hpet: Add MSI support
[qemu/agraf.git] / kvm-all.c
blobc238f5421cded1bd5b1ba318f72f51c13d20789a
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 typedef struct KVMSlot
46 target_phys_addr_t start_addr;
47 ram_addr_t memory_size;
48 ram_addr_t phys_offset;
49 int slot;
50 int flags;
51 } KVMSlot;
53 typedef struct kvm_dirty_log KVMDirtyLog;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int coalesced_mmio;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
63 #endif
64 int broken_set_mem_region;
65 int migration_log;
66 int vcpu_events;
67 int robust_singlestep;
68 int debugregs;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71 #endif
72 int irqchip_in_kernel;
73 int pit_in_kernel;
76 static KVMState *kvm_state;
78 static KVMSlot *kvm_alloc_slot(KVMState *s)
80 int i;
82 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83 /* KVM private memory slots */
84 if (i >= 8 && i < 12)
85 continue;
86 if (s->slots[i].memory_size == 0)
87 return &s->slots[i];
90 fprintf(stderr, "%s: no free slot available\n", __func__);
91 abort();
94 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
95 target_phys_addr_t start_addr,
96 target_phys_addr_t end_addr)
98 int i;
100 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
101 KVMSlot *mem = &s->slots[i];
103 if (start_addr == mem->start_addr &&
104 end_addr == mem->start_addr + mem->memory_size) {
105 return mem;
109 return NULL;
113 * Find overlapping slot with lowest start address
115 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
116 target_phys_addr_t start_addr,
117 target_phys_addr_t end_addr)
119 KVMSlot *found = NULL;
120 int i;
122 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123 KVMSlot *mem = &s->slots[i];
125 if (mem->memory_size == 0 ||
126 (found && found->start_addr < mem->start_addr)) {
127 continue;
130 if (end_addr > mem->start_addr &&
131 start_addr < mem->start_addr + mem->memory_size) {
132 found = mem;
136 return found;
139 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
141 struct kvm_userspace_memory_region mem;
143 mem.slot = slot->slot;
144 mem.guest_phys_addr = slot->start_addr;
145 mem.memory_size = slot->memory_size;
146 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
147 mem.flags = slot->flags;
148 if (s->migration_log) {
149 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
151 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
154 static void kvm_reset_vcpu(void *opaque)
156 CPUState *env = opaque;
158 kvm_arch_reset_vcpu(env);
161 int kvm_irqchip_in_kernel(void)
163 return kvm_state->irqchip_in_kernel;
166 int kvm_pit_in_kernel(void)
168 return kvm_state->pit_in_kernel;
172 int kvm_init_vcpu(CPUState *env)
174 KVMState *s = kvm_state;
175 long mmap_size;
176 int ret;
178 DPRINTF("kvm_init_vcpu\n");
180 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181 if (ret < 0) {
182 DPRINTF("kvm_create_vcpu failed\n");
183 goto err;
186 env->kvm_fd = ret;
187 env->kvm_state = s;
189 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190 if (mmap_size < 0) {
191 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
192 goto err;
195 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196 env->kvm_fd, 0);
197 if (env->kvm_run == MAP_FAILED) {
198 ret = -errno;
199 DPRINTF("mmap'ing vcpu state failed\n");
200 goto err;
203 #ifdef KVM_CAP_COALESCED_MMIO
204 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
205 s->coalesced_mmio_ring = (void *) env->kvm_run +
206 s->coalesced_mmio * PAGE_SIZE;
207 #endif
209 ret = kvm_arch_init_vcpu(env);
210 if (ret == 0) {
211 qemu_register_reset(kvm_reset_vcpu, env);
212 kvm_arch_reset_vcpu(env);
214 err:
215 return ret;
219 * dirty pages logging control
221 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
222 ram_addr_t size, int flags, int mask)
224 KVMState *s = kvm_state;
225 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
226 int old_flags;
228 if (mem == NULL) {
229 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
230 TARGET_FMT_plx "\n", __func__, phys_addr,
231 (target_phys_addr_t)(phys_addr + size - 1));
232 return -EINVAL;
235 old_flags = mem->flags;
237 flags = (mem->flags & ~mask) | flags;
238 mem->flags = flags;
240 /* If nothing changed effectively, no need to issue ioctl */
241 if (s->migration_log) {
