x = a;
1490 y = b;
1491 low = x + y;
1492 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1493 SET_QC();
1494 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1496 x = a >> 32;
1497 y = b >> 32;
1498 high = x + y;
1499 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1500 SET_QC();
1501 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1503 return low | ((uint64_t)high << 32);
1506 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1508 uint64_t result;
1510 result = a + b;
1511 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1512 SET_QC();
1513 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1515 return result;
1518 /* We have to do the arithmetic in a larger type than
1519 * the input type, because for example with a signed 32 bit
1520 * op the absolute difference can overflow a signed 32 bit value.
1522 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1523 arithtype tmp_x = (intype)(x); \
1524 arithtype tmp_y = (intype)(y); \
1525 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1526 } while(0)
1528 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1530 uint64_t tmp;
1531 uint64_t result;
1532 DO_ABD(result, a, b, uint8_t, uint32_t);
1533 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1534 result |= tmp << 16;
1535 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1536 result |= tmp << 32;
1537 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1538 result |= tmp << 48;
1539 return result;
1542 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1544 uint64_t tmp;
1545 uint64_t result;
1546 DO_ABD(result, a, b, int8_t, int32_t);
1547 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1548 result |= tmp << 16;
1549 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1550 result |= tmp << 32;
1551 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1552 result |= tmp << 48;
1553 return result;
1556 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1558 uint64_t tmp;
1559 uint64_t result;
1560 DO_ABD(result, a, b, uint16_t, uint32_t);
1561 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1562 return result | (tmp << 32);
1565 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1567 uint64_t tmp;
1568 uint64_t result;
1569 DO_ABD(result, a, b, int16_t, int32_t);
1570 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1571 return result | (tmp << 32);
1574 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1576 uint64_t result;
1577 DO_ABD(result, a, b, uint32_t, uint64_t);
1578 return result;
1581 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1583 uint64_t result;
1584 DO_ABD(result, a, b, int32_t, int64_t);
1585 return result;
1587 #undef DO_ABD
1589 /* Widening multiply. Named type is the source type. */
1590 #define DO_MULL(dest, x, y, type1, type2) do { \
1591 type1 tmp_x = x; \
1592 type1 tmp_y = y; \
1593 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1594 } while(0)
1596 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1598 uint64_t tmp;
1599 uint64_t result;
1601 DO_MULL(result, a, b, uint8_t, uint16_t);
1602 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1603 result |= tmp << 16;
1604 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1605 result |= tmp << 32;
1606 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1607 result |= tmp << 48;
1608 return result;
1611 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1613 uint64_t tmp;
1614 uint64_t result;
1616 DO_MULL(result, a, b, int8_t, uint16_t);
1617 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1618 result |= tmp << 16;
1619 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1620 result |= tmp << 32;
1621 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1622 result |= tmp << 48;
