2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "host-utils.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void helper_raise_exception_err (uint32_t exception
, int error_code
)
31 if (exception
< 0x100)
32 qemu_log("%s: %d %d\n", __func__
, exception
, error_code
);
34 env
->exception_index
= exception
;
35 env
->error_code
= error_code
;
39 void helper_raise_exception (uint32_t exception
)
41 helper_raise_exception_err(exception
, 0);
44 void helper_interrupt_restart (void)
46 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
47 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
48 !(env
->hflags
& MIPS_HFLAG_DM
) &&
49 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
50 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
)) {
51 env
->CP0_Cause
&= ~(0x1f << CP0Ca_EC
);
52 helper_raise_exception(EXCP_EXT_INTERRUPT
);
56 #if !defined(CONFIG_USER_ONLY)
57 static void do_restore_state (void *pc_ptr
)
60 unsigned long pc
= (unsigned long) pc_ptr
;
64 cpu_restore_state (tb
, env
, pc
, NULL
);
69 #if defined(CONFIG_USER_ONLY)
70 #define HELPER_LD(name, insn, type) \
71 static inline type do_##name(target_ulong addr, int mem_idx) \
73 return (type) insn##_raw(addr); \
76 #define HELPER_LD(name, insn, type) \
77 static inline type do_##name(target_ulong addr, int mem_idx) \
81 case 0: return (type) insn##_kernel(addr); break; \
82 case 1: return (type) insn##_super(addr); break; \
84 case 2: return (type) insn##_user(addr); break; \
88 HELPER_LD(lbu
, ldub
, uint8_t)
89 HELPER_LD(lw
, ldl
, int32_t)
91 HELPER_LD(ld
, ldq
, int64_t)
95 #if defined(CONFIG_USER_ONLY)
96 #define HELPER_ST(name, insn, type) \
97 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
99 insn##_raw(addr, val); \
102 #define HELPER_ST(name, insn, type) \
103 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
107 case 0: insn##_kernel(addr, val); break; \
108 case 1: insn##_super(addr, val); break; \
110 case 2: insn##_user(addr, val); break; \
114 HELPER_ST(sb
, stb
, uint8_t)
115 HELPER_ST(sw
, stl
, uint32_t)
117 HELPER_ST(sd
, stq
, uint64_t)
121 target_ulong
helper_clo (target_ulong arg1
)
126 target_ulong
helper_clz (target_ulong arg1
)
131 #if defined(TARGET_MIPS64)
132 target_ulong
helper_dclo (target_ulong arg1
)
137 target_ulong
helper_dclz (target_ulong arg1
)
141 #endif /* TARGET_MIPS64 */
143 /* 64 bits arithmetic for 32 bits hosts */
144 static inline uint64_t get_HILO (void)
146 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
149 static inline void set_HILO (uint64_t HILO
)
151 env
->active_tc
.LO
[0] = (int32_t)HILO
;
152 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
155 static inline void set_HIT0_LO (target_ulong arg1
, uint64_t HILO
)
157 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
158 arg1
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
161 static inline void set_HI_LOT0 (target_ulong arg1
, uint64_t HILO
)
163 arg1
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
164 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
167 /* Multiplication variants of the vr54xx. */
168 target_ulong
helper_muls (target_ulong arg1
, target_ulong arg2
)
170 set_HI_LOT0(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
175 target_ulong
helper_mulsu (target_ulong arg1
, target_ulong arg2
)
177 set_HI_LOT0(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
182 target_ulong
helper_macc (target_ulong arg1
, target_ulong arg2
)
184 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
189 target_ulong
helper_macchi (target_ulong arg1
, target_ulong arg2
)
191 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
196 target_ulong
helper_maccu (target_ulong arg1
, target_ulong arg2
)
198 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
203 target_ulong
helper_macchiu (target_ulong arg1
, target_ulong arg2
)
205 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
210 target_ulong
helper_msac (target_ulong arg1
, target_ulong arg2
)
212 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
217 target_ulong
helper_msachi (target_ulong arg1
, target_ulong arg2
)
219 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
224 target_ulong
helper_msacu (target_ulong arg1
, target_ulong arg2
)
226 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
231 target_ulong
helper_msachiu (target_ulong arg1
, target_ulong arg2
)
233 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
238 target_ulong
helper_mulhi (target_ulong arg1
, target_ulong arg2
)
240 set_HIT0_LO(arg1
, (int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
);
245 target_ulong
helper_mulhiu (target_ulong arg1
, target_ulong arg2
)
247 set_HIT0_LO(arg1
, (uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
);
252 target_ulong
helper_mulshi (target_ulong arg1
, target_ulong arg2
)
254 set_HIT0_LO(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
259 target_ulong
helper_mulshiu (target_ulong arg1
, target_ulong arg2
)
261 set_HIT0_LO(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
267 void helper_dmult (target_ulong arg1
, target_ulong arg2
)
269 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
272 void helper_dmultu (target_ulong arg1
, target_ulong arg2
)
274 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
278 #ifndef CONFIG_USER_ONLY
280 static inline target_phys_addr_t
do_translate_address(target_ulong address
, int rw
)
282 target_phys_addr_t lladdr
;
284 lladdr
= cpu_mips_translate_address(env
, address
, rw
);
286 if (lladdr
== -1LL) {
293 #define HELPER_LD_ATOMIC(name, insn) \
294 target_ulong helper_##name(target_ulong arg, int mem_idx) \
296 env->lladdr = do_translate_address(arg, 0); \
297 env->llval = do_##insn(arg, mem_idx); \
300 HELPER_LD_ATOMIC(ll
, lw
)
302 HELPER_LD_ATOMIC(lld
, ld
)
304 #undef HELPER_LD_ATOMIC
306 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
307 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
311 if (arg2 & almask) { \
312 env->CP0_BadVAddr = arg2; \
313 helper_raise_exception(EXCP_AdES); \
315 if (do_translate_address(arg2, 1) == env->lladdr) { \
316 tmp = do_##ld_insn(arg2, mem_idx); \
317 if (tmp == env->llval) { \
318 do_##st_insn(arg2, arg1, mem_idx); \
324 HELPER_ST_ATOMIC(sc
, lw
, sw
, 0x3)
326 HELPER_ST_ATOMIC(scd
, ld
, sd
, 0x7)
328 #undef HELPER_ST_ATOMIC
331 #ifdef TARGET_WORDS_BIGENDIAN
332 #define GET_LMASK(v) ((v) & 3)
333 #define GET_OFFSET(addr, offset) (addr + (offset))
335 #define GET_LMASK(v) (((v) & 3) ^ 3)
336 #define GET_OFFSET(addr, offset) (addr - (offset))
339 target_ulong
helper_lwl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
343 tmp
= do_lbu(arg2
, mem_idx
);
344 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
346 if (GET_LMASK(arg2
) <= 2) {
347 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
348 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
351 if (GET_LMASK(arg2
) <= 1) {
352 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
353 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
356 if (GET_LMASK(arg2
) == 0) {
357 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
358 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
360 return (int32_t)arg1
;
363 target_ulong
helper_lwr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
367 tmp
= do_lbu(arg2
, mem_idx
);
368 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
370 if (GET_LMASK(arg2
) >= 1) {
371 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
372 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
375 if (GET_LMASK(arg2
) >= 2) {
376 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
377 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
380 if (GET_LMASK(arg2
) == 3) {