242 flags |= KVM_MEM_LOG_DIRTY_PAGES;
244 if (flags == old_flags) {
245 return 0;
248 return kvm_set_user_memory_region(s, mem);
251 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
253 return kvm_dirty_pages_log_change(phys_addr, size,
254 KVM_MEM_LOG_DIRTY_PAGES,
255 KVM_MEM_LOG_DIRTY_PAGES);
258 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
260 return kvm_dirty_pages_log_change(phys_addr, size,
262 KVM_MEM_LOG_DIRTY_PAGES);
265 static int kvm_set_migration_log(int enable)
267 KVMState *s = kvm_state;
268 KVMSlot *mem;
269 int i, err;
271 s->migration_log = enable;
273 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
274 mem = &s->slots[i];
276 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
277 continue;
279 err = kvm_set_user_memory_region(s, mem);
280 if (err) {
281 return err;
284 return 0;
287 /* get kvm's dirty pages bitmap and update qemu's */
288 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
289 unsigned long *bitmap,
290 unsigned long offset,
291 unsigned long mem_size)
293 unsigned int i, j;
294 unsigned long page_number, addr, addr1, c;
295 ram_addr_t ram_addr;
296 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
297 HOST_LONG_BITS;
300 * bitmap-traveling is faster than memory-traveling (for addr...)
301 * especially when most of the memory is not dirty.
303 for (i = 0; i < len; i++) {
304 if (bitmap[i] != 0) {
305 c = leul_to_cpu(bitmap[i]);
306 do {
307 j = ffsl(c) - 1;
308 c &= ~(1ul << j);
309 page_number = i * HOST_LONG_BITS + j;
310 addr1 = page_number * TARGET_PAGE_SIZE;
311 addr = offset + addr1;
312 ram_addr = cpu_get_physical_page_desc(addr);
313 cpu_physical_memory_set_dirty(ram_addr);
314 } while (c != 0);
317 return 0;
320 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
323 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
324 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
325 * This means all bits are set to dirty.
327 * @start_add: start of logged region.
328 * @end_addr: end of logged region.
330 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
331 target_phys_addr_t end_addr)
333 KVMState *s = kvm_state;
334 unsigned long size, allocated_size = 0;
335 KVMDirtyLog d;
336 KVMSlot *mem;
337 int ret = 0;
339 d.dirty_bitmap = NULL;
340 while (start_addr < end_addr) {
341 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
342 if (mem == NULL) {
343 break;
346 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
347 if (!d.dirty_bitmap) {
348 d.dirty_bitmap = qemu_malloc(size);
349 } else if (size > allocated_size) {
350 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
352 allocated_size = size;
353 memset(d.dirty_bitmap, 0, allocated_size);
355 d.slot = mem->slot;
357 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
358 DPRINTF("ioctl failed %d\n", errno);
359 ret = -1;
360 break;
363 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
364 mem->start_addr, mem->memory_size);
365 start_addr = mem->start_addr + mem->memory_size;
367 qemu_free(d.dirty_bitmap);
369 return ret;
372 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
374 int ret = -ENOSYS;
375 #ifdef KVM_CAP_COALESCED_MMIO
376 KVMState *s = kvm_state;
378 if (s->coalesced_mmio) {
379 struct kvm_coalesced_mmio_zone zone;
381 zone.addr = start;
382 zone.size = size;
384 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
386 #endif
388 return ret;
391 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
393 int ret = -ENOSYS;
394 #ifdef KVM_CAP_COALESCED_MMIO
395 KVMState *s = kvm_state;
397 if (s->coalesced_mmio) {
398 struct kvm_coalesced_mmio_zone zone;
400 zone.addr = start;
401 zone.size = size;
403 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
405 #endif
407 return ret;
410 int kvm_check_extension(KVMState *s, unsigned int extension)
412 int ret;
414 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
415 if (ret < 0) {
416 ret = 0;
419 return ret;
422 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
423 ram_addr_t size,
424 ram_addr_t phys_offset)
426 KVMState *s = kvm_state;
427 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
428 KVMSlot *mem, old;
429 int err;
431 if (start_addr & ~TARGET_PAGE_MASK) {
432 if (flags >= IO_MEM_UNASSIGNED) {
433 if (!kvm_lookup_overlapping_slot(s, start_addr,
