monitor: implement x86 info tlb for PAE and long modes
[qemu/agraf.git] / hw / mc146818rtc.c
blob2b91fa839e8d2386810caeb7ed4e91306c00ae2e
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "apic.h"
29 #include "isa.h"
30 #include "mc146818rtc.h"
32 //#define DEBUG_CMOS
33 //#define DEBUG_COALESCED
35 #ifdef DEBUG_CMOS
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
37 #else
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
39 #endif
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
43 #else
44 # define DPRINTF_C(format, ...) do { } while (0)
45 #endif
47 #define RTC_REINJECT_ON_ACK_COUNT 20
49 #define RTC_SECONDS 0
50 #define RTC_SECONDS_ALARM 1
51 #define RTC_MINUTES 2
52 #define RTC_MINUTES_ALARM 3
53 #define RTC_HOURS 4
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
59 #define RTC_MONTH 8
60 #define RTC_YEAR 9
62 #define RTC_REG_A 10
63 #define RTC_REG_B 11
64 #define RTC_REG_C 12
65 #define RTC_REG_D 13
67 #define REG_A_UIP 0x80
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
74 #define REG_B_DM 0x04
76 #define REG_C_UF 0x10
77 #define REG_C_IRQF 0x80
78 #define REG_C_PF 0x40
79 #define REG_C_AF 0x20
81 typedef struct RTCState {
82 ISADevice dev;
83 uint8_t cmos_data[128];
84 uint8_t cmos_index;
85 struct tm current_tm;
86 int32_t base_year;
87 qemu_irq irq;
88 qemu_irq sqw_irq;
89 int it_shift;
90 /* periodic timer */
91 QEMUTimer *periodic_timer;
92 int64_t next_periodic_time;
93 /* second update */
94 int64_t next_second_time;
95 uint16_t irq_reinject_on_ack_count;
96 uint32_t irq_coalesced;
97 uint32_t period;
98 QEMUTimer *coalesced_timer;
99 QEMUTimer *second_timer;
100 QEMUTimer *second_timer2;
101 } RTCState;
103 static void rtc_set_time(RTCState *s);
104 static void rtc_copy_date(RTCState *s);
106 #ifdef TARGET_I386
107 static void rtc_coalesced_timer_update(RTCState *s)
109 if (s->irq_coalesced == 0) {
110 qemu_del_timer(s->coalesced_timer);
111 } else {
112 /* divide each RTC interval to 2 - 8 smaller intervals */
113 int c = MIN(s->irq_coalesced, 7) + 1;
114 int64_t next_clock = qemu_get_clock(rtc_clock) +
115 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
116 qemu_mod_timer(s->coalesced_timer, next_clock);
120 static void rtc_coalesced_timer(void *opaque)
122 RTCState *s = opaque;
124 if (s->irq_coalesced != 0) {
125 apic_reset_irq_delivered();
126 s->cmos_data[RTC_REG_C] |= 0xc0;
127 DPRINTF_C("cmos: injecting from timer\n");
128 qemu_irq_raise(s->irq);
129 if (apic_get_irq_delivered()) {
130 s->irq_coalesced--;
131 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
132 s->irq_coalesced);
136 rtc_coalesced_timer_update(s);
138 #endif
140 static void rtc_timer_update(RTCState *s, int64_t current_time)
142 int period_code, period;
143 int64_t cur_clock, next_irq_clock;
145 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
146 if (period_code != 0
147 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
148 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
149 if (period_code <= 2)
150 period_code += 7;
151 /* period in 32 Khz cycles */
152 period = 1 << (period_code - 1);
153 #ifdef TARGET_I386
154 if (period != s->period) {
155 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
156 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
158 s->period = period;
159 #endif
160 /* compute 32 khz clock */
161 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
162 next_irq_clock = (cur_clock & ~(period - 1)) + period;
163 s->next_periodic_time =
164 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
165 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
166 } else {
167 #ifdef TARGET_I386
168 s->irq_coalesced = 0;
169 #endif
170 qemu_del_timer(s->periodic_timer);
174 static void rtc_periodic_timer(void *opaque)
176 RTCState *s = opaque;
178 rtc_timer_update(s, s->next_periodic_time);
179 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
180 s->cmos_data[RTC_REG_C] |= 0xc0;
181 #ifdef TARGET_I386
182 if(rtc_td_hack) {
183 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
184 s->irq_reinject_on_ack_count = 0;
185 apic_reset_irq_delivered();
186 qemu_irq_raise(s->irq);
187 if (!apic_get_irq_delivered()) {
188 s->irq_coalesced++;
189 rtc_coalesced_timer_update(s);
190 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
191 s->irq_coalesced);
193 } else
194 #endif
195 qemu_irq_raise(s->irq);
197 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
198 /* Not square wave at all but we don't want 2048Hz interrupts!