381 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
382 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
384 return (int32_t)arg1
;
387 void helper_swl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
389 do_sb(arg2
, (uint8_t)(arg1
>> 24), mem_idx
);
391 if (GET_LMASK(arg2
) <= 2)
392 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 16), mem_idx
);
394 if (GET_LMASK(arg2
) <= 1)
395 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 8), mem_idx
);
397 if (GET_LMASK(arg2
) == 0)
398 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)arg1
, mem_idx
);
401 void helper_swr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
403 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
405 if (GET_LMASK(arg2
) >= 1)
406 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
408 if (GET_LMASK(arg2
) >= 2)
409 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
411 if (GET_LMASK(arg2
) == 3)
412 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
415 #if defined(TARGET_MIPS64)
416 /* "half" load and stores. We must do the memory access inline,
417 or fault handling won't work. */
419 #ifdef TARGET_WORDS_BIGENDIAN
420 #define GET_LMASK64(v) ((v) & 7)
422 #define GET_LMASK64(v) (((v) & 7) ^ 7)
425 target_ulong
helper_ldl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
429 tmp
= do_lbu(arg2
, mem_idx
);
430 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
432 if (GET_LMASK64(arg2
) <= 6) {
433 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
434 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
437 if (GET_LMASK64(arg2
) <= 5) {
438 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
439 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
442 if (GET_LMASK64(arg2
) <= 4) {
443 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
444 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
447 if (GET_LMASK64(arg2
) <= 3) {
448 tmp
= do_lbu(GET_OFFSET(arg2
, 4), mem_idx
);
449 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
452 if (GET_LMASK64(arg2
) <= 2) {
453 tmp
= do_lbu(GET_OFFSET(arg2
, 5), mem_idx
);
454 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
457 if (GET_LMASK64(arg2
) <= 1) {
458 tmp
= do_lbu(GET_OFFSET(arg2
, 6), mem_idx
);
459 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
462 if (GET_LMASK64(arg2
) == 0) {
463 tmp
= do_lbu(GET_OFFSET(arg2
, 7), mem_idx
);
464 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
470 target_ulong
helper_ldr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
474 tmp
= do_lbu(arg2
, mem_idx
);
475 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
477 if (GET_LMASK64(arg2
) >= 1) {
478 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
479 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
482 if (GET_LMASK64(arg2
) >= 2) {
483 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
484 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
487 if (GET_LMASK64(arg2
) >= 3) {
488 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
489 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
492 if (GET_LMASK64(arg2
) >= 4) {
493 tmp
= do_lbu(GET_OFFSET(arg2
, -4), mem_idx
);
494 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
497 if (GET_LMASK64(arg2
) >= 5) {
498 tmp
= do_lbu(GET_OFFSET(arg2
, -5), mem_idx
);
499 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
502 if (GET_LMASK64(arg2
) >= 6) {
503 tmp
= do_lbu(GET_OFFSET(arg2
, -6), mem_idx
);
504 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
507 if (GET_LMASK64(arg2
) == 7) {
508 tmp
= do_lbu(GET_OFFSET(arg2
, -7), mem_idx
);
509 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
515 void helper_sdl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
517 do_sb(arg2
, (uint8_t)(arg1
>> 56), mem_idx
);
519 if (GET_LMASK64(arg2
) <= 6)
520 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 48), mem_idx
);
522 if (GET_LMASK64(arg2
) <= 5)
523 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 40), mem_idx
);
525 if (GET_LMASK64(arg2
) <= 4)
526 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)(arg1
>> 32), mem_idx
);
528 if (GET_LMASK64(arg2
) <= 3)
529 do_sb(GET_OFFSET(arg2
, 4), (uint8_t)(arg1
>> 24), mem_idx
);
531 if (GET_LMASK64(arg2
) <= 2)
532 do_sb(GET_OFFSET(arg2
, 5), (uint8_t)(arg1
>> 16), mem_idx
);
534 if (GET_LMASK64(arg2
) <= 1)
535 do_sb(GET_OFFSET(arg2
, 6), (uint8_t)(arg1
>> 8), mem_idx
);
537 if (GET_LMASK64(arg2
) <= 0)
538 do_sb(GET_OFFSET(arg2
, 7), (uint8_t)arg1
, mem_idx
);
541 void helper_sdr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
543 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
545 if (GET_LMASK64(arg2
) >= 1)
546 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
548 if (GET_LMASK64(arg2
) >= 2)
549 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
551 if (GET_LMASK64(arg2
) >= 3)
552 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
554 if (GET_LMASK64(arg2
) >= 4)
555 do_sb(GET_OFFSET(arg2
, -4), (uint8_t)(arg1
>> 32), mem_idx
);
557 if (GET_LMASK64(arg2
) >= 5)
558 do_sb(GET_OFFSET(arg2
, -5), (uint8_t)(arg1
>> 40), mem_idx
);
560 if (GET_LMASK64(arg2
) >= 6)
561 do_sb(GET_OFFSET(arg2
, -6), (uint8_t)(arg1
>> 48), mem_idx
);
563 if (GET_LMASK64(arg2
) == 7)
564 do_sb(GET_OFFSET(arg2
, -7), (uint8_t)(arg1
>> 56), mem_idx
);
566 #endif /* TARGET_MIPS64 */
568 static const int multiple_regs
[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
570 void helper_lwm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
572 target_ulong base_reglist
= reglist
& 0xf;
573 target_ulong do_r31
= reglist
& 0x10;
574 #ifdef CONFIG_USER_ONLY
576 #define ldfun ldl_raw
578 uint32_t (*ldfun
)(target_ulong
);
582 case 0: ldfun
= ldl_kernel
; break;
583 case 1: ldfun
= ldl_super
; break;
585 case 2: ldfun
= ldl_user
; break;
589 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
592 for (i
= 0; i
< base_reglist
; i
++) {
593 env
->active_tc
.gpr
[multiple_regs
[i
]] = (target_long
) ldfun(addr
);
599 env
->active_tc
.gpr
[31] = (target_long
) ldfun(addr
);
603 void helper_swm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
605 target_ulong base_reglist
= reglist
& 0xf;
606 target_ulong do_r31
= reglist
& 0x10;
607 #ifdef CONFIG_USER_ONLY
609 #define stfun stl_raw
611 void (*stfun
)(target_ulong
, uint32_t);
615 case 0: stfun
= stl_kernel
; break;
616 case 1: stfun
= stl_super
; break;
618 case 2: stfun
= stl_user
; break;
622 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
625 for (i
= 0; i
< base_reglist
; i
++) {
626 stfun(addr
, env
->active_tc
.gpr
[multiple_regs
[i
]]);
632 stfun(addr
, env
->active_tc
.gpr
[31]);
636 #if defined(TARGET_MIPS64)
637 void helper_ldm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
639 target_ulong base_reglist
= reglist
& 0xf;
640 target_ulong do_r31
= reglist
& 0x10;
641 #ifdef CONFIG_USER_ONLY
643 #define ldfun ldq_raw
645 uint64_t (*ldfun
)(target_ulong
);
649 case 0: ldfun
= ldq_kernel
; break;
650 case 1: ldfun
= ldq_super
; break;
652 case 2: ldfun
= ldq_user
; break;
656 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
659 for (i
= 0; i
< base_reglist
; i
++) {
660 env
->active_tc
.gpr
[multiple_regs
[i
]] = ldfun(addr
);
666 env
->active_tc
.gpr
[31] = ldfun(addr
);
670 void helper_sdm (target_ulong addr
, target_ulong reglist
, uint32_t mem_idx
)
672 target_ulong base_reglist
= reglist
& 0xf;
673 target_ulong do_r31
= reglist
& 0x10;
674 #ifdef CONFIG_USER_ONLY
676 #define stfun stq_raw
678 void (*stfun
)(target_ulong
, uint64_t);
682 case 0: stfun
= stq_kernel
; break;
683 case 1: stfun
= stq_super
; break;
685 case 2: stfun
= stq_user
; break;
689 if (base_reglist
> 0 && base_reglist