434 start_addr + size)) {
435 return;
437 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
438 } else {
439 fprintf(stderr, "Only page-aligned memory slots supported\n");
441 abort();
444 /* KVM does not support read-only slots */
445 phys_offset &= ~IO_MEM_ROM;
447 while (1) {
448 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
449 if (!mem) {
450 break;
453 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
454 (start_addr + size <= mem->start_addr + mem->memory_size) &&
455 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
456 /* The new slot fits into the existing one and comes with
457 * identical parameters - nothing to be done. */
458 return;
461 old = *mem;
463 /* unregister the overlapping slot */
464 mem->memory_size = 0;
465 err = kvm_set_user_memory_region(s, mem);
466 if (err) {
467 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
468 __func__, strerror(-err));
469 abort();
472 /* Workaround for older KVM versions: we can't join slots, even not by
473 * unregistering the previous ones and then registering the larger
474 * slot. We have to maintain the existing fragmentation. Sigh.
476 * This workaround assumes that the new slot starts at the same
477 * address as the first existing one. If not or if some overlapping
478 * slot comes around later, we will fail (not seen in practice so far)
479 * - and actually require a recent KVM version. */
480 if (s->broken_set_mem_region &&
481 old.start_addr == start_addr && old.memory_size < size &&
482 flags < IO_MEM_UNASSIGNED) {
483 mem = kvm_alloc_slot(s);
484 mem->memory_size = old.memory_size;
485 mem->start_addr = old.start_addr;
486 mem->phys_offset = old.phys_offset;
487 mem->flags = 0;
489 err = kvm_set_user_memory_region(s, mem);
490 if (err) {
491 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
492 strerror(-err));
493 abort();
496 start_addr += old.memory_size;
497 phys_offset += old.memory_size;
498 size -= old.memory_size;
499 continue;
502 /* register prefix slot */
503 if (old.start_addr < start_addr) {
504 mem = kvm_alloc_slot(s);
505 mem->memory_size = start_addr - old.start_addr;
506 mem->start_addr = old.start_addr;
507 mem->phys_offset = old.phys_offset;
508 mem->flags = 0;
510 err = kvm_set_user_memory_region(s, mem);
511 if (err) {
512 fprintf(stderr, "%s: error registering prefix slot: %s\n",
513 __func__, strerror(-err));
514 abort();
518 /* register suffix slot */
519 if (old.start_addr + old.memory_size > start_addr + size) {
520 ram_addr_t size_delta;
522 mem = kvm_alloc_slot(s);
523 mem->start_addr = start_addr + size;
524 size_delta = mem->start_addr - old.start_addr;
525 mem->memory_size = old.memory_size - size_delta;
526 mem->phys_offset = old.phys_offset + size_delta;
527 mem->flags = 0;
529 err = kvm_set_user_memory_region(s, mem);
530 if (err) {
531 fprintf(stderr, "%s: error registering suffix slot: %s\n",
532 __func__, strerror(-err));
533 abort();
538 /* in case the KVM bug workaround already "consumed" the new slot */
539 if (!size)
540 return;
542 /* KVM does not need to know about this memory */
543 if (flags >= IO_MEM_UNASSIGNED)
544 return;
546 mem = kvm_alloc_slot(s);
547 mem->memory_size = size;
548 mem->start_addr = start_addr;
549 mem->phys_offset = phys_offset;
550 mem->flags = 0;
552 err = kvm_set_user_memory_region(s, mem);
553 if (err) {
554 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
555 strerror(-err));
556 abort();
560 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
561 target_phys_addr_t start_addr,
562 ram_addr_t size,
563 ram_addr_t phys_offset)
565 kvm_set_phys_mem(start_addr, size, phys_offset);
568 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
569 target_phys_addr_t start_addr,
570 target_phys_addr_t end_addr)
572 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
575 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
576 int enable)
578 return kvm_set_migration_log(enable);
581 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
582 .set_memory = kvm_client_set_memory,
583 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
584 .migration_log = kvm_client_migration_log,
587 int kvm_init(int smp_cpus)
589 static const char upgrade_note[] =
590 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
