4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
32 #include "monitor/monitor.h"
33 #include "char/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
38 #define MAX_PACKET_LENGTH 4096
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
47 uint8_t *buf
, int len
, int is_write
)
49 return cpu_memory_rw_debug(env
, addr
, buf
, len
, is_write
);
52 /* target_memory_rw_debug() defined in cpu.h */
64 GDB_SIGNAL_UNKNOWN
= 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table
[] = {
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
242 static int gdb_signal_table
[] = {
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig
)
256 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
257 if (gdb_signal_table
[i
] == sig
)
259 return GDB_SIGNAL_UNKNOWN
;
263 static int gdb_signal_to_target (int sig
)
265 if (sig
< ARRAY_SIZE (gdb_signal_table
))
266 return gdb_signal_table
[sig
];
273 typedef struct GDBRegisterState
{
279 struct GDBRegisterState
*next
;
289 typedef struct GDBState
{
290 CPUArchState
*c_cpu
; /* current CPU for step/continue ops */
291 CPUArchState
*g_cpu
; /* current CPU for other ops */
292 CPUArchState
*query_cpu
; /* for q{f|s}ThreadInfo */
293 enum RSState state
; /* parsing state */
294 char line_buf
[MAX_PACKET_LENGTH
];
297 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
300 #ifdef CONFIG_USER_ONLY
304 CharDriverState
*chr
;
305 CharDriverState
*mon_chr
;
307 char syscall_buf
[256];
308 gdb_syscall_complete_cb current_syscall_cb
;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
316 static GDBState
*gdbserver_state
;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml
;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd
= -1;
327 static int get_char(GDBState
*s
)
333 ret
= qemu_recv(s
->fd
, &ch
, 1, 0);
335 if (errno
== ECONNRESET
)
337 if (errno
!= EINTR
&& errno
!= EAGAIN
)
339 } else if (ret
== 0) {
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
362 gdb_syscall_mode
= (gdbserver_state
? GDB_SYS_ENABLED
365 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState
*s
)
371 #ifdef CONFIG_USER_ONLY
372 s
->running_state
= 1;
378 static void put_buffer(GDBState
*s
, const uint8_t *buf
, int len
)
380 #ifdef CONFIG_USER_ONLY
384 ret
= send(s
->fd
, buf
, len
, 0);
386 if (errno
!= EINTR
&& errno
!= EAGAIN
)
394 qemu_chr_fe_write(s
->chr
, buf
, len
);
398 static inline int fromhex(int v
)
400 if (v
>= '0' && v
<= '9')
402 else if (v
>= 'A' && v
<= 'F')
404 else if (v
>= 'a' && v
<= 'f')
410 static inline int tohex(int v
)
418 static void memtohex(char *buf
, const uint8_t *mem
, int len
)
423 for(i
= 0; i
< len
; i
++) {
425 *q
++ = tohex(c
>> 4);
426 *q
++ = tohex(c
& 0xf);
431 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
435 for(i
= 0; i
< len
; i
++) {
436 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
441 /* return -1 if error, 0 if OK */
442 static int put_packet_binary(GDBState
*s
, const char *buf
, int len
)
453 for(i
= 0; i
< len
; i
++) {
457 *(p
++) = tohex((csum
>> 4) & 0xf);
458 *(p
++) = tohex((csum
) & 0xf);
460 s
->last_packet_len
= p
- s
->last_packet
;
461 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
463 #ifdef CONFIG_USER_ONLY
476 /* return -1 if error, 0 if OK */
477 static int put_packet(GDBState
*s
, const char *buf
)
480 printf("reply='%s'\n", buf
);
483 return put_packet_binary(s
, buf
, strlen(buf
));
486 /* The GDB remote protocol transfers values in target byte order. This means
487 we can use the raw memory access routines to access the value buffer.
488 Conveniently, these also handle the case where the buffer is mis-aligned.
490 #define GET_REG8(val) do { \
491 stb_p(mem_buf, val); \
494 #define GET_REG16(val) do { \
495 stw_p(mem_buf, val); \
498 #define GET_REG32(val) do { \
499 stl_p(mem_buf, val); \
502 #define GET_REG64(val) do { \
503 stq_p(mem_buf, val); \
507 #if TARGET_LONG_BITS == 64
508 #define GET_REGL(val) GET_REG64(val)
509 #define ldtul_p(addr) ldq_p(addr)
511 #define GET_REGL(val) GET_REG32(val)
512 #define ldtul_p(addr) ldl_p(addr)
515 #if defined(TARGET_I386)
518 static const int gpr_map
[16] = {
519 R_EAX
, R_EBX
, R_ECX
, R_EDX
, R_ESI
, R_EDI
, R_EBP
, R_ESP
,
520 8, 9, 10, 11, 12, 13, 14, 15
523 #define gpr_map gpr_map32
525 static const int gpr_map32
[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
527 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
529 #define IDX_IP_REG CPU_NB_REGS
530 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
531 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
532 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
533 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
534 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
536 static int cpu_gdb_read_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
538 if (n
< CPU_NB_REGS
) {
539 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
540 GET_REG64(env
->regs
[gpr_map
[n
]]);
541 } else if (n
< CPU_NB_REGS32
) {
542 GET_REG32(env
->regs
[gpr_map32
[n
]]);
544 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
545 #ifdef USE_X86LDOUBLE
546 /* FIXME: byteswap float values - after fixing fpregs layout. */
547 memcpy(mem_buf
, &env
->fpregs
[n
- IDX_FP_REGS
], 10);
549 memset(mem_buf
, 0, 10);
552 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
554 if (n
< CPU_NB_REGS32
||
555 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
556 stq_p(mem_buf
, env
->xmm_regs
[n
].XMM_Q(0));
557 stq_p(mem_buf
+ 8, env
->xmm_regs
[n
].XMM_Q(1));
563 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
568 case IDX_FLAGS_REG
: GET_REG32(env
->eflags
);
570 case IDX_SEG_REGS
: GET_REG32(env
->segs
[R_CS
].selector
);
571 case IDX_SEG_REGS
+ 1: GET_REG32(env
->segs
[R_SS
].selector
);
572 case IDX_SEG_REGS
+ 2: GET_REG32(env
->segs
[R_DS
].selector
);
573 case IDX_SEG_REGS
+ 3: GET_REG32(env
->segs
[R_ES
].selector
);
574 case IDX_SEG_REGS
+ 4: GET_REG32(env
->segs
[R_FS
].selector
);
575 case IDX_SEG_REGS
+ 5: GET_REG32(env
->segs
[R_GS
].selector
);
577 case IDX_FP_REGS
+ 8: GET_REG32(env
->fpuc
);
578 case IDX_FP_REGS
+ 9: GET_REG32((env
->fpus
& ~0x3800) |
579 (env
->fpstt
& 0x7) << 11);
580 case IDX_FP_REGS
+ 10: GET_REG32(0); /* ftag */
581 case IDX_FP_REGS
+ 11: GET_REG32(0); /* fiseg */
582 case IDX_FP_REGS
+ 12: GET_REG32(0); /* fioff */
583 case IDX_FP_REGS
+ 13: GET_REG32(0); /* foseg */
584 case IDX_FP_REGS
+ 14: GET_REG32(0); /* fooff */
585 case IDX_FP_REGS
+ 15: GET_REG32(0); /* fop */
587 case IDX_MXCSR_REG
: GET_REG32(env
->mxcsr
);
593 static int cpu_x86_gdb_load_seg(CPUX86State
*env
, int sreg
, uint8_t *mem_buf
)
595 uint16_t selector
= ldl_p(mem_buf
);
597 if (selector
!= env
->segs
[sreg
].selector
) {
598 #if defined(CONFIG_USER_ONLY)
599 cpu_x86_load_seg(env
, sreg
, selector
);
601 unsigned int limit
, flags
;
604 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