<= ARRAY_SIZE (multiple_regs
)) {
692 for (i
= 0; i
< base_reglist
; i
++) {
693 stfun(addr
, env
->active_tc
.gpr
[multiple_regs
[i
]]);
699 stfun(addr
, env
->active_tc
.gpr
[31]);
704 #ifndef CONFIG_USER_ONLY
706 target_ulong
helper_mfc0_mvpcontrol (void)
708 return env
->mvp
->CP0_MVPControl
;
711 target_ulong
helper_mfc0_mvpconf0 (void)
713 return env
->mvp
->CP0_MVPConf0
;
716 target_ulong
helper_mfc0_mvpconf1 (void)
718 return env
->mvp
->CP0_MVPConf1
;
721 target_ulong
helper_mfc0_random (void)
723 return (int32_t)cpu_mips_get_random(env
);
726 target_ulong
helper_mfc0_tcstatus (void)
728 return env
->active_tc
.CP0_TCStatus
;
731 target_ulong
helper_mftc0_tcstatus(void)
733 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
735 if (other_tc
== env
->current_tc
)
736 return env
->active_tc
.CP0_TCStatus
;
738 return env
->tcs
[other_tc
].CP0_TCStatus
;
741 target_ulong
helper_mfc0_tcbind (void)
743 return env
->active_tc
.CP0_TCBind
;
746 target_ulong
helper_mftc0_tcbind(void)
748 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
750 if (other_tc
== env
->current_tc
)
751 return env
->active_tc
.CP0_TCBind
;
753 return env
->tcs
[other_tc
].CP0_TCBind
;
756 target_ulong
helper_mfc0_tcrestart (void)
758 return env
->active_tc
.PC
;
761 target_ulong
helper_mftc0_tcrestart(void)
763 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
765 if (other_tc
== env
->current_tc
)
766 return env
->active_tc
.PC
;
768 return env
->tcs
[other_tc
].PC
;
771 target_ulong
helper_mfc0_tchalt (void)
773 return env
->active_tc
.CP0_TCHalt
;
776 target_ulong
helper_mftc0_tchalt(void)
778 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
780 if (other_tc
== env
->current_tc
)
781 return env
->active_tc
.CP0_TCHalt
;
783 return env
->tcs
[other_tc
].CP0_TCHalt
;
786 target_ulong
helper_mfc0_tccontext (void)
788 return env
->active_tc
.CP0_TCContext
;
791 target_ulong
helper_mftc0_tccontext(void)
793 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
795 if (other_tc
== env
->current_tc
)
796 return env
->active_tc
.CP0_TCContext
;
798 return env
->tcs
[other_tc
].CP0_TCContext
;
801 target_ulong
helper_mfc0_tcschedule (void)
803 return env
->active_tc
.CP0_TCSchedule
;
806 target_ulong
helper_mftc0_tcschedule(void)
808 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
810 if (other_tc
== env
->current_tc
)
811 return env
->active_tc
.CP0_TCSchedule
;
813 return env
->tcs
[other_tc
].CP0_TCSchedule
;
816 target_ulong
helper_mfc0_tcschefback (void)
818 return env
->active_tc
.CP0_TCScheFBack
;
821 target_ulong
helper_mftc0_tcschefback(void)
823 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
825 if (other_tc
== env
->current_tc
)
826 return env
->active_tc
.CP0_TCScheFBack
;
828 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
831 target_ulong
helper_mfc0_count (void)
833 return (int32_t)cpu_mips_get_count(env
);
836 target_ulong
helper_mftc0_entryhi(void)
838 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
841 if (other_tc
== env
->current_tc
)
842 tcstatus
= env
->active_tc
.CP0_TCStatus
;
844 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
846 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
849 target_ulong
helper_mftc0_status(void)
851 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
855 if (other_tc
== env
->current_tc
)
856 tcstatus
= env
->active_tc
.CP0_TCStatus
;
858 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
860 t0
= env
->CP0_Status
& ~0xf1000018;
861 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
862 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
863 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
868 target_ulong
helper_mfc0_lladdr (void)
870 return (int32_t)(env
->lladdr
>> env
->CP0_LLAddr_shift
);
873 target_ulong
helper_mfc0_watchlo (uint32_t sel
)
875 return (int32_t)env
->CP0_WatchLo
[sel
];
878 target_ulong
helper_mfc0_watchhi (uint32_t sel
)
880 return env
->CP0_WatchHi
[sel
];
883 target_ulong
helper_mfc0_debug (void)
885 target_ulong t0
= env
->CP0_Debug
;
886 if (env
->hflags
& MIPS_HFLAG_DM
)
892 target_ulong
helper_mftc0_debug(void)
894 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
897 if (other_tc
== env
->current_tc
)
898 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
900 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
902 /* XXX: Might be wrong, check with EJTAG spec. */
903 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
904 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
907 #if defined(TARGET_MIPS64)
908 target_ulong
helper_dmfc0_tcrestart (void)
910 return env
->active_tc
.PC
;
913 target_ulong
helper_dmfc0_tchalt (void)
915 return env
->active_tc
.CP0_TCHalt
;
918 target_ulong
helper_dmfc0_tccontext (void)
920 return env
->active_tc
.CP0_TCContext
;
923 target_ulong
helper_dmfc0_tcschedule (void)
925 return env
->active_tc
.CP0_TCSchedule
;
928 target_ulong
helper_dmfc0_tcschefback (void)
930 return env
->active_tc
.CP0_TCScheFBack
;
933 target_ulong
helper_dmfc0_lladdr (void)
935 return env
->lladdr
>> env
->CP0_LLAddr_shift
;
938 target_ulong
helper_dmfc0_watchlo (uint32_t sel
)
940 return env
->CP0_WatchLo
[sel
];
942 #endif /* TARGET_MIPS64 */
944 void helper_mtc0_index (target_ulong arg1
)
947 unsigned int tmp
= env
->tlb
->nb_tlb
;
953 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (arg1
& (num
- 1));
956 void helper_mtc0_mvpcontrol (target_ulong arg1
)
961 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
962 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
964 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
965 mask
|= (1 << CP0MVPCo_STLB
);
966 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (arg1
& mask
);
968 // TODO: Enable/disable shared TLB, enable/disable VPEs.
970 env
->mvp
->CP0_MVPControl
= newval
;
973 void helper_mtc0_vpecontrol (target_ulong arg1
)
978 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
979 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
980 newval
= (env
->CP0_VPEControl
& ~mask
) | (arg1
& mask
);
982 /* Yield scheduler intercept not implemented. */
983 /* Gating storage scheduler intercept not implemented. */
985 // TODO: Enable/disable TCs.
987 env
->CP0_VPEControl
= newval
;
990 void helper_mtc0_vpeconf0 (target_ulong arg1
)
995 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
996 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
997 mask
|= (0xff << CP0VPEC0_XTC
);
998 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
1000 newval
= (env
->CP0_VPEConf0
& ~mask
) | (arg1
& mask
);
1002 // TODO: TC exclusive handling due to ERL/EXL.
1004 env
->CP0_VPEConf0
= newval
;
1007 void helper_mtc0_vpeconf1 (target_ulong arg1
)
1012 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1013 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
1014 (0xff << CP0VPEC1_NCP1
);
1015 newval
= (env
->CP0_VPEConf1
& ~mask
) | (arg1
& mask
);
1017 /* UDI not implemented. */
1018 /* CP2 not implemented. */
1020 // TODO: Handle FPU (CP1) binding.
1022 env
->CP0_VPEConf1
= newval
;
1025 void helper_mtc0_yqmask (target_ulong arg1
)
1027 /* Yield qualifier inputs not implemented. */
1028 env
->CP0_YQMask
= 0x00000000;
1031 void helper_mtc0_vpeopt (target_ulong arg1
)
1033 env
->CP0_VPEOpt
= arg1
& 0x0000ffff;
1036 void helper_mtc0_entrylo0 (target_ulong arg1
)
1038 /* Large physaddr (PABITS) not implemented */
1039 /* 1k pages not implemented */
1040 env
->CP0_EntryLo0
= arg1
& 0x3FFFFFFF;
1043 void helper_mtc0_tcstatus (target_ulong arg1
)
1045 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
1048 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (arg1
& mask
);
1050 // TODO: Sync with CP0_Status.
