2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/timer.h"
27 #include "sysemu/sysemu.h"
31 #include "sysemu/kvm.h"
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
40 # define LOG_IRQ(...) do { } while (0)
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
47 # define LOG_TB(...) do { } while (0)
50 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
51 static void cpu_ppc_tb_start (CPUPPCState
*env
);
53 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
55 CPUPPCState
*env
= &cpu
->env
;
56 unsigned int old_pending
= env
->pending_interrupts
;
59 env
->pending_interrupts
|= 1 << n_IRQ
;
60 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
62 env
->pending_interrupts
&= ~(1 << n_IRQ
);
63 if (env
->pending_interrupts
== 0)
64 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
67 if (old_pending
!= env
->pending_interrupts
) {
69 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
73 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
74 "req %08x\n", __func__
, env
, n_IRQ
, level
,
75 env
->pending_interrupts
, env
->interrupt_request
);
78 /* PowerPC 6xx / 7xx internal IRQ controller */
79 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
81 PowerPCCPU
*cpu
= opaque
;
82 CPUPPCState
*env
= &cpu
->env
;
85 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
87 cur_level
= (env
->irq_input_state
>> pin
) & 1;
88 /* Don't generate spurious events */
89 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
91 case PPC6xx_INPUT_TBEN
:
92 /* Level sensitive - active high */
93 LOG_IRQ("%s: %s the time base\n",
94 __func__
, level
? "start" : "stop");
96 cpu_ppc_tb_start(env
);
100 case PPC6xx_INPUT_INT
:
101 /* Level sensitive - active high */
102 LOG_IRQ("%s: set the external IRQ state to %d\n",
104 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
106 case PPC6xx_INPUT_SMI
:
107 /* Level sensitive - active high */
108 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
110 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
112 case PPC6xx_INPUT_MCP
:
113 /* Negative edge sensitive */
114 /* XXX: TODO: actual reaction may depends on HID0 status
115 * 603/604/740/750: check HID0[EMCP]
117 if (cur_level
== 1 && level
== 0) {
118 LOG_IRQ("%s: raise machine check state\n",
120 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
123 case PPC6xx_INPUT_CKSTP_IN
:
124 /* Level sensitive - active low */
125 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
126 /* XXX: Note that the only way to restart the CPU is to reset it */
128 LOG_IRQ("%s: stop the CPU\n", __func__
);
132 case PPC6xx_INPUT_HRESET
:
133 /* Level sensitive - active low */
135 LOG_IRQ("%s: reset the CPU\n", __func__
);
136 cpu_interrupt(env
, CPU_INTERRUPT_RESET
);
139 case PPC6xx_INPUT_SRESET
:
140 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
142 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
145 /* Unknown pin - do nothing */
146 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
150 env
->irq_input_state
|= 1 << pin
;
152 env
->irq_input_state
&= ~(1 << pin
);
156 void ppc6xx_irq_init(CPUPPCState
*env
)
158 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
160 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
164 #if defined(TARGET_PPC64)
165 /* PowerPC 970 internal IRQ controller */
166 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
168 PowerPCCPU
*cpu
= opaque
;
169 CPUPPCState
*env
= &cpu
->env
;
172 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
174 cur_level
= (env
->irq_input_state
>> pin
) & 1;
175 /* Don't generate spurious events */
176 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
178 case PPC970_INPUT_INT
:
179 /* Level sensitive - active high */
180 LOG_IRQ("%s: set the external IRQ state to %d\n",
182 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
184 case PPC970_INPUT_THINT
:
185 /* Level sensitive - active high */
186 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
188 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
190 case PPC970_INPUT_MCP
:
191 /* Negative edge sensitive */
192 /* XXX: TODO: actual reaction may depends on HID0 status
193 * 603/604/740/750: check HID0[EMCP]
195 if (cur_level
== 1 && level
== 0) {
196 LOG_IRQ("%s: raise machine check state\n",
198 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
201 case PPC970_INPUT_CKSTP
:
202 /* Level sensitive - active low */
203 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
205 LOG_IRQ("%s: stop the CPU\n", __func__
);
208 LOG_IRQ("%s: restart the CPU\n", __func__
);
210 qemu_cpu_kick(CPU(cpu
));