605 base
= selector
<< 4;
609 if (!cpu_x86_get_descr_debug(env
, selector
, &base
, &limit
, &flags
))
612 cpu_x86_load_seg_cache(env
, sreg
, selector
, base
, limit
, flags
);
618 static int cpu_gdb_write_register(CPUX86State
*env
, uint8_t *mem_buf
, int n
)
622 if (n
< CPU_NB_REGS
) {
623 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
624 env
->regs
[gpr_map
[n
]] = ldtul_p(mem_buf
);
625 return sizeof(target_ulong
);
626 } else if (n
< CPU_NB_REGS32
) {
628 env
->regs
[n
] &= ~0xffffffffUL
;
629 env
->regs
[n
] |= (uint32_t)ldl_p(mem_buf
);
632 } else if (n
>= IDX_FP_REGS
&& n
< IDX_FP_REGS
+ 8) {
633 #ifdef USE_X86LDOUBLE
634 /* FIXME: byteswap float values - after fixing fpregs layout. */
635 memcpy(&env
->fpregs
[n
- IDX_FP_REGS
], mem_buf
, 10);
638 } else if (n
>= IDX_XMM_REGS
&& n
< IDX_XMM_REGS
+ CPU_NB_REGS
) {
640 if (n
< CPU_NB_REGS32
||
641 (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
)) {
642 env
->xmm_regs
[n
].XMM_Q(0) = ldq_p(mem_buf
);
643 env
->xmm_regs
[n
].XMM_Q(1) = ldq_p(mem_buf
+ 8);
649 if (TARGET_LONG_BITS
== 64 && env
->hflags
& HF_CS64_MASK
) {
650 env
->eip
= ldq_p(mem_buf
);
653 env
->eip
&= ~0xffffffffUL
;
654 env
->eip
|= (uint32_t)ldl_p(mem_buf
);
658 env
->eflags
= ldl_p(mem_buf
);
661 case IDX_SEG_REGS
: return cpu_x86_gdb_load_seg(env
, R_CS
, mem_buf
);
662 case IDX_SEG_REGS
+ 1: return cpu_x86_gdb_load_seg(env
, R_SS
, mem_buf
);
663 case IDX_SEG_REGS
+ 2: return cpu_x86_gdb_load_seg(env
, R_DS
, mem_buf
);
664 case IDX_SEG_REGS
+ 3: return cpu_x86_gdb_load_seg(env
, R_ES
, mem_buf
);
665 case IDX_SEG_REGS
+ 4: return cpu_x86_gdb_load_seg(env
, R_FS
, mem_buf
);
666 case IDX_SEG_REGS
+ 5: return cpu_x86_gdb_load_seg(env
, R_GS
, mem_buf
);
668 case IDX_FP_REGS
+ 8:
669 env
->fpuc
= ldl_p(mem_buf
);
671 case IDX_FP_REGS
+ 9:
672 tmp
= ldl_p(mem_buf
);
673 env
->fpstt
= (tmp
>> 11) & 7;
674 env
->fpus
= tmp
& ~0x3800;
676 case IDX_FP_REGS
+ 10: /* ftag */ return 4;
677 case IDX_FP_REGS
+ 11: /* fiseg */ return 4;
678 case IDX_FP_REGS
+ 12: /* fioff */ return 4;
679 case IDX_FP_REGS
+ 13: /* foseg */ return 4;
680 case IDX_FP_REGS
+ 14: /* fooff */ return 4;
681 case IDX_FP_REGS
+ 15: /* fop */ return 4;
684 env
->mxcsr
= ldl_p(mem_buf
);
688 /* Unrecognised register. */
692 #elif defined (TARGET_PPC)
694 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
695 expects whatever the target description contains. Due to a
696 historical mishap the FP registers appear in between core integer
697 regs and PC, MSR, CR, and so forth. We hack round this by giving the
698 FP regs zero size when talking to a newer gdb. */
699 #define NUM_CORE_REGS 71
700 #if defined (TARGET_PPC64)
701 #define GDB_CORE_XML "power64-core.xml"
703 #define GDB_CORE_XML "power-core.xml"
706 static int cpu_gdb_read_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
710 GET_REGL(env
->gpr
[n
]);
715 stfq_p(mem_buf
, env
->fpr
[n
-32]);
719 case 64: GET_REGL(env
->nip
);
720 case 65: GET_REGL(env
->msr
);
725 for (i
= 0; i
< 8; i
++)
726 cr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
729 case 67: GET_REGL(env
->lr
);
730 case 68: GET_REGL(env
->ctr
);
731 case 69: GET_REGL(env
->xer
);
736 GET_REG32(env
->fpscr
);
743 static int cpu_gdb_write_register(CPUPPCState
*env
, uint8_t *mem_buf
, int n
)
747 env
->gpr
[n
] = ldtul_p(mem_buf
);
748 return sizeof(target_ulong
);
753 env
->fpr
[n
-32] = ldfq_p(mem_buf
);
758 env
->nip
= ldtul_p(mem_buf
);
759 return sizeof(target_ulong
);
761 ppc_store_msr(env
, ldtul_p(mem_buf
));
762 return sizeof(target_ulong
);
765 uint32_t cr
= ldl_p(mem_buf
);
767 for (i
= 0; i
< 8; i
++)
768 env
->crf
[i
] = (cr
>> (32 - ((i
+ 1) * 4))) & 0xF;
772 env
->lr
= ldtul_p(mem_buf
);
773 return sizeof(target_ulong
);
775 env
->ctr
= ldtul_p(mem_buf
);
776 return sizeof(target_ulong
);
778 env
->xer
= ldtul_p(mem_buf
);
779 return sizeof(target_ulong
);
790 #elif defined (TARGET_SPARC)
792 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
793 #define NUM_CORE_REGS 86
795 #define NUM_CORE_REGS 72
799 #define GET_REGA(val) GET_REG32(val)
801 #define GET_REGA(val) GET_REGL(val)
804 static int cpu_gdb_read_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
808 GET_REGA(env
->gregs
[n
]);
811 /* register window */
812 GET_REGA(env
->regwptr
[n
- 8]);
814 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
818 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
820 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
823 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
825 case 64: GET_REGA(env
->y
);
826 case 65: GET_REGA(cpu_get_psr(env
));
827 case 66: GET_REGA(env
->wim
);
828 case 67: GET_REGA(env
->tbr
);
829 case 68: GET_REGA(env
->pc
);
830 case 69: GET_REGA(env
->npc
);
831 case 70: GET_REGA(env
->fsr
);
832 case 71: GET_REGA(0); /* csr */
833 default: GET_REGA(0);
839 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.lower
);
841 GET_REG32(env
->fpr
[(n
- 32) / 2].l
.upper
);
845 /* f32-f62 (double width, even numbers only) */
846 GET_REG64(env
->fpr
[(n
- 32) / 2].ll
);
849 case 80: GET_REGL(env
->pc
);
850 case 81: GET_REGL(env
->npc
);
851 case 82: GET_REGL((cpu_get_ccr(env
) << 32) |
852 ((env
->asi
& 0xff) << 24) |
853 ((env
->pstate
& 0xfff) << 8) |
855 case 83: GET_REGL(env
->fsr
);
856 case 84: GET_REGL(env
->fprs
);
857 case 85: GET_REGL(env
->y
);
863 static int cpu_gdb_write_register(CPUSPARCState
*env
, uint8_t *mem_buf
, int n
)
865 #if defined(TARGET_ABI32)
868 tmp
= ldl_p(mem_buf
);
872 tmp
= ldtul_p(mem_buf
);
879 /* register window */
880 env
->regwptr
[n
- 8] = tmp
;
882 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
887 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
889 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
892 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
894 case 64: env
->y
= tmp
; break;
895 case 65: cpu_put_psr(env
, tmp
); break;
896 case 66: env
->wim
= tmp
; break;
897 case 67: env
->tbr
= tmp
; break;
898 case 68: env
->pc
= tmp
; break;
899 case 69: env
->npc
= tmp
; break;
900 case 70: env
->fsr
= tmp
; break;
908 tmp
= ldl_p(mem_buf
);
910 env
->fpr
[(n
- 32) / 2].l
.lower
= tmp
;
912 env
->fpr
[(n
- 32) / 2].l
.upper
= tmp
;
916 /* f32-f62 (double width, even numbers only) */
917 env
->fpr
[(n
- 32) / 2].ll
= tmp
;
920 case 80: env
->pc
= tmp
; break;
921 case 81: env
->npc
= tmp
; break;
923 cpu_put_ccr(env
, tmp
>> 32);
924 env
->asi
= (tmp
>> 24) & 0xff;
925 env
->pstate
= (tmp
>> 8) & 0xfff;
926 cpu_put_cwp64(env
, tmp
& 0xff);
928 case 83: env
->fsr
= tmp
; break;
929 case 84: env
->fprs
= tmp
; break;
930 case 85: env
->y
= tmp
; break;
937 #elif defined (TARGET_ARM)
939 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
940 whatever the target description contains. Due to a historical mishap
941 the FPA registers appear in between core integer regs and the CPSR.