1052 env
->active_tc
.CP0_TCStatus
= newval
;
1055 void helper_mttc0_tcstatus (target_ulong arg1
)
1057 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1059 // TODO: Sync with CP0_Status.
1061 if (other_tc
== env
->current_tc
)
1062 env
->active_tc
.CP0_TCStatus
= arg1
;
1064 env
->tcs
[other_tc
].CP0_TCStatus
= arg1
;
1067 void helper_mtc0_tcbind (target_ulong arg1
)
1069 uint32_t mask
= (1 << CP0TCBd_TBE
);
1072 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1073 mask
|= (1 << CP0TCBd_CurVPE
);
1074 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
1075 env
->active_tc
.CP0_TCBind
= newval
;
1078 void helper_mttc0_tcbind (target_ulong arg1
)
1080 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1081 uint32_t mask
= (1 << CP0TCBd_TBE
);
1084 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
1085 mask
|= (1 << CP0TCBd_CurVPE
);
1086 if (other_tc
== env
->current_tc
) {
1087 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
1088 env
->active_tc
.CP0_TCBind
= newval
;
1090 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (arg1
& mask
);
1091 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
1095 void helper_mtc0_tcrestart (target_ulong arg1
)
1097 env
->active_tc
.PC
= arg1
;
1098 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1100 /* MIPS16 not implemented. */
1103 void helper_mttc0_tcrestart (target_ulong arg1
)
1105 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1107 if (other_tc
== env
->current_tc
) {
1108 env
->active_tc
.PC
= arg1
;
1109 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1111 /* MIPS16 not implemented. */
1113 env
->tcs
[other_tc
].PC
= arg1
;
1114 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
1116 /* MIPS16 not implemented. */
1120 void helper_mtc0_tchalt (target_ulong arg1
)
1122 env
->active_tc
.CP0_TCHalt
= arg1
& 0x1;
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1127 void helper_mttc0_tchalt (target_ulong arg1
)
1129 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1131 // TODO: Halt TC / Restart (if allocated+active) TC.
1133 if (other_tc
== env
->current_tc
)
1134 env
->active_tc
.CP0_TCHalt
= arg1
;
1136 env
->tcs
[other_tc
].CP0_TCHalt
= arg1
;
1139 void helper_mtc0_tccontext (target_ulong arg1
)
1141 env
->active_tc
.CP0_TCContext
= arg1
;
1144 void helper_mttc0_tccontext (target_ulong arg1
)
1146 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1148 if (other_tc
== env
->current_tc
)
1149 env
->active_tc
.CP0_TCContext
= arg1
;
1151 env
->tcs
[other_tc
].CP0_TCContext
= arg1
;
1154 void helper_mtc0_tcschedule (target_ulong arg1
)
1156 env
->active_tc
.CP0_TCSchedule
= arg1
;
1159 void helper_mttc0_tcschedule (target_ulong arg1
)
1161 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1163 if (other_tc
== env
->current_tc
)
1164 env
->active_tc
.CP0_TCSchedule
= arg1
;
1166 env
->tcs
[other_tc
].CP0_TCSchedule
= arg1
;
1169 void helper_mtc0_tcschefback (target_ulong arg1
)
1171 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1174 void helper_mttc0_tcschefback (target_ulong arg1
)
1176 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1178 if (other_tc
== env
->current_tc
)
1179 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1181 env
->tcs
[other_tc
].CP0_TCScheFBack
= arg1
;
1184 void helper_mtc0_entrylo1 (target_ulong arg1
)
1186 /* Large physaddr (PABITS) not implemented */
1187 /* 1k pages not implemented */
1188 env
->CP0_EntryLo1
= arg1
& 0x3FFFFFFF;
1191 void helper_mtc0_context (target_ulong arg1
)
1193 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (arg1
& ~0x007FFFFF);
1196 void helper_mtc0_pagemask (target_ulong arg1
)
1198 /* 1k pages not implemented */
1199 env
->CP0_PageMask
= arg1
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1202 void helper_mtc0_pagegrain (target_ulong arg1
)
1204 /* SmartMIPS not implemented */
1205 /* Large physaddr (PABITS) not implemented */
1206 /* 1k pages not implemented */
1207 env
->CP0_PageGrain
= 0;
1210 void helper_mtc0_wired (target_ulong arg1
)
1212 env
->CP0_Wired
= arg1
% env
->tlb
->nb_tlb
;
1215 void helper_mtc0_srsconf0 (target_ulong arg1
)
1217 env
->CP0_SRSConf0
|= arg1
& env
->CP0_SRSConf0_rw_bitmask
;
1220 void helper_mtc0_srsconf1 (target_ulong arg1
)
1222 env
->CP0_SRSConf1
|= arg1
& env
->CP0_SRSConf1_rw_bitmask
;
1225 void helper_mtc0_srsconf2 (target_ulong arg1
)
1227 env
->CP0_SRSConf2
|= arg1
& env
->CP0_SRSConf2_rw_bitmask
;
1230 void helper_mtc0_srsconf3 (target_ulong arg1
)
1232 env
->CP0_SRSConf3
|= arg1
& env
->CP0_SRSConf3_rw_bitmask
;
1235 void helper_mtc0_srsconf4 (target_ulong arg1
)
1237 env
->CP0_SRSConf4
|= arg1
& env
->CP0_SRSConf4_rw_bitmask
;
1240 void helper_mtc0_hwrena (target_ulong arg1
)
1242 env
->CP0_HWREna
= arg1
& 0x0000000F;
1245 void helper_mtc0_count (target_ulong arg1
)
1247 cpu_mips_store_count(env
, arg1
);
1250 void helper_mtc0_entryhi (target_ulong arg1
)
1252 target_ulong old
, val
;
1254 /* 1k pages not implemented */
1255 val
= arg1
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1256 #if defined(TARGET_MIPS64)
1257 val
&= env
->SEGMask
;
1259 old
= env
->CP0_EntryHi
;
1260 env
->CP0_EntryHi
= val
;
1261 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1262 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1263 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1265 /* If the ASID changes, flush qemu's TLB. */
1266 if ((old
& 0xFF) != (val
& 0xFF))
1267 cpu_mips_tlb_flush(env
, 1);
1270 void helper_mttc0_entryhi(target_ulong arg1
)
1272 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1275 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (arg1
& ~0xff);
1276 if (other_tc
== env
->current_tc
) {
1277 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1278 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1280 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1281 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1285 void helper_mtc0_compare (target_ulong arg1
)
1287 cpu_mips_store_compare(env
, arg1
);
1290 void helper_mtc0_status (target_ulong arg1
)
1293 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1296 old
= env
->CP0_Status
;
1297 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1298 compute_hflags(env
);
1299 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1300 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1301 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1302 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1304 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1305 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1306 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1307 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1308 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1311 cpu_mips_update_irq(env
);
1314 void helper_mttc0_status(target_ulong arg1
)
1316 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1317 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1319 env
->CP0_Status
= arg1
& ~0xf1000018;
1320 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (arg1
& (0xf << CP0St_CU0
));
1321 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((arg1
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1322 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((arg1
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1323 if (other_tc
== env
->current_tc
)
1324 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1326 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1329 void helper_mtc0_intctl (target_ulong arg1
)
1331 /* vectored interrupts not implemented, no performance counters. */
1332 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (arg1
& 0x000002e0);
1335 void helper_mtc0_srsctl (target_ulong arg1
)
1337 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1338 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (arg1
& mask
);
1341 void helper_mtc0_cause (target_ulong arg1
)
1343 uint32_t mask
= 0x00C00300;
1344 uint32_t old
= env
->CP0_Cause
;
1346 if (env
->insn_flags
& ISA_MIPS32R2
)
1347 mask
|= 1 << CP0Ca_DC
;
1349 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (arg1
& mask
);
1351 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1352 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1353 cpu_mips_stop_count(env
);
1355 cpu_mips_start_count(env
);
1358 /* Handle the software interrupt as an hardware one, as they
1360 if (arg1
& CP0Ca_IP_mask
) {
1361 cpu_mips_update_irq(env
);
1365 void helper_mtc0_ebase (target_ulong arg1
)
1367 /* vectored interrupts not implemented */
1368 /* Multi-CPU not implemented */
1369 env
->CP0_EBase
= 0x80000000 | (arg1
& 0x3FFFF000);
1372 void helper_mtc0_config0 (target_ulong arg1
)
1374 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (arg1
& 0x00000007);
1377 void helper_mtc0_config2 (target_ulong arg1
)
1379 /* tertiary/secondary caches not implemented */
1380 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1383 void helper_mtc0_lladdr (target_ulong arg1
)
1385 target_long mask
= env
->CP0_LLAddr_rw_bitmask
;
1386 arg1
= arg1
<< env
->CP0_LLAddr_shift
;
1387 env
->lladdr
= (env
->lladdr
& ~mask
) | (arg1
& mask
);
1390 void helper_mtc0_watchlo (target_ulong arg1
, uint32_t sel
)
1392 /* Watch exceptions for instructions, data loads, data stores
1394 env
->CP0_WatchLo
[sel
] = (arg1
& ~0x7);
1397 void helper_mtc0_watchhi (target_ulong arg1
, uint32_t sel
)
1399 env
->CP0_WatchHi
[sel
] = (arg1
& 0x40FF0FF8);
1400 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & arg1
& 0x7);
1403 void helper_mtc0_xcontext (target_ulong arg1
)
1405 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1406 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (arg1
& ~mask
);
1409 void helper_mtc0_framemask (target_ulong arg1
)
1411 env
->CP0_Framemask
= arg1
; /* XXX */
1414 void helper_mtc0_debug (target_ulong arg1
)
1416 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (arg1
& 0x13300120);
1417 if (arg1
& (1 << CP0DB_DM
))
1418 env
->hflags
|= MIPS_HFLAG_DM
;
1420 env