591 "(see http://sourceforge.net/projects/kvm).\n";
592 KVMState *s;
593 int ret;
594 int i;
596 s = qemu_mallocz(sizeof(KVMState));
598 #ifdef KVM_CAP_SET_GUEST_DEBUG
599 QTAILQ_INIT(&s->kvm_sw_breakpoints);
600 #endif
601 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
602 s->slots[i].slot = i;
604 s->vmfd = -1;
605 s->fd = qemu_open("/dev/kvm", O_RDWR);
606 if (s->fd == -1) {
607 fprintf(stderr, "Could not access KVM kernel module: %m\n");
608 ret = -errno;
609 goto err;
612 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
613 if (ret < KVM_API_VERSION) {
614 if (ret > 0)
615 ret = -EINVAL;
616 fprintf(stderr, "kvm version too old\n");
617 goto err;
620 if (ret > KVM_API_VERSION) {
621 ret = -EINVAL;
622 fprintf(stderr, "kvm version not supported\n");
623 goto err;
626 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
627 if (s->vmfd < 0) {
628 #ifdef TARGET_S390X
629 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
630 "your host kernel command line\n");
631 #endif
632 goto err;
635 /* initially, KVM allocated its own memory and we had to jump through
636 * hooks to make phys_ram_base point to this. Modern versions of KVM
637 * just use a user allocated buffer so we can use regular pages
638 * unmodified. Make sure we have a sufficiently modern version of KVM.
640 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
641 ret = -EINVAL;
642 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
643 upgrade_note);
644 goto err;
647 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
648 * destroyed properly. Since we rely on this capability, refuse to work
649 * with any kernel without this capability. */
650 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
651 ret = -EINVAL;
653 fprintf(stderr,
654 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
655 upgrade_note);
656 goto err;
659 s->coalesced_mmio = 0;
660 #ifdef KVM_CAP_COALESCED_MMIO
661 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
662 s->coalesced_mmio_ring = NULL;
663 #endif
665 s->broken_set_mem_region = 1;
666 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
667 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
668 if (ret > 0) {
669 s->broken_set_mem_region = 0;
671 #endif
673 s->vcpu_events = 0;
674 #ifdef KVM_CAP_VCPU_EVENTS
675 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
676 #endif
678 s->robust_singlestep = 0;
679 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
680 s->robust_singlestep =
681 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
682 #endif
684 s->debugregs = 0;
685 #ifdef KVM_CAP_DEBUGREGS
686 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
687 #endif
689 ret = kvm_arch_init(s, smp_cpus);
690 if (ret < 0)
691 goto err;
693 kvm_state = s;
694 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
696 return 0;
698 err:
699 if (s) {
700 if (s->vmfd != -1)
701 close(s->vmfd);
702 if (s->fd != -1)
703 close(s->fd);
705 qemu_free(s);
707 return ret;
710 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
711 uint32_t count)
713 int i;
714 uint8_t *ptr = data;
716 for (i = 0; i < count; i++) {
717 if (direction == KVM_EXIT_IO_IN) {
718 switch (size) {
719 case 1:
720 stb_p(ptr, cpu_inb(port));
721 break;
722 case 2:
723 stw_p(ptr, cpu_inw(port));
724 break;
725 case 4:
726 stl_p(ptr, cpu_inl(port));
727 break;
729 } else {
730 switch (size) {
731 case 1:
732 cpu_outb(port, ldub_p(ptr));
733 break;
734 case 2:
735 cpu_outw(port, lduw_p(ptr));
736 break;
737 case 4:
738 cpu_outl(port, ldl_p(ptr));
739 break;
743 ptr += size;
746 return 1;
749 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
750 static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
753 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
754 int i;
756 fprintf(stderr, "KVM internal error. Suberror: %d\n",
757 run->internal.suberror);
759 for (i = 0; i < run->internal.ndata; ++i) {
760 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
761 i, (uint64_t)run->internal.data[i]);
764 cpu_dump_state(env, stderr, fprintf, 0);
765 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
766 fprintf(stderr, "emulation failure\n");
767 if (!kvm_arch_stop_on_emulation_error(env))
768 return;
770 /* FIXME: Should trigger a qmp message to let management know
771 * something went wrong.