213 case PPC970_INPUT_HRESET
:
214 /* Level sensitive - active low */
216 cpu_interrupt(env
, CPU_INTERRUPT_RESET
);
219 case PPC970_INPUT_SRESET
:
220 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
222 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
224 case PPC970_INPUT_TBEN
:
225 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
230 /* Unknown pin - do nothing */
231 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
235 env
->irq_input_state
|= 1 << pin
;
237 env
->irq_input_state
&= ~(1 << pin
);
241 void ppc970_irq_init(CPUPPCState
*env
)
243 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
245 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
249 /* POWER7 internal IRQ controller */
250 static void power7_set_irq(void *opaque
, int pin
, int level
)
252 PowerPCCPU
*cpu
= opaque
;
253 CPUPPCState
*env
= &cpu
->env
;
255 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
259 case POWER7_INPUT_INT
:
260 /* Level sensitive - active high */
261 LOG_IRQ("%s: set the external IRQ state to %d\n",
263 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
266 /* Unknown pin - do nothing */
267 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
271 env
->irq_input_state
|= 1 << pin
;
273 env
->irq_input_state
&= ~(1 << pin
);
277 void ppcPOWER7_irq_init(CPUPPCState
*env
)
279 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
281 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
284 #endif /* defined(TARGET_PPC64) */
286 /* PowerPC 40x internal IRQ controller */
287 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
289 PowerPCCPU
*cpu
= opaque
;
290 CPUPPCState
*env
= &cpu
->env
;
293 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
295 cur_level
= (env
->irq_input_state
>> pin
) & 1;
296 /* Don't generate spurious events */
297 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
299 case PPC40x_INPUT_RESET_SYS
:
301 LOG_IRQ("%s: reset the PowerPC system\n",
303 ppc40x_system_reset(env
);
306 case PPC40x_INPUT_RESET_CHIP
:
308 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
309 ppc40x_chip_reset(env
);
312 case PPC40x_INPUT_RESET_CORE
:
313 /* XXX: TODO: update DBSR[MRR] */
315 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
316 ppc40x_core_reset(env
);
319 case PPC40x_INPUT_CINT
:
320 /* Level sensitive - active high */
321 LOG_IRQ("%s: set the critical IRQ state to %d\n",
323 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
325 case PPC40x_INPUT_INT
:
326 /* Level sensitive - active high */
327 LOG_IRQ("%s: set the external IRQ state to %d\n",
329 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
331 case PPC40x_INPUT_HALT
:
332 /* Level sensitive - active low */
334 LOG_IRQ("%s: stop the CPU\n", __func__
);
337 LOG_IRQ("%s: restart the CPU\n", __func__
);
339 qemu_cpu_kick(CPU(cpu
));
342 case PPC40x_INPUT_DEBUG
:
343 /* Level sensitive - active high */
344 LOG_IRQ("%s: set the debug pin state to %d\n",
346 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
349 /* Unknown pin - do nothing */
350 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
354 env
->irq_input_state
|= 1 << pin
;
356 env
->irq_input_state
&= ~(1 << pin
);
360 void ppc40x_irq_init(CPUPPCState
*env
)
362 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
364 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
365 cpu
, PPC40x_INPUT_NB
);
368 /* PowerPC E500 internal IRQ controller */
369 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
371 PowerPCCPU
*cpu
= opaque
;
372 CPUPPCState
*env
= &cpu
->env
;
375 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
377 cur_level
= (env
->irq_input_state
>> pin
) & 1;
378 /* Don't generate spurious events */
379 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
381 case PPCE500_INPUT_MCK
:
383 LOG_IRQ("%s: reset the PowerPC system\n",
385 qemu_system_reset_request();
388 case PPCE500_INPUT_RESET_CORE
:
390 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
391 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
394 case PPCE500_INPUT_CINT
:
395 /* Level sensitive - active high */
396 LOG_IRQ("%s: set the critical IRQ state to %d\n",
398 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
400 case PPCE500_INPUT_INT
:
401 /* Level sensitive - active high */
402 LOG_IRQ("%s: set the core IRQ state to %d\n",
404 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
406 case PPCE500_INPUT_DEBUG
:
407 /* Level sensitive - active high */
408 LOG_IRQ("%s: set the debug pin state to %d\n",
410 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