942 We hack round this by giving the FPA regs zero size when talking to a
944 #define NUM_CORE_REGS 26
945 #define GDB_CORE_XML "arm-core.xml"
947 static int cpu_gdb_read_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
950 /* Core integer register. */
951 GET_REG32(env
->regs
[n
]);
957 memset(mem_buf
, 0, 12);
962 /* FPA status register. */
968 GET_REG32(cpsr_read(env
));
970 /* Unknown register. */
974 static int cpu_gdb_write_register(CPUARMState
*env
, uint8_t *mem_buf
, int n
)
978 tmp
= ldl_p(mem_buf
);
980 /* Mask out low bit of PC to workaround gdb bugs. This will probably
981 cause problems if we ever implement the Jazelle DBX extensions. */
986 /* Core integer register. */
990 if (n
< 24) { /* 16-23 */
991 /* FPA registers (ignored). */
998 /* FPA status register (ignored). */
1004 cpsr_write (env
, tmp
, 0xffffffff);
1007 /* Unknown register. */
1011 #elif defined (TARGET_M68K)
1013 #define NUM_CORE_REGS 18
1015 #define GDB_CORE_XML "cf-core.xml"
1017 static int cpu_gdb_read_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1021 GET_REG32(env
->dregs
[n
]);
1022 } else if (n
< 16) {
1024 GET_REG32(env
->aregs
[n
- 8]);
1027 case 16: GET_REG32(env
->sr
);
1028 case 17: GET_REG32(env
->pc
);
1031 /* FP registers not included here because they vary between
1032 ColdFire and m68k. Use XML bits for these. */
1036 static int cpu_gdb_write_register(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
1040 tmp
= ldl_p(mem_buf
);
1044 env
->dregs
[n
] = tmp
;
1045 } else if (n
< 16) {
1047 env
->aregs
[n
- 8] = tmp
;
1050 case 16: env
->sr
= tmp
; break;
1051 case 17: env
->pc
= tmp
; break;
1057 #elif defined (TARGET_MIPS)
1059 #define NUM_CORE_REGS 73
1061 static int cpu_gdb_read_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1064 GET_REGL(env
->active_tc
.gpr
[n
]);
1066 if (env
->CP0_Config1
& (1 << CP0C1_FP
)) {
1067 if (n
>= 38 && n
< 70) {
1068 if (env
->CP0_Status
& (1 << CP0St_FR
))
1069 GET_REGL(env
->active_fpu
.fpr
[n
- 38].d
);
1071 GET_REGL(env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
]);
1074 case 70: GET_REGL((int32_t)env
->active_fpu
.fcr31
);
1075 case 71: GET_REGL((int32_t)env
->active_fpu
.fcr0
);
1079 case 32: GET_REGL((int32_t)env
->CP0_Status
);
1080 case 33: GET_REGL(env
->active_tc
.LO
[0]);
1081 case 34: GET_REGL(env
->active_tc
.HI
[0]);
1082 case 35: GET_REGL(env
->CP0_BadVAddr
);
1083 case 36: GET_REGL((int32_t)env
->CP0_Cause
);
1084 case 37: GET_REGL(env
->active_tc
.PC
| !!(env
->hflags
& MIPS_HFLAG_M16
));
1085 case 72: GET_REGL(0); /* fp */
1086 case 89: GET_REGL((int32_t)env
->CP0_PRid
);
1088 if (n
>= 73 && n
<= 88) {
1089 /* 16 embedded regs. */
1096 /* convert MIPS rounding mode in FCR31 to IEEE library */
1097 static unsigned int ieee_rm
[] =
1099 float_round_nearest_even
,
1100 float_round_to_zero
,
1104 #define RESTORE_ROUNDING_MODE \
1105 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1107 static int cpu_gdb_write_register(CPUMIPSState
*env
, uint8_t *mem_buf
, int n
)
1111 tmp
= ldtul_p(mem_buf
);
1114 env
->active_tc
.gpr
[n
] = tmp
;
1115 return sizeof(target_ulong
);
1117 if (env
->CP0_Config1
& (1 << CP0C1_FP
)
1118 && n
>= 38 && n
< 73) {
1120 if (env
->CP0_Status
& (1 << CP0St_FR
))
1121 env
->active_fpu
.fpr
[n
- 38].d
= tmp
;
1123 env
->active_fpu
.fpr
[n
- 38].w
[FP_ENDIAN_IDX
] = tmp
;
1127 env
->active_fpu
.fcr31
= tmp
& 0xFF83FFFF;
1128 /* set rounding mode */
1129 RESTORE_ROUNDING_MODE
;
1131 case 71: env
->active_fpu
.fcr0
= tmp
; break;
1133 return sizeof(target_ulong
);
1136 case 32: env
->CP0_Status
= tmp
; break;
1137 case 33: env
->active_tc
.LO
[0] = tmp
; break;
1138 case 34: env
->active_tc
.HI
[0] = tmp
; break;
1139 case 35: env
->CP0_BadVAddr
= tmp
; break;
1140 case 36: env
->CP0_Cause
= tmp
; break;
1142 env
->active_tc
.PC
= tmp
& ~(target_ulong
)1;
1144 env
->hflags
|= MIPS_HFLAG_M16
;
1146 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1149 case 72: /* fp, ignored */ break;
1153 /* Other registers are readonly. Ignore writes. */
1157 return sizeof(target_ulong
);
1159 #elif defined(TARGET_OPENRISC)
1161 #define NUM_CORE_REGS (32 + 3)
1163 static int cpu_gdb_read_register(CPUOpenRISCState
*env
, uint8_t *mem_buf
, int n
)
1166 GET_REG32(env
->gpr
[n
]);
1170 GET_REG32(env
->ppc
);
1174 GET_REG32(env
->npc
);
1188 static int cpu_gdb_write_register(CPUOpenRISCState
*env
,
1189 uint8_t *mem_buf
, int n
)
1193 if (n
> NUM_CORE_REGS
) {
1197 tmp
= ldl_p(mem_buf
);
1221 #elif defined (TARGET_SH4)
1223 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1224 /* FIXME: We should use XML for this. */
1226 #define NUM_CORE_REGS 59
1228 static int cpu_gdb_read_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1232 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1233 GET_REGL(env
->gregs
[n
+ 16]);
1235 GET_REGL(env
->gregs
[n
]);
1238 GET_REGL(env
->gregs
[n
]);
1248 GET_REGL(env
->mach
);
1250 GET_REGL(env
->macl
);
1254 GET_REGL(env
->fpul
);
1256 GET_REGL(env
->fpscr
);
1258 if (env
->fpscr
& FPSCR_FR
) {
1259 stfl_p(mem_buf
, env
->fregs
[n
- 9]);
1261 stfl_p(mem_buf
, env
->fregs
[n
- 25]);
1269 GET_REGL(env
->gregs
[n
- 43]);
1271 GET_REGL(env
->gregs
[n
- (51 - 16)]);
1277 static int cpu_gdb_write_register(CPUSH4State
*env
, uint8_t *mem_buf
, int n
)
1281 if ((env
->sr
& (SR_MD
| SR_RB
)) == (SR_MD
| SR_RB
)) {
1282 env
->gregs
[n
+ 16] = ldl_p(mem_buf
);
1284 env
->gregs
[n
] = ldl_p(mem_buf
);
1288 env
->gregs
[n
] = ldl_p(mem_buf
);
1291 env
->pc
= ldl_p(mem_buf
);
1294 env
->pr
= ldl_p(mem_buf
);
1297 env
->gbr
= ldl_p(mem_buf
);
1300 env
->vbr
= ldl_p(mem_buf
);
1303 env
->mach
= ldl_p(mem_buf
);
1306 env
->macl
= ldl_p(mem_buf
);
1309 env
->sr
= ldl_p(mem_buf
);
1312 env
->fpul
= ldl_p(mem_buf
);
1315 env
->fpscr
= ldl_p(mem_buf
);
1318 if (env
->fpscr
& FPSCR_FR
) {
1319 env
->fregs
[n
- 9] = ldfl_p(mem_buf
);
1321 env
->fregs
[n
- 25] = ldfl_p(mem_buf
);
1325 env
->ssr
= ldl_p(mem_buf
);
1328 env
->spc
= ldl_p(mem_buf
);
1331 env
->gregs
[n
- 43] = ldl_p(mem_buf
);
1334 env
->gregs
[n
- (51 - 16)] = ldl_p(mem_buf
);
1341 #elif defined (TARGET_MICROBLAZE)
1343 #define NUM_CORE_REGS (32 + 5)
1345 static int cpu_gdb_read_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1348 GET_REG32(env