773 vm_stop(0);
775 #endif
777 void kvm_flush_coalesced_mmio_buffer(void)
779 #ifdef KVM_CAP_COALESCED_MMIO
780 KVMState *s = kvm_state;
781 if (s->coalesced_mmio_ring) {
782 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
783 while (ring->first != ring->last) {
784 struct kvm_coalesced_mmio *ent;
786 ent = &ring->coalesced_mmio[ring->first];
788 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
789 smp_wmb();
790 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
793 #endif
796 static void do_kvm_cpu_synchronize_state(void *_env)
798 CPUState *env = _env;
800 if (!env->kvm_vcpu_dirty) {
801 kvm_arch_get_registers(env);
802 env->kvm_vcpu_dirty = 1;
806 void kvm_cpu_synchronize_state(CPUState *env)
808 if (!env->kvm_vcpu_dirty)
809 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
812 void kvm_cpu_synchronize_post_reset(CPUState *env)
814 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
815 env->kvm_vcpu_dirty = 0;
818 void kvm_cpu_synchronize_post_init(CPUState *env)
820 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
821 env->kvm_vcpu_dirty = 0;
824 int kvm_cpu_exec(CPUState *env)
826 struct kvm_run *run = env->kvm_run;
827 int ret;
829 DPRINTF("kvm_cpu_exec()\n");
831 do {
832 #ifndef CONFIG_IOTHREAD
833 if (env->exit_request) {
834 DPRINTF("interrupt exit requested\n");
835 ret = 0;
836 break;
838 #endif
840 if (kvm_arch_process_irqchip_events(env)) {
841 ret = 0;
842 break;
845 if (env->kvm_vcpu_dirty) {
846 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
847 env->kvm_vcpu_dirty = 0;
850 kvm_arch_pre_run(env, run);
851 cpu_single_env = NULL;
852 qemu_mutex_unlock_iothread();
853 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
854 qemu_mutex_lock_iothread();
855 cpu_single_env = env;
856 kvm_arch_post_run(env, run);
858 if (ret == -EINTR || ret == -EAGAIN) {
859 cpu_exit(env);
860 DPRINTF("io window exit\n");
861 ret = 0;
862 break;
865 if (ret < 0) {
866 DPRINTF("kvm run failed %s\n", strerror(-ret));
867 abort();
870 kvm_flush_coalesced_mmio_buffer();
872 ret = 0; /* exit loop */
873 switch (run->exit_reason) {
874 case KVM_EXIT_IO:
875 DPRINTF("handle_io\n");
876 ret = kvm_handle_io(run->io.port,
877 (uint8_t *)run + run->io.data_offset,
878 run->io.direction,
879 run->io.size,
880 run->io.count);
881 break;
882 case KVM_EXIT_MMIO:
883 DPRINTF("handle_mmio\n");
884 cpu_physical_memory_rw(run->mmio.phys_addr,
885 run->mmio.data,
886 run->mmio.len,
887 run->mmio.is_write);
888 ret = 1;
889 break;
890 case KVM_EXIT_IRQ_WINDOW_OPEN:
891 DPRINTF("irq_window_open\n");
892 break;
893 case KVM_EXIT_SHUTDOWN:
894 DPRINTF("shutdown\n");
895 qemu_system_reset_request();
896 ret = 1;
897 break;
898 case KVM_EXIT_UNKNOWN:
899 DPRINTF("kvm_exit_unknown\n");
900 break;
901 case KVM_EXIT_FAIL_ENTRY:
902 DPRINTF("kvm_exit_fail_entry\n");
903 break;
904 case KVM_EXIT_EXCEPTION:
905 DPRINTF("kvm_exit_exception\n");
906 break;
907 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
908 case KVM_EXIT_INTERNAL_ERROR:
909 kvm_handle_internal_error(env, run);
910 break;
911 #endif
912 case KVM_EXIT_DEBUG:
913 DPRINTF("kvm_exit_debug\n");
914 #ifdef KVM_CAP_SET_GUEST_DEBUG
915 if (kvm_arch_debug(&run->debug.arch)) {
916 gdb_set_stop_cpu(env);
917 vm_stop(EXCP_DEBUG);
918 env->exception_index = EXCP_DEBUG;
919 return 0;
921 /* re-enter, this exception was guest-internal */
922 ret = 1;