413 /* Unknown pin - do nothing */
414 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
418 env
->irq_input_state
|= 1 << pin
;
420 env
->irq_input_state
&= ~(1 << pin
);
424 void ppce500_irq_init(CPUPPCState
*env
)
426 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
428 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
429 cpu
, PPCE500_INPUT_NB
);
432 /* Enable or Disable the E500 EPR capability */
433 void ppce500_set_mpic_proxy(bool enabled
)
437 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
438 env
->mpic_proxy
= enabled
;
442 /*****************************************************************************/
443 /* PowerPC time base and decrementer emulation */
445 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
447 /* TB time in tb periods */
448 return muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec()) + tb_offset
;
451 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
453 ppc_tb_t
*tb_env
= env
->tb_env
;
457 return env
->spr
[SPR_TBL
];
460 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
461 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
466 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
468 ppc_tb_t
*tb_env
= env
->tb_env
;
471 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
472 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
477 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
480 return env
->spr
[SPR_TBU
];
483 return _cpu_ppc_load_tbu(env
);
486 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
487 int64_t *tb_offsetp
, uint64_t value
)
489 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, get_ticks_per_sec());
490 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
491 __func__
, value
, *tb_offsetp
);
494 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
496 ppc_tb_t
*tb_env
= env
->tb_env
;
499 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
500 tb
&= 0xFFFFFFFF00000000ULL
;
501 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
502 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
505 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
507 ppc_tb_t
*tb_env
= env
->tb_env
;
510 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->tb_offset
);
511 tb
&= 0x00000000FFFFFFFFULL
;
512 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
513 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
516 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
518 _cpu_ppc_store_tbu(env
, value
);
521 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
523 ppc_tb_t
*tb_env
= env
->tb_env
;
526 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
527 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
532 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
534 ppc_tb_t
*tb_env
= env
->tb_env
;
537 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
538 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
543 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
545 ppc_tb_t
*tb_env
= env
->tb_env
;
548 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
549 tb
&= 0xFFFFFFFF00000000ULL
;
550 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
551 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
554 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
556 ppc_tb_t
*tb_env
= env
->tb_env
;
559 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock_ns(vm_clock
), tb_env
->atb_offset
);
560 tb
&= 0x00000000FFFFFFFFULL
;
561 cpu_ppc_store_tb(tb_env
, qemu_get_clock_ns(vm_clock
),
562 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
565 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
567 ppc_tb_t
*tb_env
= env
->tb_env
;
568 uint64_t tb
, atb
, vmclk
;
570 /* If the time base is already frozen, do nothing */
571 if (tb_env
->tb_freq
!= 0) {
572 vmclk
= qemu_get_clock_ns(vm_clock
);
573 /* Get the time base */
574 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
575 /* Get the alternate time base */
576 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
577 /* Store the time base value (ie compute the current offset) */
578 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
579 /* Store the alternate time base value (compute the current offset) */
580 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
581 /* Set the time base frequency to zero */
583 /* Now, the time bases are frozen to tb_offset / atb_offset value */
587 static void cpu_ppc_tb_start (CPUPPCState
*env
)
589 ppc_tb_t
*tb_env
= env
->tb_env
;
590 uint64_t tb
, atb
, vmclk
;
592 /* If the time base is not frozen, do nothing */
593 if (tb_env
->tb_freq