->regs
[n
]);
1350 GET_REG32(env
->sregs
[n
- 32]);
1355 static int cpu_gdb_write_register(CPUMBState
*env
, uint8_t *mem_buf
, int n
)
1359 if (n
> NUM_CORE_REGS
)
1362 tmp
= ldl_p(mem_buf
);
1367 env
->sregs
[n
- 32] = tmp
;
1371 #elif defined (TARGET_CRIS)
1373 #define NUM_CORE_REGS 49
1376 read_register_crisv10(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1379 GET_REG32(env
->regs
[n
]);
1389 GET_REG8(env
->pregs
[n
- 16]);
1392 GET_REG8(env
->pregs
[n
- 16]);
1396 GET_REG16(env
->pregs
[n
- 16]);
1400 GET_REG32(env
->pregs
[n
- 16]);
1408 static int cpu_gdb_read_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1412 if (env
->pregs
[PR_VR
] < 32)
1413 return read_register_crisv10(env
, mem_buf
, n
);
1415 srs
= env
->pregs
[PR_SRS
];
1417 GET_REG32(env
->regs
[n
]);
1420 if (n
>= 21 && n
< 32) {
1421 GET_REG32(env
->pregs
[n
- 16]);
1423 if (n
>= 33 && n
< 49) {
1424 GET_REG32(env
->sregs
[srs
][n
- 33]);
1427 case 16: GET_REG8(env
->pregs
[0]);
1428 case 17: GET_REG8(env
->pregs
[1]);
1429 case 18: GET_REG32(env
->pregs
[2]);
1430 case 19: GET_REG8(srs
);
1431 case 20: GET_REG16(env
->pregs
[4]);
1432 case 32: GET_REG32(env
->pc
);
1438 static int cpu_gdb_write_register(CPUCRISState
*env
, uint8_t *mem_buf
, int n
)
1445 tmp
= ldl_p(mem_buf
);
1451 if (n
>= 21 && n
< 32) {
1452 env
->pregs
[n
- 16] = tmp
;
1455 /* FIXME: Should support function regs be writable? */
1459 case 18: env
->pregs
[PR_PID
] = tmp
; break;
1462 case 32: env
->pc
= tmp
; break;
1467 #elif defined (TARGET_ALPHA)
1469 #define NUM_CORE_REGS 67
1471 static int cpu_gdb_read_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1481 d
.d
= env
->fir
[n
- 32];
1485 val
= cpu_alpha_load_fpcr(env
);
1495 /* 31 really is the zero register; 65 is unassigned in the
1496 gdb protocol, but is still required to occupy 8 bytes. */
1505 static int cpu_gdb_write_register(CPUAlphaState
*env
, uint8_t *mem_buf
, int n
)
1507 target_ulong tmp
= ldtul_p(mem_buf
);
1516 env
->fir
[n
- 32] = d
.d
;
1519 cpu_alpha_store_fpcr(env
, tmp
);
1529 /* 31 really is the zero register; 65 is unassigned in the
1530 gdb protocol, but is still required to occupy 8 bytes. */
1537 #elif defined (TARGET_S390X)
1539 #define NUM_CORE_REGS S390_NUM_REGS
1541 static int cpu_gdb_read_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1547 case S390_PSWM_REGNUM
:
1548 cc_op
= calc_cc(env
, env
->cc_op
, env
->cc_src
, env
->cc_dst
, env
->cc_vr
);
1549 val
= deposit64(env
->psw
.mask
, 44, 2, cc_op
);
1552 case S390_PSWA_REGNUM
:
1553 GET_REGL(env
->psw
.addr
);
1555 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1556 GET_REGL(env
->regs
[n
-S390_R0_REGNUM
]);
1558 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1559 GET_REG32(env
->aregs
[n
-S390_A0_REGNUM
]);
1561 case S390_FPC_REGNUM
:
1562 GET_REG32(env
->fpc
);
1564 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1565 GET_REG64(env
->fregs
[n
-S390_F0_REGNUM
].ll
);
1572 static int cpu_gdb_write_register(CPUS390XState
*env
, uint8_t *mem_buf
, int n
)
1577 tmpl
= ldtul_p(mem_buf
);
1578 tmp32
= ldl_p(mem_buf
);
1581 case S390_PSWM_REGNUM
:
1582 env
->psw
.mask
= tmpl
;
1583 env
->cc_op
= extract64(tmpl
, 44, 2);
1585 case S390_PSWA_REGNUM
:
1586 env
->psw
.addr
= tmpl
;
1588 case S390_R0_REGNUM
... S390_R15_REGNUM
:
1589 env
->regs
[n
-S390_R0_REGNUM
] = tmpl
;
1591 case S390_A0_REGNUM
... S390_A15_REGNUM
:
1592 env
->aregs
[n
-S390_A0_REGNUM
] = tmp32
;
1595 case S390_FPC_REGNUM
:
1599 case S390_F0_REGNUM
... S390_F15_REGNUM
:
1600 env
->fregs
[n
-S390_F0_REGNUM
].ll
= tmpl
;
1607 #elif defined (TARGET_LM32)
1609 #include "hw/lm32_pic.h"
1610 #define NUM_CORE_REGS (32 + 7)
1612 static int cpu_gdb_read_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1615 GET_REG32(env
->regs
[n
]);
1621 /* FIXME: put in right exception ID */
1626 GET_REG32(env
->eba
);
1629 GET_REG32(env
->deba
);
1635 GET_REG32(lm32_pic_get_im(env
->pic_state
));
1638 GET_REG32(lm32_pic_get_ip(env
->pic_state
));
1645 static int cpu_gdb_write_register(CPULM32State
*env
, uint8_t *mem_buf
, int n
)
1649 if (n
> NUM_CORE_REGS
) {
1653 tmp
= ldl_p(mem_buf
);
1672 lm32_pic_set_im(env
->pic_state
, tmp
);
1675 lm32_pic_set_ip(env
->pic_state
, tmp
);
1681 #elif defined(TARGET_XTENSA)
1683 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1684 * Use num_regs to see all registers. gdb modification is required for that:
1685 * reset bit 0 in the 'flags' field of the registers definitions in the
1686 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1688 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1689 #define num_g_regs NUM_CORE_REGS
1691 static int cpu_gdb_read_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1693 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1695 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1699 switch (reg
->type
) {
1705 xtensa_sync_phys_from_window(env
);
1706 GET_REG32(env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
]);
1710 GET_REG32(env
->sregs
[reg
->targno
& 0xff]);
1714 GET_REG32(env
->uregs
[reg
->targno
& 0xff]);
1718 GET_REG32(float32_val(env
->fregs
[reg
->targno
& 0x0f]));
1722 GET_REG32(env
->regs
[reg
->targno
& 0x0f]);
1726 qemu_log("%s from reg %d of unsupported type %d\n",
1727 __func__
, n
, reg
->type
);
1732 static int cpu_gdb_write_register(CPUXtensaState
*env
, uint8_t *mem_buf
, int n
)
1735 const XtensaGdbReg
*reg
= env
->config
->gdb_regmap
.reg
+ n
;
1737 if (n
< 0 || n
>= env
->config
->gdb_regmap
.num_regs
) {
1741 tmp
= ldl_p(mem_buf
);
1743 switch (reg
->type
) {
1749 env
->phys_regs
[(reg
->targno
& 0xff) % env
->config
->nareg
] = tmp
;
1750 xtensa_sync_window_from_phys(env
);
1754 env
->sregs
[reg
->targno
& 0xff] = tmp
;
1758 env
->uregs
[reg
->targno
& 0xff] = tmp
;
1762 env
->fregs
[reg
->targno
& 0x0f] = make_float32(tmp
);
1766 env
->regs
[reg
->targno
& 0x0f] = tmp
;
1770 qemu_log("%s to reg %d of unsupported type %d\n",
1771 __func__
, n
, reg
->type
);
1779 #define NUM_CORE_REGS 0
1781 static int cpu_gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1786 static int cpu_gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int n
)
1793 #if !defined(TARGET_XTENSA)
1794 static int num_g_regs
= NUM_CORE_REGS
;
