target-sh4: move intr_at_halt out of cpu_halted()
[qemu/agraf.git] / exec.c
blobd611100dc33982f0b51e0774db1418b13fde90a9
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
232 #else
233 static void map_exec(void *addr, long size)
235 unsigned long start, end, page_size;
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
248 #endif
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
256 SYSTEM_INFO system_info;
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
301 free(freep);
302 mmap_unlock();
304 #else
305 FILE *f;
307 last_brk = (unsigned long)sbrk(0);
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
329 } while (!feof(f));
331 fclose(f);
332 mmap_unlock();
334 #endif
336 #endif
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
341 PageDesc *pd;
342 void **lp;
343 int i;
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
384 #undef ALLOC
386 return pd + (index & (L2_SIZE - 1));
389 static inline PageDesc *page_find(tb_page_addr_t index)
391 return page_find_alloc(index, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
420 if (!alloc) {
421 return NULL;
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
432 return pd + (index & (L2_SIZE - 1));
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
437 return phys_page_find_alloc(index, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
460 static void code_gen_alloc(unsigned long tb_size)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
483 int flags;
484 void *start = NULL;
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
541 #endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
550 #else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553 #endif
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565 void cpu_exec_init_all(unsigned long tb_size)
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
570 page_init();
571 #if !defined(CONFIG_USER_ONLY)
572 io_mem_init();
573 #endif
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578 #endif
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
583 static int cpu_common_post_load(void *opaque, int version_id)
585 CPUState *env = opaque;
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
590 tlb_flush(env, 1);
592 return 0;
595 static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
607 #endif
609 CPUState *qemu_get_cpu(int cpu)
611 CPUState *env = first_cpu;
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
619 return env;
622 void cpu_exec_init(CPUState *env)
624 CPUState **penv;
625 int cpu_index;
627 #if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629 #endif
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
634 penv = &(*penv)->next_cpu;
635 cpu_index++;
637 env->cpu_index = cpu_index;
638 env->numa_node = 0;
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
641 *penv = env;
642 #if defined(CONFIG_USER_ONLY)
643 cpu_list_unlock();
644 #endif
645 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
646 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
647 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
648 cpu_save, cpu_load, env);
649 #endif
652 /* Allocate a new translation block. Flush the translation buffer if
653 too many translation blocks or too much generated code. */
654 static TranslationBlock *tb_alloc(target_ulong pc)
656 TranslationBlock *tb;
658 if (nb_tbs >= code_gen_max_blocks ||
659 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
660 return NULL;
661 tb = &tbs[nb_tbs++];
662 tb->pc = pc;
663 tb->cflags = 0;
664 return tb;
667 void tb_free(TranslationBlock *tb)
669 /* In practice this is mostly used for single use temporary TB
670 Ignore the hard cases and just back up if this TB happens to
671 be the last one generated. */
672 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
673 code_gen_ptr = tb->tc_ptr;
674 nb_tbs--;
678 static inline void invalidate_page_bitmap(PageDesc *p)
680 if (p->code_bitmap) {
681 qemu_free(p->code_bitmap);
682 p->code_bitmap = NULL;
684 p->code_write_count = 0;
687 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
689 static void page_flush_tb_1 (int level, void **lp)
691 int i;
693 if (*lp == NULL) {
694 return;
696 if (level == 0) {
697 PageDesc *pd = *lp;
698 for (i = 0; i < L2_SIZE; ++i) {
699 pd[i].first_tb = NULL;
700 invalidate_page_bitmap(pd + i);
702 } else {
703 void **pp = *lp;
704 for (i = 0; i < L2_SIZE; ++i) {
705 page_flush_tb_1 (level - 1, pp + i);
710 static void page_flush_tb(void)
712 int i;
713 for (i = 0; i < V_L1_SIZE; i++) {
714 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
718 /* flush all the translation blocks */
719 /* XXX: tb_flush is currently not thread safe */
720 void tb_flush(CPUState *env1)
722 CPUState *env;
723 #if defined(DEBUG_FLUSH)
724 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
725 (unsigned long)(code_gen_ptr - code_gen_buffer),
726 nb_tbs, nb_tbs > 0 ?