1623 return result;
1626 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1628 uint64_t tmp;
1629 uint64_t result;
1631 DO_MULL(result, a, b, uint16_t, uint32_t);
1632 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1633 return result | (tmp << 32);
1636 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1638 uint64_t tmp;
1639 uint64_t result;
1641 DO_MULL(result, a, b, int16_t, uint32_t);
1642 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1643 return result | (tmp << 32);
1646 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1648 uint16_t tmp;
1649 uint64_t result;
1650 result = (uint16_t)-x;
1651 tmp = -(x >> 16);
1652 result |= (uint64_t)tmp << 16;
1653 tmp = -(x >> 32);
1654 result |= (uint64_t)tmp << 32;
1655 tmp = -(x >> 48);
1656 result |= (uint64_t)tmp << 48;
1657 return result;
1660 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1662 uint32_t low = -x;
1663 uint32_t high = -(x >> 32);
1664 return low | ((uint64_t)high << 32);
1667 /* Saturating sign manipulation. */
1668 /* ??? Make these use NEON_VOP1 */
1669 #define DO_QABS8(x) do { \
1670 if (x == (int8_t)0x80) { \
1671 x = 0x7f; \
1672 SET_QC(); \
1673 } else if (x < 0) { \
1674 x = -x; \
1675 }} while (0)
1676 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1678 neon_s8 vec;
1679 NEON_UNPACK(neon_s8, vec, x);
1680 DO_QABS8(vec.v1);
1681 DO_QABS8(vec.v2);
1682 DO_QABS8(vec.v3);
1683 DO_QABS8(vec.v4);
1684 NEON_PACK(neon_s8, x, vec);
1685 return x;
1687 #undef DO_QABS8
1689 #define DO_QNEG8(x) do { \
1690 if (x == (int8_t)0x80) { \
1691 x = 0x7f; \
1692 SET_QC(); \
1693 } else { \
1694 x = -x; \
1695 }} while (0)
1696 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1698 neon_s8 vec;
1699 NEON_UNPACK(neon_s8, vec, x);
1700 DO_QNEG8(vec.v1);
1701 DO_QNEG8(vec.v2);
1702 DO_QNEG8(vec.v3);
1703 DO_QNEG8(vec.v4);
1704 NEON_PACK(neon_s8, x, vec);
1705 return x;
1707 #undef DO_QNEG8
1709 #define DO_QABS16(x) do { \
1710 if (x == (int16_t)0x8000) { \
1711 x = 0x7fff; \
1712 SET_QC(); \
1713 } else if (x < 0) { \
1714 x = -x; \
1715 }} while (0)
1716 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1718 neon_s16 vec;
1719 NEON_UNPACK(neon_s16, vec, x);
1720 DO_QABS16(vec.v1);
1721 DO_QABS16(vec.v2);
1722 NEON_PACK(neon_s16, x, vec);
1723 return x;
1725 #undef DO_QABS16
1727 #define DO_QNEG16(x) do { \
1728 if (x == (int16_t)0x8000) { \
1729 x = 0x7fff; \
1730 SET_QC(); \
1731 } else { \
1732 x = -x; \
1733 }} while (0)
1734 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1736 neon_s16 vec;
1737 NEON_UNPACK(neon_s16, vec, x);
1738 DO_QNEG16(vec.v1);
1739 DO_QNEG16(vec.v2);
1740 NEON_PACK(neon_s16, x, vec);
1741 return x;
1743 #undef DO_QNEG16
1745 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1747 if (x == SIGNBIT) {
1748 SET_QC();
1749 x = ~SIGNBIT;
1750 } else if ((int32_t)x < 0) {
1751 x = -x;
1753 return x;
1756 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1758 if (x == SIGNBIT) {
1759 SET_QC();
1760 x = ~SIGNBIT;
1761 } else {
1762 x = -x;
1764 return x;
1767 /* NEON Float helpers. */
1768 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp)
1770 float_status *fpst = fpstp;
1771 return float32_val(float32_min(make_float32(a), make_float32(b), fpst));
1774 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp)
1776 float_status *fpst = fpstp;
1777 return float32_val(float32_max(make_float32(a), make_float32(b), fpst));
1780 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1782 float_status *fpst = fpstp;
1783 float32 f0 = make_float32(a);
1784 float32 f1 = make_float32(b);
1785 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1788 /* Floating point comparisons produce an integer result.