199 Must be seen as a pulse. */
200 qemu_irq_raise(s->sqw_irq);
204 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
206 RTCState *s = opaque;
208 if ((addr & 1) == 0) {
209 s->cmos_index = data & 0x7f;
210 } else {
211 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
212 s->cmos_index, data);
213 switch(s->cmos_index) {
214 case RTC_SECONDS_ALARM:
215 case RTC_MINUTES_ALARM:
216 case RTC_HOURS_ALARM:
217 s->cmos_data[s->cmos_index] = data;
218 break;
219 case RTC_SECONDS:
220 case RTC_MINUTES:
221 case RTC_HOURS:
222 case RTC_DAY_OF_WEEK:
223 case RTC_DAY_OF_MONTH:
224 case RTC_MONTH:
225 case RTC_YEAR:
226 s->cmos_data[s->cmos_index] = data;
227 /* if in set mode, do not update the time */
228 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
229 rtc_set_time(s);
231 break;
232 case RTC_REG_A:
233 /* UIP bit is read only */
234 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
235 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
236 rtc_timer_update(s, qemu_get_clock(rtc_clock));
237 break;
238 case RTC_REG_B:
239 if (data & REG_B_SET) {
240 /* set mode: reset UIP mode */
241 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
242 data &= ~REG_B_UIE;
243 } else {
244 /* if disabling set mode, update the time */
245 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
246 rtc_set_time(s);
249 s->cmos_data[RTC_REG_B] = data;
250 rtc_timer_update(s, qemu_get_clock(rtc_clock));
251 break;
252 case RTC_REG_C:
253 case RTC_REG_D:
254 /* cannot write to them */
255 break;
256 default:
257 s->cmos_data[s->cmos_index] = data;
258 break;
263 static inline int rtc_to_bcd(RTCState *s, int a)
265 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
266 return a;
267 } else {
268 return ((a / 10) << 4) | (a % 10);
272 static inline int rtc_from_bcd(RTCState *s, int a)
274 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
275 return a;
276 } else {
277 return ((a >> 4) * 10) + (a & 0x0f);
281 static void rtc_set_time(RTCState *s)
283 struct tm *tm = &s->current_tm;
285 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
286 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
287 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
288 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
289 (s->cmos_data[RTC_HOURS] & 0x80)) {
290 tm->tm_hour += 12;
292 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
293 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
294 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
295 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
297 rtc_change_mon_event(tm);
300 static void rtc_copy_date(RTCState *s)
302 const struct tm *tm = &s->current_tm;
303 int year;
305 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
306 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
307 if (s->cmos_data[RTC_REG_B] & 0x02) {
308 /* 24 hour format */
309 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
310 } else {
311 /* 12 hour format */
312 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
313 if (tm->tm_hour >= 12)
314 s->cmos_data[RTC_HOURS] |= 0x80;
316 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
317 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
318 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
319 year = (tm->tm_year - s->base_year) % 100;
320 if (year < 0)
321 year += 100;
322 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
325 /* month is between 0 and 11. */
326 static int get_days_in_month(int month, int year)
328 static const int days_tab[12] = {
329 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
331 int d;
332 if ((unsigned )month >= 12)
333 return 31;
334 d = days_tab[month];
335 if (month == 1) {
336 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
337 d++;
339 return d;
342 /* update 'tm' to the next second */
343 static void rtc_next_second(struct tm *tm)
345 int days_in_month;
347 tm->tm_sec++;