1798 /* Encode data using the encoding for 'x' packets. */
1799 static int memtox(char *buf
, const char *mem
, int len
)
1807 case '#': case '$': case '*': case '}':
1819 static const char *get_feature_xml(const char *p
, const char **newp
)
1824 static char target_xml
[1024];
1827 while (p
[len
] && p
[len
] != ':')
1832 if (strncmp(p
, "target.xml", len
) == 0) {
1833 /* Generate the XML description for this CPU. */
1834 if (!target_xml
[0]) {
1835 GDBRegisterState
*r
;
1837 snprintf(target_xml
, sizeof(target_xml
),
1838 "<?xml version=\"1.0\"?>"
1839 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1841 "<xi:include href=\"%s\"/>",
1844 for (r
= first_cpu
->gdb_regs
; r
; r
= r
->next
) {
1845 pstrcat(target_xml
, sizeof(target_xml
), "<xi:include href=\"");
1846 pstrcat(target_xml
, sizeof(target_xml
), r
->xml
);
1847 pstrcat(target_xml
, sizeof(target_xml
), "\"/>");
1849 pstrcat(target_xml
, sizeof(target_xml
), "</target>");
1853 for (i
= 0; ; i
++) {
1854 name
= xml_builtin
[i
][0];
1855 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
1858 return name
? xml_builtin
[i
][1] : NULL
;
1862 static int gdb_read_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1864 GDBRegisterState
*r
;
1866 if (reg
< NUM_CORE_REGS
)
1867 return cpu_gdb_read_register(env
, mem_buf
, reg
);
1869 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1870 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1871 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
1877 static int gdb_write_register(CPUArchState
*env
, uint8_t *mem_buf
, int reg
)
1879 GDBRegisterState
*r
;
1881 if (reg
< NUM_CORE_REGS
)
1882 return cpu_gdb_write_register(env
, mem_buf
, reg
);
1884 for (r
= env
->gdb_regs
; r
; r
= r
->next
) {
1885 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
1886 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
1892 #if !defined(TARGET_XTENSA)
1893 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1894 specifies the first register number and these registers are included in
1895 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1896 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1899 void gdb_register_coprocessor(CPUArchState
* env
,
1900 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
1901 int num_regs
, const char *xml
, int g_pos
)
1903 GDBRegisterState
*s
;
1904 GDBRegisterState
**p
;
1905 static int last_reg
= NUM_CORE_REGS
;
1909 /* Check for duplicates. */
1910 if (strcmp((*p
)->xml
, xml
) == 0)
1915 s
= g_new0(GDBRegisterState
, 1);
1916 s
->base_reg
= last_reg
;
1917 s
->num_regs
= num_regs
;
1918 s
->get_reg
= get_reg
;
1919 s
->set_reg
= set_reg
;
1922 /* Add to end of list. */
1923 last_reg
+= num_regs
;
1926 if (g_pos
!= s
->base_reg
) {
1927 fprintf(stderr
, "Error: Bad gdb register numbering for '%s'\n"
1928 "Expected %d got %d\n", xml
, g_pos
, s
->base_reg
);
1930 num_g_regs
= last_reg
;
1936 #ifndef CONFIG_USER_ONLY
1937 static const int xlat_gdb_type
[] = {
1938 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
1939 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
1940 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
1944 static int gdb_breakpoint_insert(target_ulong addr
, target_ulong len
, int type
)
1950 return kvm_insert_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1953 case GDB_BREAKPOINT_SW
:
1954 case GDB_BREAKPOINT_HW
:
1955 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1956 err
= cpu_breakpoint_insert(env
, addr
, BP_GDB
, NULL
);
1961 #ifndef CONFIG_USER_ONLY
1962 case GDB_WATCHPOINT_WRITE
:
1963 case GDB_WATCHPOINT_READ
:
1964 case GDB_WATCHPOINT_ACCESS
:
1965 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1966 err
= cpu_watchpoint_insert(env
, addr
, len
, xlat_gdb_type
[type
],
1978 static int gdb_breakpoint_remove(target_ulong addr
, target_ulong len
, int type
)
1984 return kvm_remove_breakpoint(gdbserver_state
->c_cpu
, addr
, len
, type
);
1987 case GDB_BREAKPOINT_SW
:
1988 case GDB_BREAKPOINT_HW
:
1989 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1990 err
= cpu_breakpoint_remove(env
, addr
, BP_GDB
);
1995 #ifndef CONFIG_USER_ONLY
1996 case GDB_WATCHPOINT_WRITE
:
1997 case GDB_WATCHPOINT_READ
:
1998 case GDB_WATCHPOINT_ACCESS
:
1999 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2000 err
= cpu_watchpoint_remove(env
, addr
, len
, xlat_gdb_type
[type
]);
2011 static void gdb_breakpoint_remove_all(void)
2015 if (kvm_enabled()) {
2016 kvm_remove_all_breakpoints(gdbserver_state
->c_cpu
);
2020 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2021 cpu_breakpoint_remove_all(env
, BP_GDB
);
2022 #ifndef CONFIG_USER_ONLY
2023 cpu_watchpoint_remove_all(env
, BP_GDB
);
2028 static void gdb_set_cpu_pc(GDBState
*s
, target_ulong pc
)
2030 cpu_synchronize_state(s
->c_cpu
);
2031 #if defined(TARGET_I386)
2033 #elif defined (TARGET_PPC)
2035 #elif defined (TARGET_SPARC)
2037 s
->c_cpu
->npc
= pc
+ 4;
2038 #elif defined (TARGET_ARM)
2039 s
->c_cpu
->regs
[15] = pc
;
2040 #elif defined (TARGET_SH4)
2042 #elif defined (TARGET_MIPS)
2043 s
->c_cpu
->active_tc
.PC
= pc
& ~(target_ulong
)1;
2045 s
->c_cpu
->hflags
|= MIPS_HFLAG_M16
;
2047 s
->c_cpu
->hflags
&= ~(MIPS_HFLAG_M16
);
2049 #elif defined (TARGET_MICROBLAZE)
2050 s
->c_cpu
->sregs
[SR_PC
] = pc
;
2051 #elif defined(TARGET_OPENRISC)
2053 #elif defined (TARGET_CRIS)
2055 #elif defined (TARGET_ALPHA)
2057 #elif defined (TARGET_S390X)
2058 s
->c_cpu
->psw
.addr
= pc
;
2059 #elif defined (TARGET_LM32)
2061 #elif defined(TARGET_XTENSA)
2066 static CPUArchState
*find_cpu(uint32_t thread_id
)
2070 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2071 if (cpu_index(env
) == thread_id
) {
2079 static int gdb_handle_packet(GDBState
*s
, const char *line_buf
)
2084 int ch
, reg_size
, type
, res
;
2085 char buf
[MAX_PACKET_LENGTH
];
2086 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
2088 target_ulong addr
, len
;
2091 printf("command='%s'\n", line_buf
);
2097 /* TODO: Make this return the correct value for user-mode. */
2098 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", GDB_SIGNAL_TRAP
,
2099 cpu_index(s
->c_cpu
));
2101 /* Remove all the breakpoints when this query is issued,
2102 * because gdb is doing and initial connect and the state
2103 * should be cleaned up.