== 0) {
594 vmclk
= qemu_get_clock_ns(vm_clock
);
595 /* Get the time base from tb_offset */
596 tb
= tb_env
->tb_offset
;
597 /* Get the alternate time base from atb_offset */
598 atb
= tb_env
->atb_offset
;
599 /* Restore the tb frequency from the decrementer frequency */
600 tb_env
->tb_freq
= tb_env
->decr_freq
;
601 /* Store the time base value */
602 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
603 /* Store the alternate time base value */
604 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
608 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
610 ppc_tb_t
*tb_env
= env
->tb_env
;
614 diff
= next
- qemu_get_clock_ns(vm_clock
);
616 decr
= muldiv64(diff
, tb_env
->decr_freq
, get_ticks_per_sec());
617 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
620 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, get_ticks_per_sec());
622 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
627 uint32_t cpu_ppc_load_decr (CPUPPCState
*env
)
629 ppc_tb_t
*tb_env
= env
->tb_env
;
632 return env
->spr
[SPR_DECR
];
635 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
638 uint32_t cpu_ppc_load_hdecr (CPUPPCState
*env
)
640 ppc_tb_t
*tb_env
= env
->tb_env
;
642 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
645 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
647 ppc_tb_t
*tb_env
= env
->tb_env
;
650 diff
= qemu_get_clock_ns(vm_clock
) - tb_env
->purr_start
;
652 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, get_ticks_per_sec());
655 /* When decrementer expires,
656 * all we need to do is generate or queue a CPU exception
658 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
661 LOG_TB("raise decrementer exception\n");
662 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
665 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
668 LOG_TB("raise decrementer exception\n");
669 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
672 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
673 struct QEMUTimer
*timer
,
674 void (*raise_excp
)(PowerPCCPU
*),
675 uint32_t decr
, uint32_t value
,
678 CPUPPCState
*env
= &cpu
->env
;
679 ppc_tb_t
*tb_env
= env
->tb_env
;
682 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
686 /* KVM handles decrementer exceptions, we don't need our own timer */
690 now
= qemu_get_clock_ns(vm_clock
);
691 next
= now
+ muldiv64(value
, get_ticks_per_sec(), tb_env
->decr_freq
);
693 next
+= *nextp
- now
;
700 qemu_mod_timer(timer
, next
);
702 /* If we set a negative value and the decrementer was positive, raise an
705 if ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
)
706 && (value
& 0x80000000)
707 && !(decr
& 0x80000000)) {
712 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint32_t decr
,
713 uint32_t value
, int is_excp
)
715 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
717 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
718 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
721 void cpu_ppc_store_decr (CPUPPCState
*env
, uint32_t value
)
723 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
725 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, 0);
728 static void cpu_ppc_decr_cb(void *opaque
)
730 PowerPCCPU
*cpu
= opaque
;
732 _cpu_ppc_store_decr(cpu
, 0x00000000, 0xFFFFFFFF, 1);
735 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, uint32_t hdecr
,
736 uint32_t value
, int is_excp
)
738 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
740 if (tb_env
->hdecr_timer
!= NULL
) {
741 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
742 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
746 void cpu_ppc_store_hdecr (CPUPPCState
*env
, uint32_t value
)
748 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
750 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
, 0);
753 static void cpu_ppc_hdecr_cb(void *opaque
)
755 PowerPCCPU
*cpu
= opaque
;
757 _cpu_ppc_store_hdecr(cpu
, 0x00000000, 0xFFFFFFFF, 1);
760 static void cpu_ppc_store_purr(PowerPCCPU
*cpu
, uint64_t value
)
762 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
764 tb_env
->purr_load
= value
;
765 tb_env
->purr_start
= qemu_get_clock_ns(vm_clock
);
768 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
770 CPUPPCState
*env
= opaque
;
771 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
772 ppc_tb_t
*tb_env
= env
->tb_env
;
774 tb_env
->tb_freq
= freq
;
775 tb_env
->decr_freq
= freq
;
776 /* There is a bug in Linux 2.4 kernels:
777 * if a decrementer exception is pending when it enables msr_ee at startup,
778 * it's not ready to handle it...