->hflags
&= ~MIPS_HFLAG_DM
;
1423 void helper_mttc0_debug(target_ulong arg1
)
1425 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1426 uint32_t val
= arg1
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1428 /* XXX: Might be wrong, check with EJTAG spec. */
1429 if (other_tc
== env
->current_tc
)
1430 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1432 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1433 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1434 (arg1
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1437 void helper_mtc0_performance0 (target_ulong arg1
)
1439 env
->CP0_Performance0
= arg1
& 0x000007ff;
1442 void helper_mtc0_taglo (target_ulong arg1
)
1444 env
->CP0_TagLo
= arg1
& 0xFFFFFCF6;
1447 void helper_mtc0_datalo (target_ulong arg1
)
1449 env
->CP0_DataLo
= arg1
; /* XXX */
1452 void helper_mtc0_taghi (target_ulong arg1
)
1454 env
->CP0_TagHi
= arg1
; /* XXX */
1457 void helper_mtc0_datahi (target_ulong arg1
)
1459 env
->CP0_DataHi
= arg1
; /* XXX */
1462 /* MIPS MT functions */
1463 target_ulong
helper_mftgpr(uint32_t sel
)
1465 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1467 if (other_tc
== env
->current_tc
)
1468 return env
->active_tc
.gpr
[sel
];
1470 return env
->tcs
[other_tc
].gpr
[sel
];
1473 target_ulong
helper_mftlo(uint32_t sel
)
1475 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1477 if (other_tc
== env
->current_tc
)
1478 return env
->active_tc
.LO
[sel
];
1480 return env
->tcs
[other_tc
].LO
[sel
];
1483 target_ulong
helper_mfthi(uint32_t sel
)
1485 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1487 if (other_tc
== env
->current_tc
)
1488 return env
->active_tc
.HI
[sel
];
1490 return env
->tcs
[other_tc
].HI
[sel
];
1493 target_ulong
helper_mftacx(uint32_t sel
)
1495 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1497 if (other_tc
== env
->current_tc
)
1498 return env
->active_tc
.ACX
[sel
];
1500 return env
->tcs
[other_tc
].ACX
[sel
];
1503 target_ulong
helper_mftdsp(void)
1505 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1507 if (other_tc
== env
->current_tc
)
1508 return env
->active_tc
.DSPControl
;
1510 return env
->tcs
[other_tc
].DSPControl
;
1513 void helper_mttgpr(target_ulong arg1
, uint32_t sel
)
1515 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1517 if (other_tc
== env
->current_tc
)
1518 env
->active_tc
.gpr
[sel
] = arg1
;
1520 env
->tcs
[other_tc
].gpr
[sel
] = arg1
;
1523 void helper_mttlo(target_ulong arg1
, uint32_t sel
)
1525 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1527 if (other_tc
== env
->current_tc
)
1528 env
->active_tc
.LO
[sel
] = arg1
;
1530 env
->tcs
[other_tc
].LO
[sel
] = arg1
;
1533 void helper_mtthi(target_ulong arg1
, uint32_t sel
)
1535 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1537 if (other_tc
== env
->current_tc
)
1538 env
->active_tc
.HI
[sel
] = arg1
;
1540 env
->tcs
[other_tc
].HI
[sel
] = arg1
;
1543 void helper_mttacx(target_ulong arg1
, uint32_t sel
)
1545 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1547 if (other_tc
== env
->current_tc
)
1548 env
->active_tc
.ACX
[sel
] = arg1
;
1550 env
->tcs
[other_tc
].ACX
[sel
] = arg1
;
1553 void helper_mttdsp(target_ulong arg1
)
1555 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1557 if (other_tc
== env
->current_tc
)
1558 env
->active_tc
.DSPControl
= arg1
;
1560 env
->tcs
[other_tc
].DSPControl
= arg1
;
1563 /* MIPS MT functions */
1564 target_ulong
helper_dmt(target_ulong arg1
)
1573 target_ulong
helper_emt(target_ulong arg1
)
1582 target_ulong
helper_dvpe(target_ulong arg1
)
1591 target_ulong
helper_evpe(target_ulong arg1
)
1599 #endif /* !CONFIG_USER_ONLY */
1601 void helper_fork(target_ulong arg1
, target_ulong arg2
)
1603 // arg1 = rt, arg2 = rs
1605 // TODO: store to TC register
1608 target_ulong
helper_yield(target_ulong arg1
)
1611 /* No scheduling policy implemented. */
1613 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1614 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1615 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1616 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1617 helper_raise_exception(EXCP_THREAD
);
1620 } else if (arg1
== 0) {
1621 if (0 /* TODO: TC underflow */) {
1622 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1623 helper_raise_exception(EXCP_THREAD
);
1625 // TODO: Deallocate TC
1627 } else if (arg1
> 0) {
1628 /* Yield qualifier inputs not implemented. */
1629 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1630 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1631 helper_raise_exception(EXCP_THREAD
);
1633 return env
->CP0_YQMask
;
1636 #ifndef CONFIG_USER_ONLY
1637 /* TLB management */
1638 void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1640 /* Flush qemu's TLB and discard all shadowed entries. */
1641 tlb_flush (env
, flush_global
);
1642 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1645 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1647 /* Discard entries from env->tlb[first] onwards. */
1648 while (env
->tlb
->tlb_in_use
> first
) {
1649 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1653 static void r4k_fill_tlb (int idx
)
1657 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1658 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1659 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1660 #if defined(TARGET_MIPS64)
1661 tlb
->VPN
&= env
->SEGMask
;
1663 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1664 tlb
->PageMask
= env
->CP0_PageMask
;
1665 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1666 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1667 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1668 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1669 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1670 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1671 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1672 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1673 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1676 void r4k_helper_tlbwi (void)
1680 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1682 /* Discard cached TLB entries. We could avoid doing this if the
1683 tlbwi is just upgrading access permissions on the current entry;
1684 that might be a further win. */
1685 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1687 r4k_invalidate_tlb(env
, idx
, 0);
1691 void r4k_helper_tlbwr (void)
1693 int r
= cpu_mips_get_random(env
);
1695 r4k_invalidate_tlb(env
, r
, 1);
1699 void r4k_helper_tlbp (void)
1708 ASID
= env
->CP0_EntryHi
& 0xFF;
1709 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1710 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1711 /* 1k pages are not supported. */
1712 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1713 tag
= env
->CP0_EntryHi
& ~mask
;
1714 VPN
= tlb
->VPN
& ~mask
;
1715 /* Check ASID, virtual page number & size */
1716 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1722 if (i
== env
->tlb
->nb_tlb
) {
1723 /* No match. Discard any shadow entries, if any of them match. */
1724 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1725 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1726 /* 1k pages are not supported. */
1727 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1728 tag
= env
->CP0_EntryHi
& ~mask
;
1729 VPN
= tlb
->VPN
& ~mask
;
1730 /* Check ASID, virtual page number & size */
1731 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1732 r4k_mips_tlb_flush_extra (env
, i
);
1737 env
->CP0_Index
|= 0x80000000;
1741 void r4k_helper_tlbr (void)
1747 ASID
= env
->CP0_EntryHi
& 0xFF;
1748 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1749 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1751 /* If this will change the current ASID, flush qemu's TLB. */
1752 if (ASID
!= tlb
->ASID
)
1753 cpu_mips_tlb_flush (env
, 1);
1755 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1757 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1758 env
->CP0_PageMask
= tlb
->PageMask
;
1759 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1760 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1761 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1762 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1765 void helper_tlbwi(void)
1767 env
->tlb
->helper_tlbwi();
1770 void helper_tlbwr(void)
1772 env
->tlb
->helper_tlbwr();
1775 void helper_tlbp(void)
1777 env
->tlb
->helper_tlbp();
1780 void helper_tlbr(void)
1782 env
->tlb
->helper_tlbr();
1786 target_ulong
helper_di (void)
1788 target_ulong t0
= env
->CP0_Status
;
1790 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1791 cpu_mips_update_irq(env
);
1796 target_ulong
helper_ei (void)
1798 target_ulong t0
= env
->CP0_Status
;
1800 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1801 cpu_mips_update_irq(env
);
1806 static void debug_pre_eret (void)
1808 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1809 qemu_log("ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1810 env
->active_tc
.PC
, env
->CP0_EPC
);
1811 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1812 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1813 if (env
->hflags
& MIPS_HFLAG_DM
)
1814 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1819 static void debug_post_eret (void)
1821 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1822 qemu_log(" => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1823 env
->active_tc
.PC
, env
->CP0_EPC
);
1824 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1825 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1826 if (env
->hflags
& MIPS_HFLAG_DM
)
1827 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1828 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1829 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1830 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1831 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1832 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1837 static void set_pc (target_ulong error_pc