2105 gdb_breakpoint_remove_all();
2109 addr
= strtoull(p
, (char **)&p
, 16);
2110 gdb_set_cpu_pc(s
, addr
);
2116 s
->signal
= gdb_signal_to_target (strtoul(p
, (char **)&p
, 16));
2117 if (s
->signal
== -1)
2122 if (strncmp(p
, "Cont", 4) == 0) {
2123 int res_signal
, res_thread
;
2127 put_packet(s
, "vCont;c;C;s;S");
2142 if (action
== 'C' || action
== 'S') {
2143 signal
= strtoul(p
, (char **)&p
, 16);
2144 } else if (action
!= 'c' && action
!= 's') {
2150 thread
= strtoull(p
+1, (char **)&p
, 16);
2152 action
= tolower(action
);
2153 if (res
== 0 || (res
== 'c' && action
== 's')) {
2155 res_signal
= signal
;
2156 res_thread
= thread
;
2160 if (res_thread
!= -1 && res_thread
!= 0) {
2161 env
= find_cpu(res_thread
);
2163 put_packet(s
, "E22");
2169 cpu_single_step(s
->c_cpu
, sstep_flags
);
2171 s
->signal
= res_signal
;
2177 goto unknown_command
;
2180 #ifdef CONFIG_USER_ONLY
2181 /* Kill the target */
2182 fprintf(stderr
, "\nQEMU: Terminated via GDBstub\n");
2187 gdb_breakpoint_remove_all();
2188 gdb_syscall_mode
= GDB_SYS_DISABLED
;
2190 put_packet(s
, "OK");
2194 addr
= strtoull(p
, (char **)&p
, 16);
2195 gdb_set_cpu_pc(s
, addr
);
2197 cpu_single_step(s
->c_cpu
, sstep_flags
);
2205 ret
= strtoull(p
, (char **)&p
, 16);
2208 err
= strtoull(p
, (char **)&p
, 16);
2215 if (s
->current_syscall_cb
) {
2216 s
->current_syscall_cb(s
->c_cpu
, ret
, err
);
2217 s
->current_syscall_cb
= NULL
;
2220 put_packet(s
, "T02");
2227 cpu_synchronize_state(s
->g_cpu
);
2230 for (addr
= 0; addr
< num_g_regs
; addr
++) {
2231 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
+ len
, addr
);
2234 memtohex(buf
, mem_buf
, len
);
2238 cpu_synchronize_state(s
->g_cpu
);
2240 registers
= mem_buf
;
2241 len
= strlen(p
) / 2;
2242 hextomem((uint8_t *)registers
, p
, len
);
2243 for (addr
= 0; addr
< num_g_regs
&& len
> 0; addr
++) {
2244 reg_size
= gdb_write_register(s
->g_cpu
, registers
, addr
);
2246 registers
+= reg_size
;
2248 put_packet(s
, "OK");
2251 addr
= strtoull(p
, (char **)&p
, 16);
2254 len
= strtoull(p
, NULL
, 16);
2255 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 0) != 0) {
2256 put_packet (s
, "E14");
2258 memtohex(buf
, mem_buf
, len
);
2263 addr
= strtoull(p
, (char **)&p
, 16);
2266 len
= strtoull(p
, (char **)&p
, 16);
2269 hextomem(mem_buf
, p
, len
);
2270 if (target_memory_rw_debug(s
->g_cpu
, addr
, mem_buf
, len
, 1) != 0) {
2271 put_packet(s
, "E14");
2273 put_packet(s
, "OK");
2277 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2278 This works, but can be very slow. Anything new enough to
2279 understand XML also knows how to use this properly. */
2281 goto unknown_command
;
2282 addr
= strtoull(p
, (char **)&p
, 16);
2283 reg_size
= gdb_read_register(s
->g_cpu
, mem_buf
, addr
);
2285 memtohex(buf
, mem_buf
, reg_size
);
2288 put_packet(s
, "E14");
2293 goto unknown_command
;
2294 addr
= strtoull(p
, (char **)&p
, 16);
2297 reg_size
= strlen(p
) / 2;
2298 hextomem(mem_buf
, p
, reg_size
);
2299 gdb_write_register(s
->g_cpu
, mem_buf
, addr
);
2300 put_packet(s
, "OK");
2304 type
= strtoul(p
, (char **)&p
, 16);
2307 addr
= strtoull(p
, (char **)&p
, 16);
2310 len
= strtoull(p
, (char **)&p
, 16);
2312 res
= gdb_breakpoint_insert(addr
, len
, type
);
2314 res
= gdb_breakpoint_remove(addr
, len
, type
);
2316 put_packet(s
, "OK");
2317 else if (res
== -ENOSYS
)
2320 put_packet(s
, "E22");
2324 thread
= strtoull(p
, (char **)&p
, 16);
2325 if (thread
== -1 || thread
== 0) {
2326 put_packet(s
, "OK");
2329 env
= find_cpu(thread
);
2331 put_packet(s
, "E22");
2337 put_packet(s
, "OK");
2341 put_packet(s
, "OK");
2344 put_packet(s
, "E22");
2349 thread
= strtoull(p
, (char **)&p
, 16);
2350 env
= find_cpu(thread
);
2353 put_packet(s
, "OK");
2355 put_packet(s
, "E22");
2360 /* parse any 'q' packets here */
2361 if (!strcmp(p
,"qemu.sstepbits")) {
2362 /* Query Breakpoint bit definitions */
2363 snprintf(buf
, sizeof(buf
), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2369 } else if (strncmp(p
,"qemu.sstep",10) == 0) {
2370 /* Display or change the sstep_flags */
2373 /* Display current setting */
2374 snprintf(buf
, sizeof(buf
