2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
44 #include "hw/pci/msi.h"
46 #include "sysemu/kvm.h"
48 #include "hw/pci/pci.h"
50 #include "exec/address-spaces.h"
52 #include "qemu/config-file.h"
56 /* SLOF memory layout:
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
64 * We load our kernel at 4M, leaving space for SLOF initial image
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
73 #define MIN_RMA_SLOF 128UL
75 #define TIMEBASE_FREQ 512000000ULL
78 #define XICS_IRQS 1024
80 #define PHANDLE_XICP 0x00001111
82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
84 sPAPREnvironment
*spapr
;
86 int spapr_allocate_irq(int hint
, bool lsi
)
92 /* FIXME: we should probably check for collisions somehow */
94 irq
= spapr
->next_irq
++;
97 /* Configure irq type */
98 if (!xics_get_qirq(spapr
->icp
, irq
)) {
102 xics_set_irq_type(spapr
->icp
, irq
, lsi
);
107 /* Allocate block of consequtive IRQs, returns a number of the first */
108 int spapr_allocate_irq_block(int num
, bool lsi
)
113 for (i
= 0; i
< num
; ++i
) {
116 irq
= spapr_allocate_irq(0, lsi
);
125 /* If the above doesn't create a consecutive block then that's
127 assert(irq
== (first
+ i
));
133 static int spapr_fixup_cpu_dt(void *fdt
, sPAPREnvironment
*spapr
)
139 int smt
= kvmppc_smt_threads();
140 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
142 assert(spapr
->cpu_model
);
144 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
145 cpu
= CPU(ppc_env_get_cpu(env
));
146 uint32_t associativity
[] = {cpu_to_be32(0x5),
150 cpu_to_be32(cpu
->numa_node
),
151 cpu_to_be32(cpu
->cpu_index
)};
153 if ((cpu
->cpu_index
% smt
) != 0) {
157 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
160 offset
= fdt_path_offset(fdt
, cpu_model
);
165 if (nb_numa_nodes
> 1) {
166 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
167 sizeof(associativity
));
173 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
174 pft_size_prop
, sizeof(pft_size_prop
));
183 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
186 size_t maxcells
= maxsize
/ sizeof(uint32_t);
190 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
191 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
193 if (!sps
->page_shift
) {
196 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
197 if (sps
->enc
[count
].page_shift
== 0) {
201 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
204 *(p
++) = cpu_to_be32(sps
->page_shift
);
205 *(p
++) = cpu_to_be32(sps
->slb_enc
);
206 *(p
++) = cpu_to_be32(count
);
207 for (j
= 0; j
< count
; j
++) {
208 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
209 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
213 return (p
- prop
) * sizeof(uint32_t);
220 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
221 #exp, fdt_strerror(ret)); \
227 static void *spapr_create_fdt_skel(const char *cpu_model
,
231 const char *boot_device
,
232 const char *kernel_cmdline
,
237 uint32_t start_prop
= cpu_to_be32(initrd_base
);
238 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
239 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
240 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
241 char qemu_hypertas_prop
[] = "hcall-memop1";
242 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
243 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
245 int i
, smt
= kvmppc_smt_threads();
246 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
248 fdt
= g_malloc0(FDT_MAX_SIZE
);
249 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
252 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
255 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
257 _FDT((fdt_finish_reservemap(fdt
)));
260 _FDT((fdt_begin_node(fdt
, "")));
261 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
262 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
263 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
265 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
266 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
269 _FDT((fdt_begin_node(fdt
, "chosen")));
271 /* Set Form1_affinity */
272 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
274 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
275 _FDT((fdt_property(fdt
, "linux,initrd-start",
276 &start_prop
, sizeof(start_prop
))));
277 _FDT((fdt_property(fdt
, "linux,initrd-end",
278 &end_prop
, sizeof(end_prop
))));
280 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
281 cpu_to_be64(kernel_size
) };
283 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
286 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
288 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
289 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
290 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
292 _FDT((fdt_end_node(fdt
)));
295 _FDT((fdt_begin_node(fdt
, "cpus")));
297 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
300 modelname
= g_strdup(cpu_model
);
302 for (i
= 0; i
< strlen(modelname
); i
++) {
303 modelname
[i
] = toupper(modelname
[i
]);
306 /* This is needed during FDT finalization */
307 spapr
->cpu_model
= g_strdup(modelname
);
309 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
310 CPUState
*cpu
= CPU(ppc_env_get_cpu(env
));
311 int index
= cpu
->cpu_index
;
312 uint32_t servers_prop
[smp_threads
];
313 uint32_t gservers_prop
[smp_threads
* 2];
315 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
316 0xffffffff, 0xffffffff};
317 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
318 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
319 uint32_t page_sizes_prop
[64];
320 size_t page_sizes_prop_size
;
322 if ((index
% smt
) != 0) {
326 nodename