)
1839 env
->active_tc
.PC
= error_pc
& ~(target_ulong
)1;
1841 env
->hflags
|= MIPS_HFLAG_M16
;
1843 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1847 void helper_eret (void)
1850 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1851 set_pc(env
->CP0_ErrorEPC
);
1852 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1854 set_pc(env
->CP0_EPC
);
1855 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1857 compute_hflags(env
);
1862 void helper_deret (void)
1865 set_pc(env
->CP0_DEPC
);
1867 env
->hflags
&= MIPS_HFLAG_DM
;
1868 compute_hflags(env
);
1872 #endif /* !CONFIG_USER_ONLY */
1874 target_ulong
helper_rdhwr_cpunum(void)
1876 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1877 (env
->CP0_HWREna
& (1 << 0)))
1878 return env
->CP0_EBase
& 0x3ff;
1880 helper_raise_exception(EXCP_RI
);
1885 target_ulong
helper_rdhwr_synci_step(void)
1887 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1888 (env
->CP0_HWREna
& (1 << 1)))
1889 return env
->SYNCI_Step
;
1891 helper_raise_exception(EXCP_RI
);
1896 target_ulong
helper_rdhwr_cc(void)
1898 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1899 (env
->CP0_HWREna
& (1 << 2)))
1900 return env
->CP0_Count
;
1902 helper_raise_exception(EXCP_RI
);
1907 target_ulong
helper_rdhwr_ccres(void)
1909 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1910 (env
->CP0_HWREna
& (1 << 3)))
1913 helper_raise_exception(EXCP_RI
);
1918 void helper_pmon (int function
)
1922 case 2: /* TODO: char inbyte(int waitflag); */
1923 if (env
->active_tc
.gpr
[4] == 0)
1924 env
->active_tc
.gpr
[2] = -1;
1926 case 11: /* TODO: char inbyte (void); */
1927 env
->active_tc
.gpr
[2] = -1;
1931 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1937 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1944 void helper_wait (void)
1947 helper_raise_exception(EXCP_HLT
);
1950 #if !defined(CONFIG_USER_ONLY)
1952 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1954 #define MMUSUFFIX _mmu
1955 #define ALIGNED_ONLY
1958 #include "softmmu_template.h"
1961 #include "softmmu_template.h"
1964 #include "softmmu_template.h"
1967 #include "softmmu_template.h"
1969 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1971 env
->CP0_BadVAddr
= addr
;
1972 do_restore_state (retaddr
);
1973 helper_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1976 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1978 TranslationBlock
*tb
;
1979 CPUState
*saved_env
;
1983 /* XXX: hack to restore env in all cases, even if not called from
1986 env
= cpu_single_env
;
1987 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1990 /* now we have a real cpu fault */
1991 pc
= (unsigned long)retaddr
;
1992 tb
= tb_find_pc(pc
);
1994 /* the PC is inside the translated code. It means that we have
1995 a virtual CPU fault */
1996 cpu_restore_state(tb
, env
, pc
, NULL
);
1999 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
2004 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
2005 int unused
, int size
)
2008 helper_raise_exception(EXCP_IBE
);
2010 helper_raise_exception(EXCP_DBE
);
2012 #endif /* !CONFIG_USER_ONLY */
2014 /* Complex FPU operations which may need stack space. */
2016 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2017 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2018 #define FLOAT_TWO32 make_float32(1 << 30)
2019 #define FLOAT_TWO64 make_float64(1ULL << 62)
2020 #define FLOAT_QNAN32 0x7fbfffff
2021 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2022 #define FLOAT_SNAN32 0x7fffffff
2023 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2025 /* convert MIPS rounding mode in FCR31 to IEEE library */
2026 static unsigned int ieee_rm
[] = {
2027 float_round_nearest_even
,
2028 float_round_to_zero
,
2033 #define RESTORE_ROUNDING_MODE \
2034 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2036 #define RESTORE_FLUSH_MODE \
2037 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2039 target_ulong
helper_cfc1 (uint32_t reg
)
2045 arg1
= (int32_t)env
->active_fpu
.fcr0
;
2048 arg1
= ((env
->active_fpu
.fcr31
>> 24) & 0xfe) | ((env
->active_fpu
.fcr31
>> 23) & 0x1);
2051 arg1
= env
->active_fpu
.fcr31
& 0x0003f07c;
2054 arg1
= (env
->active_fpu
.fcr31
& 0x00000f83) | ((env
->active_fpu
.fcr31
>> 22) & 0x4);
2057 arg1
= (int32_t)env
->active_fpu
.fcr31
;
2064 void helper_ctc1 (target_ulong arg1
, uint32_t reg
)
2068 if (arg1
& 0xffffff00)
2070 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0x017fffff) | ((arg1
& 0xfe) << 24) |
2071 ((arg1
& 0x1) << 23);
2074 if (arg1
& 0x007c0000)
2076 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfffc0f83) | (arg1
& 0x0003f07c);
2079 if (arg1
& 0x007c0000)
2081 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfefff07c) | (arg1
& 0x00000f83) |
2082 ((arg1
& 0x4) << 22);
2085 if (arg1
& 0x007c0000)
2087 env
->active_fpu
.fcr31
= arg1
;
2092 /* set rounding mode */
2093 RESTORE_ROUNDING_MODE
;
2094 /* set flush-to-zero mode */
2096 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2097 if ((GET_FP_ENABLE(env
->active_fpu
.fcr31
) | 0x20) & GET_FP_CAUSE(env
->active_fpu
.fcr31
))
2098 helper_raise_exception(EXCP_FPE
);
2101 static inline char ieee_ex_to_mips(char xcpt
)
2103 return (xcpt
& float_flag_inexact
) >> 5 |
2104 (xcpt
& float_flag_underflow
) >> 3 |
2105 (xcpt
& float_flag_overflow
) >> 1 |
2106 (xcpt
& float_flag_divbyzero
) << 1 |
2107 (xcpt
& float_flag_invalid
) << 4;
2110 static inline char mips_ex_to_ieee(char xcpt
)
2112 return (xcpt
& FP_INEXACT
) << 5 |
2113 (xcpt
& FP_UNDERFLOW
) << 3 |
2114 (xcpt
& FP_OVERFLOW
) << 1 |
2115 (xcpt
& FP_DIV0
) >> 1 |
2116 (xcpt
& FP_INVALID
) >> 4;
2119 static inline void update_fcr31(void)
2121 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->active_fpu
.fp_status
));
2123 SET_FP_CAUSE(env
->active_fpu
.fcr31
, tmp
);
2124 if (GET_FP_ENABLE(env
->active_fpu
.fcr31
) & tmp
)
2125 helper_raise_exception(EXCP_FPE
);
2127 UPDATE_FP_FLAGS(env
->active_fpu
.fcr31
, tmp
);
2131 Single precition routines have a "s" suffix, double precision a
2132 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2133 paired single lower "pl", paired single upper "pu". */
2135 /* unary operations, modifying fp status */
2136 uint64_t helper_float_sqrt_d(uint64_t fdt0
)
2138 return float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2141 uint32_t helper_float_sqrt_s(uint32_t fst0
)
2143 return float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2146 uint64_t helper_float_cvtd_s(uint32_t fst0
)
2150 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2151 fdt2
= float32_to_float64(fst0
, &env
->active_fpu
.fp_status
);
2156 uint64_t helper_float_cvtd_w(uint32_t wt0
)
2160 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2161 fdt2
= int32_to_float64(wt0
, &env
->active_fpu
.fp_status
);
2166 uint64_t helper_float_cvtd_l(uint64_t dt0
)
2170 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2171 fdt2
= int64_to_float64(dt0
, &env
->active_fpu
.fp_status
);
2176 uint64_t helper_float_cvtl_d(uint64_t fdt0
)
2180 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2181 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2183 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2188 uint64_t helper_float_cvtl_s(uint32_t fst0
)
2192 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2193 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2195 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2200 uint64_t helper_float_cvtps_pw(uint64_t dt0
)
2205 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2206 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2207 fsth2
= int32_to_float32(dt0
>> 32, &env
->active_fpu
.fp_status
);
2209 return ((uint64_t)fsth2
<< 32) | fst2
;
2212 uint64_t helper_float_cvtpw_ps(uint64_t fdt0
)
2217 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2218 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2219 wth2
= float32_to_int32(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2221 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2223 wth2
= FLOAT_SNAN32
;
2225 return ((uint64_t)wth2
<< 32) | wt2
;
2228 uint32_t helper_float_cvts_d(uint64_t fdt0
)
2232 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2233 fst2
= float64_to_float32(fdt0
, &env
->active_fpu
.fp_status
);
2238 uint32_t helper_float_cvts_w(uint32_t wt0
)
2242 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2243 fst2
= int32_to_float32(wt0
, &env
->active_fpu
.fp_status
);
2248 uint32_t helper_float_cvts_l(uint64_t dt0
)
2252 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2253 fst2
= int64_to_float32(dt0
, &env
->active_fpu
.fp_status
);
2258 uint32_t helper_float_cvts_pl(uint32_t wt0
)
2262 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2268 uint32_t helper_float_cvts_pu(uint32_t wth0
)
2272 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2278 uint32_t helper_float_cvtw_s(uint32_t fst0
)
2282 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2283 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2285 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2290 uint32_t helper_float_cvtw_d(uint64_t fdt0
)
2294 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2295 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2297 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2302 uint64_t helper_float_roundl_d(uint64_t fdt0
)
2306 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2307 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2308 RESTORE_ROUNDING_MODE
;
2310 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2315 uint64_t helper_float_roundl_s(uint32_t fst0
)
2319 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2320 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2321 RESTORE_ROUNDING_MODE
;
2323 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2328 uint32_t helper_float_roundw_d(uint64_t fdt0
)
2332 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2333 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2334 RESTORE_ROUNDING_MODE