780 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
781 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
782 cpu_ppc_store_purr(cpu
, 0x0000000000000000ULL
);
785 /* Set up (once) timebase frequency (in Hz) */
786 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
788 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
791 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
792 env
->tb_env
= tb_env
;
793 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
794 /* Create new timer */
795 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_decr_cb
, cpu
);
797 /* XXX: find a suitable condition to enable the hypervisor decrementer
799 tb_env
->hdecr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_ppc_hdecr_cb
,
802 tb_env
->hdecr_timer
= NULL
;
804 cpu_ppc_set_tb_clk(env
, freq
);
806 return &cpu_ppc_set_tb_clk
;
809 /* Specific helpers for POWER & PowerPC 601 RTC */
811 static clk_setup_cb
cpu_ppc601_rtc_init (CPUPPCState
*env
)
813 return cpu_ppc_tb_init(env
, 7812500);
817 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
819 _cpu_ppc_store_tbu(env
, value
);
822 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
824 return _cpu_ppc_load_tbu(env
);
827 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
829 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
832 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
834 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
837 /*****************************************************************************/
838 /* PowerPC 40x timers */
841 typedef struct ppc40x_timer_t ppc40x_timer_t
;
842 struct ppc40x_timer_t
{
843 uint64_t pit_reload
; /* PIT auto-reload value */
844 uint64_t fit_next
; /* Tick for next FIT interrupt */
845 struct QEMUTimer
*fit_timer
;
846 uint64_t wdt_next
; /* Tick for next WDT interrupt */
847 struct QEMUTimer
*wdt_timer
;
849 /* 405 have the PIT, 440 have a DECR. */
850 unsigned int decr_excp
;
853 /* Fixed interval timer */
854 static void cpu_4xx_fit_cb (void *opaque
)
859 ppc40x_timer_t
*ppc40x_timer
;
863 cpu
= ppc_env_get_cpu(env
);
864 tb_env
= env
->tb_env
;
865 ppc40x_timer
= tb_env
->opaque
;
866 now
= qemu_get_clock_ns(vm_clock
);
867 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
881 /* Cannot occur, but makes gcc happy */
884 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->tb_freq
);
887 qemu_mod_timer(ppc40x_timer
->fit_timer
, next
);
888 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
889 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
890 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
892 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
893 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
894 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
897 /* Programmable interval timer */
898 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
900 ppc40x_timer_t
*ppc40x_timer
;
903 ppc40x_timer
= tb_env
->opaque
;
904 if (ppc40x_timer
->pit_reload
<= 1 ||
905 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
906 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
908 LOG_TB("%s: stop PIT\n", __func__
);
909 qemu_del_timer(tb_env
->decr_timer
);
911 LOG_TB("%s: start PIT %016" PRIx64
"\n",
912 __func__
, ppc40x_timer
->pit_reload
);
913 now
= qemu_get_clock_ns(vm_clock
);
914 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
915 get_ticks_per_sec(), tb_env
->decr_freq
);
917 next
+= tb_env
->decr_next
- now
;
920 qemu_mod_timer(tb_env
->decr_timer
, next
);
921 tb_env
->decr_next
= next
;
925 static void cpu_4xx_pit_cb (void *opaque
)
930 ppc40x_timer_t
*ppc40x_timer
;
933 cpu
= ppc_env_get_cpu(env
);
934 tb_env
= env
->tb_env
;
935 ppc40x_timer
= tb_env
->opaque
;
936 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
937 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
938 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
940 start_stop_pit(env
, tb_env
, 1);
941 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
942 "%016" PRIx64
"\n", __func__
,
943 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
944 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
945 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
946 ppc40x_timer
->pit_reload
);
950 static void cpu_4xx_wdt_cb (void *opaque
)
955 ppc40x_timer_t
*ppc40x_timer
;
959 cpu
= ppc_env_get_cpu(env
);
960 tb_env
= env
->tb_env
;
961 ppc40x_timer
= tb_env
->opaque
;
962 now
= qemu_get_clock_ns(vm_clock