= g_strdup_printf("%s@%x", modelname
, index
);
328 _FDT((fdt_begin_node(fdt
, nodename
)));
332 _FDT((fdt_property_cell(fdt
, "reg", index
)));
333 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
335 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
336 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
337 env
->dcache_line_size
)));
338 _FDT((fdt_property_cell(fdt
, "icache-block-size",
339 env
->icache_line_size
)));
340 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
341 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
342 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
343 _FDT((fdt_property_string(fdt
, "status", "okay")));
344 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
346 /* Build interrupt servers and gservers properties */
347 for (i
= 0; i
< smp_threads
; i
++) {
348 servers_prop
[i
] = cpu_to_be32(index
+ i
);
349 /* Hack, direct the group queues back to cpu 0 */
350 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
351 gservers_prop
[i
*2 + 1] = 0;
353 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
354 servers_prop
, sizeof(servers_prop
))));
355 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
356 gservers_prop
, sizeof(gservers_prop
))));
358 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
359 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
360 segs
, sizeof(segs
))));
363 /* Advertise VMX/VSX (vector extensions) if available
364 * 0 / no property == no vector extensions
365 * 1 == VMX / Altivec available
366 * 2 == VSX available */
367 if (env
->insns_flags
& PPC_ALTIVEC
) {
368 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
370 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
373 /* Advertise DFP (Decimal Floating Point) if available
374 * 0 / no property == no DFP
375 * 1 == DFP available */
376 if (env
->insns_flags2
& PPC2_DFP
) {
377 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
380 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
381 sizeof(page_sizes_prop
));
382 if (page_sizes_prop_size
) {
383 _FDT((fdt_property(fdt
, "ibm,segment-page-sizes",
384 page_sizes_prop
, page_sizes_prop_size
)));
387 _FDT((fdt_end_node(fdt
)));
392 _FDT((fdt_end_node(fdt
)));
395 _FDT((fdt_begin_node(fdt
, "rtas")));
397 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
398 sizeof(hypertas_prop
))));
399 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas_prop
,
400 sizeof(qemu_hypertas_prop
))));
402 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
403 refpoints
, sizeof(refpoints
))));
405 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
407 _FDT((fdt_end_node(fdt
)));
409 /* interrupt controller */
410 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
412 _FDT((fdt_property_string(fdt
, "device_type",
413 "PowerPC-External-Interrupt-Presentation")));
414 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
415 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
416 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
417 interrupt_server_ranges_prop
,
418 sizeof(interrupt_server_ranges_prop
))));
419 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
420 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
421 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
423 _FDT((fdt_end_node(fdt
)));
426 _FDT((fdt_begin_node(fdt
, "vdevice")));
428 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
429 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
430 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
431 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
432 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
433 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
435 _FDT((fdt_end_node(fdt
)));
438 spapr_events_fdt_skel(fdt
, epow_irq
);
440 _FDT((fdt_end_node(fdt
))); /* close root node */
441 _FDT((fdt_finish(fdt
)));
446 static int spapr_populate_memory(sPAPREnvironment
*spapr
, void *fdt
)
448 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
449 cpu_to_be32(0x0), cpu_to_be32(0x0),
452 hwaddr node0_size
, mem_start
;
453 uint64_t mem_reg_property
[2];
457 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
458 if (spapr
->rma_size
> node0_size
) {
459 spapr
->rma_size
= node0_size
;
463 mem_reg_property
[0] = 0;
464 mem_reg_property
[1] = cpu_to_be64(spapr
->rma_size
);
465 off
= fdt_add_subnode(fdt
, 0, "memory@0");
467 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
468 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
469 sizeof(mem_reg_property
))));
470 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
471 sizeof(associativity
))));
474 if (node0_size
> spapr
->rma_size
) {
475 mem_reg_property
[0] = cpu_to_be64(spapr
->rma_size
);
476 mem_reg_property
[1] = cpu_to_be64(node0_size
- spapr
->rma_size
);
478 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, spapr
->rma_size
);
479 off
= fdt_add_subnode(fdt
, 0, mem_name
);
481 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
482 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
483 sizeof(mem_reg_property
))));
484 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
485 sizeof(associativity
))));
488 /* RAM: Node 1 and beyond */
489 mem_start
= node0_size
;
490 for (i
= 1; i
< nb_numa_nodes
; i
++) {
491 mem_reg_property
[0] = cpu_to_be64(mem_start
);
492 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
493 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
494 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
495 off
= fdt_add_subnode(fdt
, 0, mem_name
);
497 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
498 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
499 sizeof(mem_reg_property
))));