), "0x%x", sstep_flags
);
2379 type
= strtoul(p
, (char **)&p
, 16);
2381 put_packet(s
, "OK");
2383 } else if (strcmp(p
,"C") == 0) {
2384 /* "Current thread" remains vague in the spec, so always return
2385 * the first CPU (gdb returns the first thread). */
2386 put_packet(s
, "QC1");
2388 } else if (strcmp(p
,"fThreadInfo") == 0) {
2389 s
->query_cpu
= first_cpu
;
2390 goto report_cpuinfo
;
2391 } else if (strcmp(p
,"sThreadInfo") == 0) {
2394 snprintf(buf
, sizeof(buf
), "m%x", cpu_index(s
->query_cpu
));
2396 s
->query_cpu
= s
->query_cpu
->next_cpu
;
2400 } else if (strncmp(p
,"ThreadExtraInfo,", 16) == 0) {
2401 thread
= strtoull(p
+16, (char **)&p
, 16);
2402 env
= find_cpu(thread
);
2404 cpu_synchronize_state(env
);
2405 len
= snprintf((char *)mem_buf
, sizeof(mem_buf
),
2406 "CPU#%d [%s]", env
->cpu_index
,
2407 env
->halted
? "halted " : "running");
2408 memtohex(buf
, mem_buf
, len
);
2413 #ifdef CONFIG_USER_ONLY
2414 else if (strncmp(p
, "Offsets", 7) == 0) {
2415 TaskState
*ts
= s
->c_cpu
->opaque
;
2417 snprintf(buf
, sizeof(buf
),
2418 "Text=" TARGET_ABI_FMT_lx
";Data=" TARGET_ABI_FMT_lx
2419 ";Bss=" TARGET_ABI_FMT_lx
,
2420 ts
->info
->code_offset
,
2421 ts
->info
->data_offset
,
2422 ts
->info
->data_offset
);
2426 #else /* !CONFIG_USER_ONLY */
2427 else if (strncmp(p
, "Rcmd,", 5) == 0) {
2428 int len
= strlen(p
+ 5);
2430 if ((len
% 2) != 0) {
2431 put_packet(s
, "E01");
2434 hextomem(mem_buf
, p
+ 5, len
);
2437 qemu_chr_be_write(s
->mon_chr
, mem_buf
, len
);
2438 put_packet(s
, "OK");
2441 #endif /* !CONFIG_USER_ONLY */
2442 if (strncmp(p
, "Supported", 9) == 0) {
2443 snprintf(buf
, sizeof(buf
), "PacketSize=%x", MAX_PACKET_LENGTH
);
2445 pstrcat(buf
, sizeof(buf
), ";qXfer:features:read+");
2451 if (strncmp(p
, "Xfer:features:read:", 19) == 0) {
2453 target_ulong total_len
;
2457 xml
= get_feature_xml(p
, &p
);
2459 snprintf(buf
, sizeof(buf
), "E00");
2466 addr
= strtoul(p
, (char **)&p
, 16);
2469 len
= strtoul(p
, (char **)&p
, 16);
2471 total_len
= strlen(xml
);
2472 if (addr
> total_len
) {
2473 snprintf(buf
, sizeof(buf
), "E00");
2477 if (len
> (MAX_PACKET_LENGTH
- 5) / 2)
2478 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2479 if (len
< total_len
- addr
) {
2481 len
= memtox(buf
+ 1, xml
+ addr
, len
);
2484 len
= memtox(buf
+ 1, xml
+ addr
, total_len
- addr
);
2486 put_packet_binary(s
, buf
, len
+ 1);
2490 /* Unrecognised 'q' command. */
2491 goto unknown_command
;
2495 /* put empty packet */
2503 void gdb_set_stop_cpu(CPUArchState
*env
)
2505 gdbserver_state
->c_cpu
= env
;
2506 gdbserver_state
->g_cpu
= env
;
2509 #ifndef CONFIG_USER_ONLY
2510 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2512 GDBState
*s
= gdbserver_state
;
2513 CPUArchState
*env
= s
->c_cpu
;
2518 if (running
|| s
->state
== RS_INACTIVE
) {
2521 /* Is there a GDB syscall waiting to be sent? */
2522 if (s
->current_syscall_cb
) {
2523 put_packet(s
, s
->syscall_buf
);
2527 case RUN_STATE_DEBUG
:
2528 if (env
->watchpoint_hit
) {
2529 switch (env
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2540 snprintf(buf
, sizeof(buf
),
2541 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx
";",
2542 GDB_SIGNAL_TRAP
, cpu_index(env
), type
,
2543 env
->watchpoint_hit
->vaddr
);
2544 env
->watchpoint_hit
= NULL
;
2548 ret
= GDB_SIGNAL_TRAP
;
2550 case RUN_STATE_PAUSED
:
2551 ret
= GDB_SIGNAL_INT
;
2553 case RUN_STATE_SHUTDOWN
:
2554 ret
= GDB_SIGNAL_QUIT
;
2556 case RUN_STATE_IO_ERROR
:
2557 ret
= GDB_SIGNAL_IO
;
2559 case RUN_STATE_WATCHDOG
:
2560 ret
= GDB_SIGNAL_ALRM
;
2562 case RUN_STATE_INTERNAL_ERROR
:
2563 ret
= GDB_SIGNAL_ABRT
;
2565 case RUN_STATE_SAVE_VM
:
2566 case RUN_STATE_RESTORE_VM
:
2568 case RUN_STATE_FINISH_MIGRATE
:
2569 ret
= GDB_SIGNAL_XCPU
;
2572 ret
= GDB_SIGNAL_UNKNOWN
;
2575 snprintf(buf
, sizeof(buf
), "T%02xthread:%02x;", ret
, cpu_index(env
));
2580 /* disable single step if it was enabled */
2581 cpu_single_step(env
, 0);
2585 /* Send a gdb syscall request.
2586 This accepts limited printf-style format specifiers, specifically:
2587 %x - target_ulong argument printed in hex.
2588 %lx - 64-bit argument printed in hex.