);
963 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
977 /* Cannot occur, but makes gcc happy */
980 next
= now
+ muldiv64(next
, get_ticks_per_sec(), tb_env
->decr_freq
);
983 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
984 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
985 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
988 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
989 ppc40x_timer
->wdt_next
= next
;
990 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
993 qemu_mod_timer(ppc40x_timer
->wdt_timer
, next
);
994 ppc40x_timer
->wdt_next
= next
;
995 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
996 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
997 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1001 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1002 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1003 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1007 case 0x1: /* Core reset */
1008 ppc40x_core_reset(env
);
1010 case 0x2: /* Chip reset */
1011 ppc40x_chip_reset(env
);
1013 case 0x3: /* System reset */
1014 ppc40x_system_reset(env
);
1020 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1023 ppc40x_timer_t
*ppc40x_timer
;
1025 tb_env
= env
->tb_env
;
1026 ppc40x_timer
= tb_env
->opaque
;
1027 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1028 ppc40x_timer
->pit_reload
= val
;
1029 start_stop_pit(env
, tb_env
, 0);
1032 target_ulong
load_40x_pit (CPUPPCState
*env
)
1034 return cpu_ppc_load_decr(env
);
1037 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1039 CPUPPCState
*env
= opaque
;
1040 ppc_tb_t
*tb_env
= env
->tb_env
;
1042 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1044 tb_env
->tb_freq
= freq
;
1045 tb_env
->decr_freq
= freq
;
1046 /* XXX: we should also update all timers */
1049 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1050 unsigned int decr_excp
)
1053 ppc40x_timer_t
*ppc40x_timer
;
1055 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1056 env
->tb_env
= tb_env
;
1057 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1058 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1059 tb_env
->tb_freq
= freq
;
1060 tb_env
->decr_freq
= freq
;
1061 tb_env
->opaque
= ppc40x_timer
;
1062 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1063 if (ppc40x_timer
!= NULL
) {
1064 /* We use decr timer for PIT */
1065 tb_env
->decr_timer
= qemu_new_timer_ns(vm_clock
, &cpu_4xx_pit_cb
, env
);
1066 ppc40x_timer
->fit_timer
=
1067 qemu_new_timer_ns(vm_clock
, &cpu_4xx_fit_cb
, env
);
1068 ppc40x_timer
->wdt_timer
=
1069 qemu_new_timer_ns(vm_clock
, &cpu_4xx_wdt_cb
, env
);
1070 ppc40x_timer
->decr_excp
= decr_excp
;
1073 return &ppc_40x_set_tb_clk
;
1076 /*****************************************************************************/
1077 /* Embedded PowerPC Device Control Registers */
1078 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1080 dcr_read_cb dcr_read
;
1081 dcr_write_cb dcr_write
;
1085 /* XXX: on 460, DCR addresses are 32 bits wide,
1086 * using DCRIPR to get the 22 upper bits of the DCR address
1088 #define DCRN_NB 1024
1090 ppc_dcrn_t dcrn
[DCRN_NB
];
1091 int (*read_error
)(int dcrn
);
1092 int (*write_error
)(int dcrn
);
1095 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1099 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1101 dcr
= &dcr_env
->dcrn
[dcrn
];
1102 if (dcr
->dcr_read
== NULL
)
1104 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1109 if (dcr_env
->read_error
!= NULL
)
1110 return (*dcr_env
->read_error
)(dcrn
);
1115 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1119 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1121 dcr
= &dcr_env
->dcrn
[dcrn
];
1122 if (dcr
->dcr_write
== NULL
)
1124 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1129 if (dcr_env
->write_error
!= NULL
)
1130 return (*dcr_env
->write_error
)(dcrn
);
1135 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1136 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1141 dcr_env
= env
->dcr_env
;
1142 if (dcr_env
== NULL
)
1144 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1146 dcr
= &dcr_env
->dcrn
[dcrn
];
1147 if (dcr
->opaque
!= NULL
||
1148 dcr
->dcr_read
!= NULL
||
1149 dcr
->dcr_write
!= NULL
)
1151 dcr
->opaque
= opaque
;
1152 dcr
->dcr_read
= dcr_read
;
1153 dcr
->dcr_write
= dcr_write
;
1158 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1159 int (*write_error