348 if ((unsigned)tm->tm_sec >= 60) {
349 tm->tm_sec = 0;
350 tm->tm_min++;
351 if ((unsigned)tm->tm_min >= 60) {
352 tm->tm_min = 0;
353 tm->tm_hour++;
354 if ((unsigned)tm->tm_hour >= 24) {
355 tm->tm_hour = 0;
356 /* next day */
357 tm->tm_wday++;
358 if ((unsigned)tm->tm_wday >= 7)
359 tm->tm_wday = 0;
360 days_in_month = get_days_in_month(tm->tm_mon,
361 tm->tm_year + 1900);
362 tm->tm_mday++;
363 if (tm->tm_mday < 1) {
364 tm->tm_mday = 1;
365 } else if (tm->tm_mday > days_in_month) {
366 tm->tm_mday = 1;
367 tm->tm_mon++;
368 if (tm->tm_mon >= 12) {
369 tm->tm_mon = 0;
370 tm->tm_year++;
379 static void rtc_update_second(void *opaque)
381 RTCState *s = opaque;
382 int64_t delay;
384 /* if the oscillator is not in normal operation, we do not update */
385 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
386 s->next_second_time += get_ticks_per_sec();
387 qemu_mod_timer(s->second_timer, s->next_second_time);
388 } else {
389 rtc_next_second(&s->current_tm);
391 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
392 /* update in progress bit */
393 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
395 /* should be 244 us = 8 / 32768 seconds, but currently the
396 timers do not have the necessary resolution. */
397 delay = (get_ticks_per_sec() * 1) / 100;
398 if (delay < 1)
399 delay = 1;
400 qemu_mod_timer(s->second_timer2,
401 s->next_second_time + delay);
405 static void rtc_update_second2(void *opaque)
407 RTCState *s = opaque;
409 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
410 rtc_copy_date(s);
413 /* check alarm */
414 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
415 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
416 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
417 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
418 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
419 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
420 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
422 s->cmos_data[RTC_REG_C] |= 0xa0;
423 qemu_irq_raise(s->irq);
427 /* update ended interrupt */
428 s->cmos_data[RTC_REG_C] |= REG_C_UF;
429 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
430 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
431 qemu_irq_raise(s->irq);
434 /* clear update in progress bit */
435 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
437 s->next_second_time += get_ticks_per_sec();
438 qemu_mod_timer(s->second_timer, s->next_second_time);
441 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
443 RTCState *s = opaque;
444 int ret;
445 if ((addr & 1) == 0) {
446 return 0xff;
447 } else {
448 switch(s->cmos_index) {
449 case RTC_SECONDS:
450 case RTC_MINUTES:
451 case RTC_HOURS:
452 case RTC_DAY_OF_WEEK:
453 case RTC_DAY_OF_MONTH:
454 case RTC_MONTH:
455 case RTC_YEAR:
456 ret = s->cmos_data[s->cmos_index];
457 break;
458 case RTC_REG_A:
459 ret = s->cmos_data[s->cmos_index];
460 break;
461 case RTC_REG_C:
462 ret = s->cmos_data[s->cmos_index];
463 qemu_irq_lower(s->irq);
464 #ifdef TARGET_I386
465 if(s->irq_coalesced &&
466 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
467 s->irq_reinject_on_ack_count++;
468 apic_reset_irq_delivered();
469 DPRINTF_C("cmos: injecting on ack\n");
470 qemu_irq_raise(s->irq);
471 if (apic_get_irq_delivered()) {
472 s->irq_coalesced--;
473 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
474 s->irq_coalesced);
476 break;
478 #endif
480 s->cmos_data[RTC_REG_C] = 0x00;
481 break;
482 default:
483 ret = s->cmos_data[s->cmos_index];
484 break;
486 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
487 s->cmos_index, ret);
488 return ret;
492 void rtc_set_memory(ISADevice *dev, int addr, int val)
494 RTCState *s = DO_UPCAST(RTCState, dev, dev);
495 if (addr >= 0 && addr <= 127)
496 s->cmos_data[addr] = val;
499 void rtc_set_date(ISADevice *dev, const struct tm *tm)
501 RTCState *s = DO_UPCAST(RTCState, dev, dev);