;
2336 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2341 uint32_t helper_float_roundw_s(uint32_t fst0
)
2345 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2346 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2347 RESTORE_ROUNDING_MODE
;
2349 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2354 uint64_t helper_float_truncl_d(uint64_t fdt0
)
2358 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2360 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2365 uint64_t helper_float_truncl_s(uint32_t fst0
)
2369 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2371 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2376 uint32_t helper_float_truncw_d(uint64_t fdt0
)
2380 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2382 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2387 uint32_t helper_float_truncw_s(uint32_t fst0
)
2391 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2393 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2398 uint64_t helper_float_ceill_d(uint64_t fdt0
)
2402 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2403 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2404 RESTORE_ROUNDING_MODE
;
2406 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2411 uint64_t helper_float_ceill_s(uint32_t fst0
)
2415 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2416 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2417 RESTORE_ROUNDING_MODE
;
2419 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2424 uint32_t helper_float_ceilw_d(uint64_t fdt0
)
2428 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2429 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2430 RESTORE_ROUNDING_MODE
;
2432 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2437 uint32_t helper_float_ceilw_s(uint32_t fst0
)
2441 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2442 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2443 RESTORE_ROUNDING_MODE
;
2445 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2450 uint64_t helper_float_floorl_d(uint64_t fdt0
)
2454 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2455 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2456 RESTORE_ROUNDING_MODE
;
2458 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2463 uint64_t helper_float_floorl_s(uint32_t fst0
)
2467 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2468 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2469 RESTORE_ROUNDING_MODE
;
2471 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2476 uint32_t helper_float_floorw_d(uint64_t fdt0
)
2480 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2481 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2482 RESTORE_ROUNDING_MODE
;
2484 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2489 uint32_t helper_float_floorw_s(uint32_t fst0
)
2493 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2494 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2495 RESTORE_ROUNDING_MODE
;
2497 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2502 /* unary operations, not modifying fp status */
2503 #define FLOAT_UNOP(name) \
2504 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2506 return float64_ ## name(fdt0); \
2508 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2510 return float32_ ## name(fst0); \
2512 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2517 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2518 wth0 = float32_ ## name(fdt0 >> 32); \
2519 return ((uint64_t)wth0 << 32) | wt0; \
2525 /* MIPS specific unary operations */
2526 uint64_t helper_float_recip_d(uint64_t fdt0
)
2530 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2531 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2536 uint32_t helper_float_recip_s(uint32_t fst0
)
2540 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2541 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2546 uint64_t helper_float_rsqrt_d(uint64_t fdt0
)
2550 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2551 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2552 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2557 uint32_t helper_float_rsqrt_s(uint32_t fst0
)
2561 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2562 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2563 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2568 uint64_t helper_float_recip1_d(uint64_t fdt0
)
2572 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2573 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2578 uint32_t helper_float_recip1_s(uint32_t fst0
)
2582 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2583 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2588 uint64_t helper_float_recip1_ps(uint64_t fdt0
)
2593 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2594 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2595 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->active_fpu
.fp_status
);
2597 return ((uint64_t)fsth2
<< 32) | fst2
;
2600 uint64_t helper_float_rsqrt1_d(uint64_t fdt0
)
2604 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2605 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2606 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2611 uint32_t helper_float_rsqrt1_s(uint32_t fst0
)
2615 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2616 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2617 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2622 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0
)
2627 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2628 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2629 fsth2
= float32_sqrt(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2630 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2631 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->active_fpu
.fp_status
);
2633 return ((uint64_t)fsth2
<< 32) | fst2
;
2636 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2638 /* binary operations */
2639 #define FLOAT_BINOP(name) \
2640 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2644 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2645 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2647 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2648 dt2 = FLOAT_QNAN64; \
2652 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2656 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2657 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2659 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2660 wt2 = FLOAT_QNAN32; \
2664 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2666 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2667 uint32_t fsth0 = fdt0 >> 32; \
2668 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2669 uint32_t fsth1 = fdt1 >> 32; \
2673 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2674 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2675 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2677 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2678 wt2 = FLOAT_QNAN32; \
2679 wth2 = FLOAT_QNAN32; \
2681 return ((uint64_t)wth2 << 32) | wt2; \
2690 /* ternary operations */
2691 #define FLOAT_TERNOP(name1, name2) \
2692 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2695 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2696 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2699 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2702 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2703 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2706 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2709 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2710 uint32_t fsth0 = fdt0 >> 32; \
2711 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2712 uint32_t fsth1 = fdt1 >> 32; \
2713 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2714 uint32_t fsth2 = fdt2 >> 32; \
2716 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2717 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2718 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2719 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2720 return ((uint64_t)fsth2 << 32) | fst2; \
2723 FLOAT_TERNOP(mul
, add
)
2724 FLOAT_TERNOP(mul
, sub
)
2727 /* negated ternary operations */
2728 #define FLOAT_NTERNOP(name1, name2) \
2729 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2732 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2733 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2734 return float64_chs(fdt2); \
2737 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2740 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2741 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2742 return float32_chs(fst2); \
2745 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2748 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2749 uint32_t fsth0 = fdt0 >> 32; \
2750 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2751 uint32_t fsth1 = fdt1 >> 32; \
2752 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2753 uint32_t fsth2 = fdt2 >> 32; \
2755 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2756 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2757 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2758 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2759 fst2 = float32_chs(fst2); \
2760 fsth2 = float32_chs(fsth2); \
2761 return ((uint64_t)fsth2 << 32) | fst2; \
2764 FLOAT_NTERNOP(mul
, add
)
2765 FLOAT_NTERNOP(mul
, sub
)
2766 #undef FLOAT_NTERNOP
2768 /* MIPS specific binary operations */
2769 uint64_t helper_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2771 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2772 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2773 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
));