1789 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1790 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1792 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1794 float_status *fpst = fpstp;
1795 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1798 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1800 float_status *fpst = fpstp;
1801 return -float32_le(make_float32(b), make_float32(a), fpst);
1804 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1806 float_status *fpst = fpstp;
1807 return -float32_lt(make_float32(b), make_float32(a), fpst);
1810 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1812 float_status *fpst = fpstp;
1813 float32 f0 = float32_abs(make_float32(a));
1814 float32 f1 = float32_abs(make_float32(b));
1815 return -float32_le(f1, f0, fpst);
1818 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1820 float_status *fpst = fpstp;
1821 float32 f0 = float32_abs(make_float32(a));
1822 float32 f1 = float32_abs(make_float32(b));
1823 return -float32_lt(f1, f0, fpst);
1826 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1828 void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1830 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1831 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1832 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1833 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1834 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1835 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1836 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1837 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1838 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1839 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1840 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1841 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1842 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1843 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1844 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1845 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1846 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1847 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1848 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1849 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1850 env->vfp.regs[rm] = make_float64(m0);
1851 env->vfp.regs[rm + 1] = make_float64(m1);
1852 env->vfp.regs[rd] = make_float64(d0);
1853 env->vfp.regs[rd + 1] = make_float64(d1);
1856 void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1858 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1859 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1860 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1861 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1862 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1863 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1864 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1865 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1866 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1867 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1868 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1869 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1870 env->vfp.regs[rm] = make_float64(m0);
1871 env->vfp.regs[rm + 1] = make_float64(m1);
1872 env->vfp.regs[rd] = make_float64(d0);
1873 env->vfp.regs[rd + 1] = make_float64(d1);
1876 void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1878 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1879 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1880 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1881 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1882 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1883 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1884 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1885 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1886 env->vfp.regs[rm] = make_float64(m0);
1887 env->vfp.regs[rm + 1] = make_float64(m1);
1888 env->vfp.regs[rd] = make_float64(d0);
1889 env->vfp.regs[rd + 1] = make_float64(d1);
1892 void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1894 uint64_t zm = float64_val(env->vfp.regs[rm]);
1895 uint64_t zd = float64_val(env->vfp.regs[rd]);
1896 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1897 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1898 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1899 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1900 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1901 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1902 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1903 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1904 env->vfp.regs[rm] = make_float64(m0);
1905 env->vfp.regs[rd] = make_float64(d0);
1908 void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1910 uint64_t zm = float64_val(env->vfp.regs[rm]);
1911 uint64_t zd = float64_val(env->vfp.regs[rd]);
1912 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1913 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1914 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1915 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1916 env->vfp.regs[rm] = make_float64(m0);
1917 env->vfp.regs[rd] = make_float64(d0);
1920 void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1922 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1923 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1924 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1925 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1926 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1927 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1928 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1929 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1930 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1931 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1932 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1933 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1934 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1935 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1936 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1937 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1938 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1939 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1940 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1941 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1942 env->vfp.regs[rm] = make_float64(m0);
1943 env->vfp.regs[rm + 1] = make_float64(m1);
1944 env->vfp.regs[rd] = make_float64(d0);
1945 env->vfp.regs[rd + 1] = make_float64(d1);
1948 void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
1950 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1951 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1952 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1953 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1954 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1955 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1956 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1957 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1958 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1959 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1960 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1961 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1962 env->vfp.regs[rm] = make_float64(m0);
1963 env->vfp.regs[rm + 1] = make_float64(m1);
1964 env->vfp.regs[rd] = make_float64(d0);
1965 env->vfp.regs[rd + 1] = make_float64(d1);
1968 void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm)
1970 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1971 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1972 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1973 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1974 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1975 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1976 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1977 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1978 env->vfp.regs[rm] = make_float64(m0);
1979 env->vfp.regs[rm + 1] = make_float64(m1);
1980 env->vfp.regs[rd] = make_float64(d0);
1981 env->vfp.regs[rd + 1] = make_float64(d1);
1984 void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm)
1986 uint64_t zm = float64_val(env->vfp.regs[rm]);
1987 uint64_t zd = float64_val(env->vfp.regs[rd]);
1988 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1989 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1990 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1991 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1992 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
1993 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
1994 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
1995 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1996 env->vfp.regs[rm] = make_float64(m0);
1997 env->vfp.regs[rd] = make_float64(d0);
2000 void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm)
2002 uint64_t zm = float64_val(env->vfp.regs[rm]);
2003 uint64_t zd = float64_val(env->vfp.regs[rd]);
2004 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2005 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2006 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2007 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2008 env->vfp.regs[rm] = make_float64(m0);
2009 env->vfp.regs[rd] = make_float64(d0);