923 #endif /* KVM_CAP_SET_GUEST_DEBUG */
924 break;
925 default:
926 DPRINTF("kvm_arch_handle_exit\n");
927 ret = kvm_arch_handle_exit(env, run);
928 break;
930 } while (ret > 0);
932 if (env->exit_request) {
933 env->exit_request = 0;
934 env->exception_index = EXCP_INTERRUPT;
937 return ret;
940 int kvm_ioctl(KVMState *s, int type, ...)
942 int ret;
943 void *arg;
944 va_list ap;
946 va_start(ap, type);
947 arg = va_arg(ap, void *);
948 va_end(ap);
950 ret = ioctl(s->fd, type, arg);
951 if (ret == -1)
952 ret = -errno;
954 return ret;
957 int kvm_vm_ioctl(KVMState *s, int type, ...)
959 int ret;
960 void *arg;
961 va_list ap;
963 va_start(ap, type);
964 arg = va_arg(ap, void *);
965 va_end(ap);
967 ret = ioctl(s->vmfd, type, arg);
968 if (ret == -1)
969 ret = -errno;
971 return ret;
974 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
976 int ret;
977 void *arg;
978 va_list ap;
980 va_start(ap, type);
981 arg = va_arg(ap, void *);
982 va_end(ap);
984 ret = ioctl(env->kvm_fd, type, arg);
985 if (ret == -1)
986 ret = -errno;
988 return ret;
991 int kvm_has_sync_mmu(void)
993 #ifdef KVM_CAP_SYNC_MMU
994 KVMState *s = kvm_state;
996 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
997 #else
998 return 0;
999 #endif
1002 int kvm_has_vcpu_events(void)
1004 return kvm_state->vcpu_events;
1007 int kvm_has_robust_singlestep(void)
1009 return kvm_state->robust_singlestep;
1012 int kvm_has_debugregs(void)
1014 return kvm_state->debugregs;
1017 void kvm_setup_guest_memory(void *start, size_t size)
1019 if (!kvm_has_sync_mmu()) {
1020 #ifdef MADV_DONTFORK
1021 int ret = madvise(start, size, MADV_DONTFORK);
1023 if (ret) {
1024 perror("madvice");
1025 exit(1);
1027 #else
1028 fprintf(stderr,
1029 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1030 exit(1);
1031 #endif
1035 #ifdef KVM_CAP_SET_GUEST_DEBUG
1036 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
1038 #ifdef CONFIG_IOTHREAD
1039 if (env != cpu_single_env) {
1040 abort();
1042 #endif
1043 func(data);
1046 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1047 target_ulong pc)
1049 struct kvm_sw_breakpoint *bp;
1051 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1052 if (bp->pc == pc)
1053 return bp;
1055 return NULL;
1058 int kvm_sw_breakpoints_active(CPUState *env)
1060 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1063 struct kvm_set_guest_debug_data {
1064 struct kvm_guest_debug dbg;
1065 CPUState *env;
1066 int err;
1069 static void kvm_invoke_set_guest_debug(void *data)
1071 struct kvm_set_guest_debug_data *dbg_data = data;
1072 CPUState *env = dbg_data->env;
1074 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1077 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1079 struct kvm_set_guest_debug_data data;
1081 data.dbg.control = reinject_trap;
1083 if (env->singlestep_enabled) {
1084 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1086 kvm_arch_update_guest_debug(env, &data.dbg);
1087 data.env = env;
1089 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1090 return data.err;
1093 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1094 target_ulong len, int type)
1096 struct kvm_sw_breakpoint *bp;
1097 CPUState *env;
1098 int err;
1100 if (type == GDB_BREAKPOINT_SW) {
1101 bp = kvm_find_sw_breakpoint(current_env, addr);
1102 if (bp) {
1103 bp->use_count++;
1104 return 0;