)(int dcrn
))
1163 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1164 dcr_env
->read_error
= read_error
;
1165 dcr_env
->write_error
= write_error
;
1166 env
->dcr_env
= dcr_env
;
1171 /*****************************************************************************/
1173 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1185 printf("Set loglevel to %04" PRIx32
"\n", val
);
1186 cpu_set_log(val
| 0x100);
1191 /*****************************************************************************/
1193 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1195 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);
1198 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1200 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1203 static void NVRAM_set_byte(nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1205 nvram_write(nvram
, addr
, value
);
1208 static uint8_t NVRAM_get_byte(nvram_t
*nvram
, uint32_t addr
)
1210 return nvram_read(nvram
, addr
);
1213 static void NVRAM_set_word(nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1215 nvram_write(nvram
, addr
, value
>> 8);
1216 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1219 static uint16_t NVRAM_get_word(nvram_t
*nvram
, uint32_t addr
)
1223 tmp
= nvram_read(nvram
, addr
) << 8;
1224 tmp
|= nvram_read(nvram
, addr
+ 1);
1229 static void NVRAM_set_lword(nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1231 nvram_write(nvram
, addr
, value
>> 24);
1232 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1233 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1234 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1237 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1241 tmp
= nvram_read(nvram
, addr
) << 24;
1242 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1243 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1244 tmp
|= nvram_read(nvram
, addr
+ 3);
1249 static void NVRAM_set_string(nvram_t
*nvram
, uint32_t addr
, const char *str
,
1254 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1255 nvram_write(nvram
, addr
+ i
, str
[i
]);
1257 nvram_write(nvram
, addr
+ i
, str
[i
]);
1258 nvram_write(nvram
, addr
+ max
- 1, '\0');
1261 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1265 memset(dst
, 0, max
);
1266 for (i
= 0; i
< max
; i
++) {
1267 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1275 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1278 uint16_t pd
, pd1
, pd2
;
1283 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1284 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1285 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1290 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1293 uint16_t crc
= 0xFFFF;
1298 for (i
= 0; i
!= count
; i
++) {
1299 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1302 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1308 #define CMDLINE_ADDR 0x017ff000
1310 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1312 uint32_t RAM_size
, int boot_device
,
1313 uint32_t kernel_image
, uint32_t kernel_size
,
1314 const char *cmdline
,
1315 uint32_t initrd_image
, uint32_t initrd_size
,
1316 uint32_t NVRAM_image
,
1317 int width
, int height
, int depth
)
1321 /* Set parameters for Open Hack'Ware BIOS */
1322 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1323 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1324 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1325 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1326 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1327 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1328 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1329 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1331 /* XXX: put the cmdline in NVRAM too ? */
1332 pstrcpy_targphys("cmdline", CMDLINE_ADDR
, RAM_size
- CMDLINE_ADDR
, cmdline
);
1333 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1334 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1336 NVRAM_set_lword(nvram
, 0x40, 0);
1337 NVRAM_set_lword(nvram
, 0x44, 0);
1339 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1340 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1341 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1343 NVRAM_set_word(nvram
, 0x54, width
);
1344 NVRAM_set_word(nvram
, 0x56, height
);
1345 NVRAM_set_word(nvram
, 0x58, depth
);
1346 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1347 NVRAM_set_word(nvram
, 0xFC, crc
);