727 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
728 #endif
729 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
730 cpu_abort(env1, "Internal error: code buffer overflow\n");
732 nb_tbs = 0;
734 for(env = first_cpu; env != NULL; env = env->next_cpu) {
735 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
738 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
739 page_flush_tb();
741 code_gen_ptr = code_gen_buffer;
742 /* XXX: flush processor icache at this point if cache flush is
743 expensive */
744 tb_flush_count++;
747 #ifdef DEBUG_TB_CHECK
749 static void tb_invalidate_check(target_ulong address)
751 TranslationBlock *tb;
752 int i;
753 address &= TARGET_PAGE_MASK;
754 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
755 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
756 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
757 address >= tb->pc + tb->size)) {
758 printf("ERROR invalidate: address=" TARGET_FMT_lx
759 " PC=%08lx size=%04x\n",
760 address, (long)tb->pc, tb->size);
766 /* verify that all the pages have correct rights for code */
767 static void tb_page_check(void)
769 TranslationBlock *tb;
770 int i, flags1, flags2;
772 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
773 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
774 flags1 = page_get_flags(tb->pc);
775 flags2 = page_get_flags(tb->pc + tb->size - 1);
776 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
777 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
778 (long)tb->pc, tb->size, flags1, flags2);
784 #endif
786 /* invalidate one TB */
787 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
788 int next_offset)
790 TranslationBlock *tb1;
791 for(;;) {
792 tb1 = *ptb;
793 if (tb1 == tb) {
794 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
795 break;
797 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
803 TranslationBlock *tb1;
804 unsigned int n1;
806 for(;;) {
807 tb1 = *ptb;
808 n1 = (long)tb1 & 3;
809 tb1 = (TranslationBlock *)((long)tb1 & ~3);
810 if (tb1 == tb) {
811 *ptb = tb1->page_next[n1];
812 break;
814 ptb = &tb1->page_next[n1];
818 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
820 TranslationBlock *tb1, **ptb;
821 unsigned int n1;
823 ptb = &tb->jmp_next[n];
824 tb1 = *ptb;
825 if (tb1) {
826 /* find tb(n) in circular list */
827 for(;;) {
828 tb1 = *ptb;
829 n1 = (long)tb1 & 3;
830 tb1 = (TranslationBlock *)((long)tb1 & ~3);
831 if (n1 == n && tb1 == tb)
832 break;
833 if (n1 == 2) {
834 ptb = &tb1->jmp_first;
835 } else {
836 ptb = &tb1->jmp_next[n1];
839 /* now we can suppress tb(n) from the list */
840 *ptb = tb->jmp_next[n];
842 tb->jmp_next[n] = NULL;
846 /* reset the jump entry 'n' of a TB so that it is not chained to
847 another TB */
848 static inline void tb_reset_jump(TranslationBlock *tb, int n)
850 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
853 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
855 CPUState *env;
856 PageDesc *p;
857 unsigned int h, n1;
858 tb_page_addr_t phys_pc;
859 TranslationBlock *tb1, *tb2;
861 /* remove the TB from the hash list */
862 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
863 h = tb_phys_hash_func(phys_pc);
864 tb_remove(&tb_phys_hash[h], tb,
865 offsetof(TranslationBlock, phys_hash_next));
867 /* remove the TB from the page list */
868 if (tb->page_addr[0] != page_addr) {
869 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
870 tb_page_remove(&p->first_tb, tb);
871 invalidate_page_bitmap(p);
873 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
874 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
875 tb_page_remove(&p->first_tb, tb);
876 invalidate_page_bitmap(p);
879 tb_invalidated_flag = 1;
881 /* remove the TB from the hash list */
882 h = tb_jmp_cache_hash_func(tb->pc);
883 for(env = first_cpu; env != NULL; env = env->next_cpu) {
884 if (env->tb_jmp_cache[h] == tb)
885 env->tb_jmp_cache[h] = NULL;
888 /* suppress this TB from the two jump lists */
889 tb_jmp_remove(tb, 0);
890 tb_jmp_remove(tb, 1);
892 /* suppress any remaining jumps to this TB */
893 tb1 = tb->jmp_first;
894 for(;;) {
895 n1 = (long)tb1 & 3;
896 if (n1 == 2)
897 break;
898 tb1 = (TranslationBlock *)((long)tb1 & ~3);