502 s->current_tm = *tm;
503 rtc_copy_date(s);
506 /* PC cmos mappings */
507 #define REG_IBM_CENTURY_BYTE 0x32
508 #define REG_IBM_PS2_CENTURY_BYTE 0x37
510 static void rtc_set_date_from_host(ISADevice *dev)
512 RTCState *s = DO_UPCAST(RTCState, dev, dev);
513 struct tm tm;
514 int val;
516 /* set the CMOS date */
517 qemu_get_timedate(&tm, 0);
518 rtc_set_date(dev, &tm);
520 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
521 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
522 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
525 static int rtc_post_load(void *opaque, int version_id)
527 #ifdef TARGET_I386
528 RTCState *s = opaque;
530 if (version_id >= 2) {
531 if (rtc_td_hack) {
532 rtc_coalesced_timer_update(s);
535 #endif
536 return 0;
539 static const VMStateDescription vmstate_rtc = {
540 .name = "mc146818rtc",
541 .version_id = 2,
542 .minimum_version_id = 1,
543 .minimum_version_id_old = 1,
544 .post_load = rtc_post_load,
545 .fields = (VMStateField []) {
546 VMSTATE_BUFFER(cmos_data, RTCState),
547 VMSTATE_UINT8(cmos_index, RTCState),
548 VMSTATE_INT32(current_tm.tm_sec, RTCState),
549 VMSTATE_INT32(current_tm.tm_min, RTCState),
550 VMSTATE_INT32(current_tm.tm_hour, RTCState),
551 VMSTATE_INT32(current_tm.tm_wday, RTCState),
552 VMSTATE_INT32(current_tm.tm_mday, RTCState),
553 VMSTATE_INT32(current_tm.tm_mon, RTCState),
554 VMSTATE_INT32(current_tm.tm_year, RTCState),
555 VMSTATE_TIMER(periodic_timer, RTCState),
556 VMSTATE_INT64(next_periodic_time, RTCState),
557 VMSTATE_INT64(next_second_time, RTCState),
558 VMSTATE_TIMER(second_timer, RTCState),
559 VMSTATE_TIMER(second_timer2, RTCState),
560 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
561 VMSTATE_UINT32_V(period, RTCState, 2),
562 VMSTATE_END_OF_LIST()
566 static void rtc_reset(void *opaque)
568 RTCState *s = opaque;
570 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
571 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
573 qemu_irq_lower(s->irq);
575 #ifdef TARGET_I386
576 if (rtc_td_hack)
577 s->irq_coalesced = 0;
578 #endif
581 static int rtc_initfn(ISADevice *dev)
583 RTCState *s = DO_UPCAST(RTCState, dev, dev);
584 int base = 0x70;
586 s->cmos_data[RTC_REG_A] = 0x26;
587 s->cmos_data[RTC_REG_B] = 0x02;
588 s->cmos_data[RTC_REG_C] = 0x00;
589 s->cmos_data[RTC_REG_D] = 0x80;
591 rtc_set_date_from_host(dev);
593 s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
594 #ifdef TARGET_I386
595 if (rtc_td_hack)
596 s->coalesced_timer =
597 qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
598 #endif
599 s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
600 s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
602 s->next_second_time =
603 qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
604 qemu_mod_timer(s->second_timer2, s->next_second_time);
606 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
607 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
609 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
610 qemu_register_reset(rtc_reset, s);
611 return 0;
614 ISADevice *rtc_init(int base_year, qemu_irq intercept_irq)
616 ISADevice *dev;
617 RTCState *s;
619 dev = isa_create("mc146818rtc");
620 s = DO_UPCAST(RTCState, dev, dev);
621 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
622 qdev_init_nofail(&dev->qdev);
623 if (intercept_irq) {
624 s->irq = intercept_irq;
625 } else {
626 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
628 return dev;
631 static ISADeviceInfo mc146818rtc_info = {
632 .qdev.name = "mc146818rtc",
633 .qdev.size = sizeof(RTCState),
634 .qdev.no_user = 1,
635 .qdev.vmsd = &vmstate_rtc,
636 .init = rtc_initfn,
637 .qdev.props = (Property[]) {
638 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
639 DEFINE_PROP_END_OF_LIST(),
643 static void mc146818rtc_register(void)
645 isa_qdev_register(&mc146818rtc_info);
647 device_init(mc146818rtc_register)