1107 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1108 if (!bp)
1109 return -ENOMEM;
1111 bp->pc = addr;
1112 bp->use_count = 1;
1113 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1114 if (err) {
1115 free(bp);
1116 return err;
1119 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1120 bp, entry);
1121 } else {
1122 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1123 if (err)
1124 return err;
1127 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1128 err = kvm_update_guest_debug(env, 0);
1129 if (err)
1130 return err;
1132 return 0;
1135 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1136 target_ulong len, int type)
1138 struct kvm_sw_breakpoint *bp;
1139 CPUState *env;
1140 int err;
1142 if (type == GDB_BREAKPOINT_SW) {
1143 bp = kvm_find_sw_breakpoint(current_env, addr);
1144 if (!bp)
1145 return -ENOENT;
1147 if (bp->use_count > 1) {
1148 bp->use_count--;
1149 return 0;
1152 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1153 if (err)
1154 return err;
1156 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1157 qemu_free(bp);
1158 } else {
1159 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1160 if (err)
1161 return err;
1164 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1165 err = kvm_update_guest_debug(env, 0);
1166 if (err)
1167 return err;
1169 return 0;
1172 void kvm_remove_all_breakpoints(CPUState *current_env)
1174 struct kvm_sw_breakpoint *bp, *next;
1175 KVMState *s = current_env->kvm_state;
1176 CPUState *env;
1178 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1179 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1180 /* Try harder to find a CPU that currently sees the breakpoint. */
1181 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1182 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1183 break;
1187 kvm_arch_remove_all_hw_breakpoints();
1189 for (env = first_cpu; env != NULL; env = env->next_cpu)
1190 kvm_update_guest_debug(env, 0);
1193 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1195 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1197 return -EINVAL;
1200 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1201 target_ulong len, int type)
1203 return -EINVAL;
1206 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1207 target_ulong len, int type)
1209 return -EINVAL;
1212 void kvm_remove_all_breakpoints(CPUState *current_env)
1215 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1217 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1219 struct kvm_signal_mask *sigmask;
1220 int r;
1222 if (!sigset)
1223 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1225 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1227 sigmask->len = 8;
1228 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1229 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1230 free(sigmask);
1232 return r;
1235 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1237 #ifdef KVM_IOEVENTFD
1238 struct kvm_ioeventfd kick = {
1239 .datamatch = val,
1240 .addr = addr,
1241 .len = 2,
1242 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1243 .fd = fd,
1245 int r;
1246 if (!kvm_enabled())
1247 return -ENOSYS;
1248 if (!assign)
1249 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1250 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1251 if (r < 0)
1252 return r;
1253 return 0;
1254 #else
1255 return -ENOSYS;
1256 #endif