2589 %s - string pointer (target_ulong) and length (int) pair. */
2590 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2599 s
= gdbserver_state
;
2602 s
->current_syscall_cb
= cb
;
2603 #ifndef CONFIG_USER_ONLY
2604 vm_stop(RUN_STATE_DEBUG
);
2608 p_end
= &s
->syscall_buf
[sizeof(s
->syscall_buf
)];
2615 addr
= va_arg(va
, target_ulong
);
2616 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2619 if (*(fmt
++) != 'x')
2621 i64
= va_arg(va
, uint64_t);
2622 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2625 addr
= va_arg(va
, target_ulong
);
2626 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2627 addr
, va_arg(va
, int));
2631 fprintf(stderr
, "gdbstub: Bad syscall format string '%s'\n",
2641 #ifdef CONFIG_USER_ONLY
2642 put_packet(s
, s
->syscall_buf
);
2643 gdb_handlesig(s
->c_cpu
, 0);
2645 /* In this case wait to send the syscall packet until notification that
2646 the CPU has stopped. This must be done because if the packet is sent
2647 now the reply from the syscall request could be received while the CPU
2648 is still in the running state, which can cause packets to be dropped
2649 and state transition 'T' packets to be sent while the syscall is still
2655 static void gdb_read_byte(GDBState
*s
, int ch
)
2660 #ifndef CONFIG_USER_ONLY
2661 if (s
->last_packet_len
) {
2662 /* Waiting for a response to the last packet. If we see the start
2663 of a new command then abandon the previous response. */
2666 printf("Got NACK, retransmitting\n");
2668 put_buffer(s
, (uint8_t *)s
->last_packet
, s
->last_packet_len
);
2672 printf("Got ACK\n");
2674 printf("Got '%c' when expecting ACK/NACK\n", ch
);
2676 if (ch
== '+' || ch
== '$')
2677 s
->last_packet_len
= 0;
2681 if (runstate_is_running()) {
2682 /* when the CPU is running, we cannot do anything except stop
2683 it when receiving a char */
2684 vm_stop(RUN_STATE_PAUSED
);
2691 s
->line_buf_index
= 0;
2692 s
->state
= RS_GETLINE
;
2697 s
->state
= RS_CHKSUM1
;
2698 } else if (s
->line_buf_index
>= sizeof(s
->line_buf
) - 1) {
2701 s
->line_buf
[s
->line_buf_index
++] = ch
;
2705 s
->line_buf
[s
->line_buf_index
] = '\0';
2706 s
->line_csum
= fromhex(ch
) << 4;
2707 s
->state
= RS_CHKSUM2
;
2710 s
->line_csum
|= fromhex(ch
);
2712 for(i
= 0; i
< s
->line_buf_index
; i
++) {
2713 csum
+= s
->line_buf
[i
];
2715 if (s
->line_csum
!= (csum
& 0xff)) {
2717 put_buffer(s
, &reply
, 1);
2721 put_buffer(s
, &reply
, 1);
2722 s
->state
= gdb_handle_packet(s
, s
->line_buf
);
2731 /* Tell the remote gdb that the process has exited. */
2732 void gdb_exit(CPUArchState
*env
, int code
)
2737 s
= gdbserver_state
;
2741 #ifdef CONFIG_USER_ONLY
2742 if (gdbserver_fd
< 0 || s
->fd
< 0) {
2747 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2750 #ifndef CONFIG_USER_ONLY
2752 qemu_chr_delete(s
->chr
);
2757 #ifdef CONFIG_USER_ONLY
2763 s
= gdbserver_state
;
2765 if (gdbserver_fd
< 0 || s
->fd
< 0)
2772 gdb_handlesig (CPUArchState
*env
, int sig
)
2778 s
= gdbserver_state
;
2779 if (gdbserver_fd
< 0 || s
->fd
< 0)
2782 /* disable single step if it was enabled */
2783 cpu_single_step(env
, 0);
2788 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb (sig
));
2791 /* put_packet() might have detected that the peer terminated the
2798 s
->running_state
= 0;
2799 while (s
->running_state
== 0) {
2800 n
= read (s
->fd
, buf
, 256);
2805 for (i
= 0; i
< n
; i
++)
2806 gdb_read_byte (s
, buf
[i
]);
2808 else if (n
== 0 || errno
!= EAGAIN
)
2810 /* XXX: Connection closed. Should probably wait for another
2811 connection before continuing. */
2820 /* Tell the remote gdb that the process has exited due to SIG. */
2821 void gdb_signalled(CPUArchState
*env
, int sig
)
2826 s
= gdbserver_state
;
2827 if (gdbserver_fd
< 0 || s
->fd
< 0)
2830 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb (sig
));
2834 static void gdb_accept(void)
2837 struct sockaddr_in sockaddr
;
2842 len
= sizeof(sockaddr
);
2843 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
2844 if (fd
< 0 && errno
!= EINTR
) {
2847 } else if (fd
>= 0) {
2849 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2855 /* set short latency */
2857 setsockopt(fd
, IPPROTO_TCP
, TCP_NODELAY
, (char *)&val
, sizeof(val
));
2859 s
= g_malloc0(sizeof(GDBState
));
2860 s
->c_cpu
= first_cpu
;
2861 s
->g_cpu
= first_cpu
;
2865 gdbserver_state
= s
;
2867 fcntl(fd
, F_SETFL
, O_NONBLOCK
);
2870 static int gdbserver_open(int port
)
2872 struct sockaddr_in sockaddr
;
2875 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
2881 fcntl(fd
, F_SETFD
, FD_CLOEXEC
);
2884 /* allow fast reuse */
2886 setsockopt(fd
, SOL_SOCKET
, SO_REUSEADDR
, (char *)&val
, sizeof(val
));
2888 sockaddr
.sin_family
= AF_INET
;
2889 sockaddr
.sin_port
= htons(port
);
2890 sockaddr
.sin_addr
.s_addr
= 0;
2891 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
2897 ret
= listen(fd
, 0);
2906 int gdbserver_start(int port
)
2908 gdbserver_fd
= gdbserver_open(port
);
2909 if (gdbserver_fd
< 0)
2911 /* accept connections */
2916 /* Disable gdb stub for child processes. */
2917 void gdbserver_fork(CPUArchState
*env
)
2919 GDBState
*s
= gdbserver_state
;
2920 if (gdbserver_fd
< 0 || s
->fd
< 0)
2924 cpu_breakpoint_remove_all(env
, BP_GDB
);
2925 cpu_watchpoint_remove_all(env
, BP_GDB
);
2928 static int gdb_chr_can_receive(void *opaque
)
2930 /* We can handle an arbitrarily large amount of data.
2931 Pick the maximum packet size, which is as good as anything. */
2932 return MAX_PACKET_LENGTH
;
2935 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
2939 for (i
= 0; i
< size
; i
++) {
2940 gdb_read_byte(gdbserver_state
, buf
[i
]);
2944 static void gdb_chr_event(void *opaque
, int event
)
2947 case CHR_EVENT_OPENED
:
2948 vm_stop(RUN_STATE_PAUSED
);
2956 static void gdb_monitor_output(GDBState
*s
, const char *msg
, int len
)
2958 char buf
[MAX_PACKET_LENGTH
];
2961 if (len
> (MAX_PACKET_LENGTH
/2) - 1)
2962 len
= (MAX_PACKET_LENGTH
/2) - 1;
2963 memtohex(buf
+ 1, (uint8_t *)msg
, len
);
2967 static int gdb_monitor_write(CharDriverState
*chr
, const uint8_t *buf
, int len
)
2969 const char *p
= (const char *)buf
;
2972 max_sz
= (sizeof(gdbserver_state
->last_packet
) - 2) / 2;
2974 if (len
<= max_sz
) {
2975 gdb_monitor_output(gdbserver_state
, p
, len
);
2978 gdb_monitor_output(gdbserver_state
, p
, max_sz
);
2986 static void gdb_sigterm_handler(int signal
)
2988 if (runstate_is_running()) {
2989 vm_stop(RUN_STATE_PAUSED
);
2994 int gdbserver_start(const char *device
)
2997 char gdbstub_device_name
[128];
2998 CharDriverState
*chr
= NULL
;
2999 CharDriverState
*mon_chr
;
3003 if (strcmp(device
, "none") != 0) {
3004 if (strstart(device
, "tcp:", NULL
)) {
3005 /* enforce required TCP attributes */
3006 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
3007 "%s,nowait,nodelay,server", device
);
3008 device
= gdbstub_device_name
;
3011 else if (strcmp(device
, "stdio") == 0) {
3012 struct sigaction act
;
3014 memset(&act
, 0, sizeof(act
));
3015 act
.sa_handler
= gdb_sigterm_handler
;
3016 sigaction(SIGINT
, &act
, NULL
);
3019 chr
= qemu_chr_new("gdb", device
, NULL
);
3023 qemu_chr_add_handlers(chr
, gdb_chr_can_receive
, gdb_chr_receive
,
3024 gdb_chr_event
, NULL
);
3027 s
= gdbserver_state
;
3029 s
= g_malloc0(sizeof(GDBState
));
3030 gdbserver_state
= s
;
3032 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
3034 /* Initialize a monitor terminal for gdb */
3035 mon_chr
= g_malloc0(sizeof(*mon_chr
));
3036 mon_chr
->chr_write
= gdb_monitor_write
;
3037 monitor_init(mon_chr
, 0);
3040 qemu_chr_delete(s
->chr
);
3041 mon_chr
= s
->mon_chr
;
3042 memset(s
, 0, sizeof(GDBState
));
3044 s
->c_cpu
= first_cpu
;
3045 s
->g_cpu
= first_cpu
;
3047 s
->state
= chr
? RS_IDLE
: RS_INACTIVE
;
3048 s
->mon_chr
= mon_chr
;
3049 s
->current_syscall_cb
= NULL
;