500 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
501 sizeof(associativity
))));
502 mem_start
+= node_mem
[i
];
508 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
517 fdt
= g_malloc(FDT_MAX_SIZE
);
519 /* open out the base tree into a temp buffer for the final tweaks */
520 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
522 ret
= spapr_populate_memory(spapr
, fdt
);
524 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
528 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
530 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
534 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
535 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
539 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
544 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
546 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
549 /* Advertise NUMA via ibm,associativity */
550 ret
= spapr_fixup_cpu_dt(fdt
, spapr
);
552 fprintf(stderr
, "Couldn't finalize CPU device tree properties\n");
555 if (!spapr
->has_graphics
) {
556 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
559 _FDT((fdt_pack(fdt
)));
561 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
562 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
563 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
567 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
572 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
574 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
577 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
579 CPUPPCState
*env
= &cpu
->env
;
582 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
583 env
->gpr
[3] = H_PRIVILEGE
;
585 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
589 static void spapr_reset_htab(sPAPREnvironment
*spapr
)
593 /* allocate hash page table. For now we always make this 16mb,
594 * later we should probably make it scale to the size of guest
597 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
600 /* Kernel handles htab, we don't need to allocate one */
601 spapr
->htab_shift
= shift
;
604 /* Allocate an htab if we don't yet have one */
605 spapr
->htab
= qemu_memalign(HTAB_SIZE(spapr
), HTAB_SIZE(spapr
));
609 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
612 /* Update the RMA size if necessary */
613 if (spapr
->vrma_adjust
) {
614 spapr
->rma_size
= kvmppc_rma_size(ram_size
, spapr
->htab_shift
);
618 static void ppc_spapr_reset(void)
620 /* Reset the hash table & recalc the RMA */
621 spapr_reset_htab(spapr
);
623 qemu_devices_reset();
626 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
629 /* Set up the entry state */
630 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
631 first_cpu
->gpr
[5] = 0;
632 first_cpu
->halted
= 0;
633 first_cpu
->nip
= spapr
->entry_point
;
637 static void spapr_cpu_reset(void *opaque
)
639 PowerPCCPU
*cpu
= opaque
;
640 CPUPPCState
*env
= &cpu
->env
;
644 /* All CPUs start halted. CPU0 is unhalted from the machine level
645 * reset code and the rest are explicitly started up by the guest
646 * using an RTAS call */
649 env
->spr
[SPR_HIOR
] = 0;
651 env
->external_htab
= spapr
->htab
;
653 env
->htab_mask
= HTAB_SIZE(spapr
) - 1;
654 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
655 (spapr
->htab_shift
- 18);
658 static void spapr_create_nvram(sPAPREnvironment
*spapr
)
660 QemuOpts
*machine_opts
;
663 dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
665 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
667 const char *drivename
;
669 drivename
= qemu_opt_get(machine_opts
, "nvram");
671 BlockDriverState
*bs
;
673 bs
= bdrv_find(drivename
);
675 fprintf(stderr
, "No such block device \"%s\" for nvram\n",
679 qdev_prop_set_drive_nofail(dev
, "drive", bs
);
683 qdev_init_nofail(dev
);
685 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
688 /* Returns whether we want to use VGA or not */
689 static int spapr_vga_init(PCIBus
*pci_bus
)
691 switch (vga_interface_type
) {
694 return pci_vga_init(pci_bus
) != NULL
;
696 fprintf(stderr
, "This vga model is not supported,"
697 "currently it only supports -vga std\n");
703 /* pSeries LPAR / sPAPR hardware init */
704 static void ppc_spapr_init(QEMUMachineInitArgs
*args
)
706 ram_addr_t ram_size
= args
->ram_size
;
707 const char *cpu_model
= args
->cpu_model
;
708 const char *kernel_filename
= args
->kernel_filename
;
709 const char *kernel_cmdline
= args
->kernel_cmdline
;
710 const char *initrd_filename
= args
->initrd_filename
;
711 const char *boot_device
= args
->boot_device
;
716 MemoryRegion
*sysmem
= get_system_memory();
717 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
718 hwaddr rma_alloc_size
;
719 uint32_t initrd_base
= 0;
720 long kernel_size
= 0, initrd_size
= 0;
721 long load_limit
, rtas_limit
, fw_size
;
724 msi_supported
= true;
726 spapr
= g_malloc0(sizeof(*spapr
));
727 QLIST_INIT(&spapr
->phbs
);
729 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
731 /* Allocate RMA if necessary */
732 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
734 if (rma_alloc_size
== -1) {
735 hw_error("qemu: Unable to create RMA\n");
739 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
740 spapr
->rma_size
= rma_alloc_size
;
742 spapr
->rma_size
= ram_size
;
744 /* With KVM, we don't actually know whether KVM supports an
745 * unbounded RMA (PR KVM) or is limited by the hash table size
746 * (HV KVM using VRMA), so we always assume the latter
748 * In that case, we also limit the initial allocations for RTAS
749 * etc... to 256M since we have no way to know what the VRMA size
750 * is going to be as it depends on the size of the hash table
751 * isn't determined yet.