2778 uint32_t helper_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2780 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2781 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2782 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2787 uint64_t helper_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2789 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2790 uint32_t fsth0
= fdt0
>> 32;
2791 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2792 uint32_t fsth2
= fdt2
>> 32;
2794 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2795 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2796 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2797 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2798 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2800 return ((uint64_t)fsth2
<< 32) | fst2
;
2803 uint64_t helper_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2805 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2806 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2807 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
);
2808 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->active_fpu
.fp_status
));
2813 uint32_t helper_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2815 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2816 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2817 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2818 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2823 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2825 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2826 uint32_t fsth0
= fdt0
>> 32;
2827 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2828 uint32_t fsth2
= fdt2
>> 32;
2830 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2831 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2832 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2833 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2834 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2835 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2836 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2838 return ((uint64_t)fsth2
<< 32) | fst2
;
2841 uint64_t helper_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2843 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2844 uint32_t fsth0
= fdt0
>> 32;
2845 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2846 uint32_t fsth1
= fdt1
>> 32;
2850 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2851 fst2
= float32_add (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2852 fsth2
= float32_add (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2854 return ((uint64_t)fsth2
<< 32) | fst2
;
2857 uint64_t helper_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2859 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2860 uint32_t fsth0
= fdt0
>> 32;
2861 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2862 uint32_t fsth1
= fdt1
>> 32;
2866 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2867 fst2
= float32_mul (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2868 fsth2
= float32_mul (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2870 return ((uint64_t)fsth2
<< 32) | fst2
;
2873 /* compare operations */
2874 #define FOP_COND_D(op, cond) \
2875 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2880 SET_FP_COND(cc, env->active_fpu); \
2882 CLEAR_FP_COND(cc, env->active_fpu); \
2884 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2887 fdt0 = float64_abs(fdt0); \
2888 fdt1 = float64_abs(fdt1); \
2892 SET_FP_COND(cc, env->active_fpu); \
2894 CLEAR_FP_COND(cc, env->active_fpu); \
2897 static int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2899 if (float64_is_signaling_nan(a
) ||
2900 float64_is_signaling_nan(b
) ||
2901 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2902 float_raise(float_flag_invalid
, status
);
2904 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2911 /* NOTE: the comma operator will make "cond" to eval to false,
2912 * but float*_is_unordered() is still called. */
2913 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2914 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2915 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2916 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2917 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2918 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2919 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2920 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2921 /* NOTE: the comma operator will make "cond" to eval to false,
2922 * but float*_is_unordered() is still called. */
2923 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2924 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2925 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2926 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2927 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2928 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2929 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2930 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2932 #define FOP_COND_S(op, cond) \
2933 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2938 SET_FP_COND(cc, env->active_fpu); \
2940 CLEAR_FP_COND(cc, env->active_fpu); \
2942 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2945 fst0 = float32_abs(fst0); \
2946 fst1 = float32_abs(fst1); \
2950 SET_FP_COND(cc, env->active_fpu); \
2952 CLEAR_FP_COND(cc, env->active_fpu); \
2955 static flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2957 if (float32_is_signaling_nan(a
) ||
2958 float32_is_signaling_nan(b
) ||
2959 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2960 float_raise(float_flag_invalid
, status
);
2962 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2969 /* NOTE: the comma operator will make "cond" to eval to false,
2970 * but float*_is_unordered() is still called. */
2971 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2972 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2973 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2974 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2975 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2976 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2977 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2978 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2979 /* NOTE: the comma operator will make "cond" to eval to false,
2980 * but float*_is_unordered() is still called. */
2981 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2982 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2983 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2984 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2985 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2986 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2987 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2988 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2990 #define FOP_COND_PS(op, condl, condh) \
2991 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2993 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2994 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2995 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2996 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3002 SET_FP_COND(cc, env->active_fpu); \
3004 CLEAR_FP_COND(cc, env->active_fpu); \
3006 SET_FP_COND(cc + 1, env->active_fpu); \
3008 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3010 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3012 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3013 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3014 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3015 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3021 SET_FP_COND(cc, env->active_fpu); \
3023 CLEAR_FP_COND(cc, env->active_fpu); \
3025 SET_FP_COND(cc + 1, env->active_fpu); \
3027 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3030 /* NOTE: the comma operator will make "cond" to eval to false,
3031 * but float*_is_unordered() is still called. */
3032 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
3033 (float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
3034 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
),
3035 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
3036 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3037 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3038 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3039 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3040 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3041 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3042 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3043 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3044 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3045 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3046 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3047 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3048 /* NOTE: the comma operator will make "cond" to eval to false,
3049 * but float*_is_unordered() is still called. */
3050 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
3051 (float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
3052 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
),
3053 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
3054 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3055 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3056 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3057 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3058 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3059 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3060 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3061 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3062 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3063 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
3064 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
3065 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))