754 spapr
->vrma_adjust
= 1;
755 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
759 /* We place the device tree and RTAS just below either the top of the RMA,
760 * or just below 2GB, whichever is lowere, so that it can be
761 * processed with 32-bit real mode code if necessary */
762 rtas_limit
= MIN(spapr
->rma_size
, 0x80000000);
763 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
764 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
765 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
767 /* We aim for a hash table of size 1/128 the size of RAM. The
768 * normal rule of thumb is 1/64 the size of RAM, but that's much
769 * more than needed for the Linux guests we support. */
770 spapr
->htab_shift
= 18; /* Minimum architected size */
771 while (spapr
->htab_shift
<= 46) {
772 if ((1ULL << (spapr
->htab_shift
+ 7)) >= ram_size
) {
779 if (cpu_model
== NULL
) {
780 cpu_model
= kvm_enabled() ? "host" : "POWER7";
782 for (i
= 0; i
< smp_cpus
; i
++) {
783 cpu
= cpu_ppc_init(cpu_model
);
785 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
790 /* Set time-base frequency to 512 MHz */
791 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
793 /* PAPR always has exception vectors in RAM not ROM */
794 env
->hreset_excp_prefix
= 0;
796 /* Tell KVM that we're in PAPR mode */
798 kvmppc_set_papr(cpu
);
801 qemu_register_reset(spapr_cpu_reset
, cpu
);
805 spapr
->ram_limit
= ram_size
;
806 if (spapr
->ram_limit
> rma_alloc_size
) {
807 ram_addr_t nonrma_base
= rma_alloc_size
;
808 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
810 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
811 vmstate_register_ram_global(ram
);
812 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
815 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
816 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
817 rtas_limit
- spapr
->rtas_addr
);
818 if (spapr
->rtas_size
< 0) {
819 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
822 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
823 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
824 spapr
->rtas_size
, RTAS_MAX_SIZE
);
830 /* Set up Interrupt Controller */
831 spapr
->icp
= xics_system_init(XICS_IRQS
);
832 spapr
->next_irq
= XICS_IRQ_BASE
;
834 /* Set up EPOW events infrastructure */
835 spapr_events_init(spapr
);
841 spapr
->vio_bus
= spapr_vio_bus_init();
843 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
845 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
849 /* We always have at least the nvram device on VIO */
850 spapr_create_nvram(spapr
);
853 spapr_pci_rtas_init();
855 phb
= spapr_create_phb(spapr
, 0, "pci");
857 for (i
= 0; i
< nb_nics
; i
++) {
858 NICInfo
*nd
= &nd_table
[i
];
861 nd
->model
= g_strdup("ibmveth");
864 if (strcmp(nd
->model
, "ibmveth") == 0) {
865 spapr_vlan_create(spapr
->vio_bus
, nd
);
867 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
871 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
872 spapr_vscsi_create(spapr
->vio_bus
);
876 if (spapr_vga_init(phb
->bus
)) {
877 spapr
->has_graphics
= true;
880 if (usb_enabled(spapr
->has_graphics
)) {
881 pci_create_simple(phb
->bus
, -1, "pci-ohci");
882 if (spapr
->has_graphics
) {
883 usbdevice_create("keyboard");
884 usbdevice_create("mouse");
888 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
889 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
890 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
894 if (kernel_filename
) {
895 uint64_t lowaddr
= 0;
897 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
898 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
899 if (kernel_size
< 0) {
900 kernel_size
= load_image_targphys(kernel_filename
,
902 load_limit
- KERNEL_LOAD_ADDR
);
904 if (kernel_size
< 0) {
905 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
911 if (initrd_filename
) {
912 /* Try to locate the initrd in the gap between the kernel
913 * and the firmware. Add a bit of space just in case
915 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
916 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
917 load_limit
- initrd_base
);
918 if (initrd_size
< 0) {
919 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
929 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
930 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
932 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
937 spapr
->entry_point
= 0x100;
939 /* Prepare the device tree */
940 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
,
941 initrd_base
, initrd_size
,
943 boot_device
, kernel_cmdline
,
945 assert(spapr
->fdt_skel
!= NULL
);
948 static QEMUMachine spapr_machine
= {
950 .desc
= "pSeries Logical Partition (PAPR compliant)",
951 .init
= ppc_spapr_init
,
952 .reset
= ppc_spapr_reset
,
953 .block_default_type
= IF_SCSI
,
954 .max_cpus
= MAX_CPUS
,
959 static void spapr_machine_init(void)
961 qemu_register_machine(&spapr_machine
);
964 machine_init(spapr_machine_init
);