899 tb2 = tb1->jmp_next[n1];
900 tb_reset_jump(tb1, n1);
901 tb1->jmp_next[n1] = NULL;
902 tb1 = tb2;
904 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
906 tb_phys_invalidate_count++;
909 static inline void set_bits(uint8_t *tab, int start, int len)
911 int end, mask, end1;
913 end = start + len;
914 tab += start >> 3;
915 mask = 0xff << (start & 7);
916 if ((start & ~7) == (end & ~7)) {
917 if (start < end) {
918 mask &= ~(0xff << (end & 7));
919 *tab |= mask;
921 } else {
922 *tab++ |= mask;
923 start = (start + 8) & ~7;
924 end1 = end & ~7;
925 while (start < end1) {
926 *tab++ = 0xff;
927 start += 8;
929 if (start < end) {
930 mask = ~(0xff << (end & 7));
931 *tab |= mask;
936 static void build_page_bitmap(PageDesc *p)
938 int n, tb_start, tb_end;
939 TranslationBlock *tb;
941 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
943 tb = p->first_tb;
944 while (tb != NULL) {
945 n = (long)tb & 3;
946 tb = (TranslationBlock *)((long)tb & ~3);
947 /* NOTE: this is subtle as a TB may span two physical pages */
948 if (n == 0) {
949 /* NOTE: tb_end may be after the end of the page, but
950 it is not a problem */
951 tb_start = tb->pc & ~TARGET_PAGE_MASK;
952 tb_end = tb_start + tb->size;
953 if (tb_end > TARGET_PAGE_SIZE)
954 tb_end = TARGET_PAGE_SIZE;
955 } else {
956 tb_start = 0;
957 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
959 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
960 tb = tb->page_next[n];
964 TranslationBlock *tb_gen_code(CPUState *env,
965 target_ulong pc, target_ulong cs_base,
966 int flags, int cflags)
968 TranslationBlock *tb;
969 uint8_t *tc_ptr;
970 tb_page_addr_t phys_pc, phys_page2;
971 target_ulong virt_page2;
972 int code_gen_size;
974 phys_pc = get_page_addr_code(env, pc);
975 tb = tb_alloc(pc);
976 if (!tb) {
977 /* flush must be done */
978 tb_flush(env);
979 /* cannot fail at this point */
980 tb = tb_alloc(pc);
981 /* Don't forget to invalidate previous TB info. */
982 tb_invalidated_flag = 1;
984 tc_ptr = code_gen_ptr;
985 tb->tc_ptr = tc_ptr;
986 tb->cs_base = cs_base;
987 tb->flags = flags;
988 tb->cflags = cflags;
989 cpu_gen_code(env, tb, &code_gen_size);
990 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
992 /* check next page if needed */
993 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
994 phys_page2 = -1;
995 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
996 phys_page2 = get_page_addr_code(env, virt_page2);
998 tb_link_page(tb, phys_pc, phys_page2);
999 return tb;
1002 /* invalidate all TBs which intersect with the target physical page
1003 starting in range [start;end[. NOTE: start and end must refer to
1004 the same physical page. 'is_cpu_write_access' should be true if called
1005 from a real cpu write access: the virtual CPU will exit the current
1006 TB if code is modified inside this TB. */
1007 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1008 int is_cpu_write_access)
1010 TranslationBlock *tb, *tb_next, *saved_tb;
1011 CPUState *env = cpu_single_env;
1012 tb_page_addr_t tb_start, tb_end;
1013 PageDesc *p;
1014 int n;
1015 #ifdef TARGET_HAS_PRECISE_SMC
1016 int current_tb_not_found = is_cpu_write_access;
1017 TranslationBlock *current_tb = NULL;
1018 int current_tb_modified = 0;
1019 target_ulong current_pc = 0;
1020 target_ulong current_cs_base = 0;
1021 int current_flags = 0;
1022 #endif /* TARGET_HAS_PRECISE_SMC */
1024 p = page_find(start >> TARGET_PAGE_BITS);
1025 if (!p)
1026 return;
1027 if (!p->code_bitmap &&
1028 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1029 is_cpu_write_access) {
1030 /* build code bitmap */
1031 build_page_bitmap(p);
1034 /* we remove all the TBs in the range [start, end[ */
1035 /* XXX: see if in some cases it could be faster to invalidate all the code */
1036 tb = p->first_tb;
1037 while (tb != NULL) {
1038 n = (long)tb & 3;
1039 tb = (TranslationBlock *)((long)tb & ~3);
1040 tb_next = tb->page_next[n];
1041 /* NOTE: this is subtle as a TB may span two physical pages */
1042 if (n == 0) {
1043 /* NOTE: tb_end may be after the end of the page, but
1044 it is not a problem */
1045 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1046 tb_end = tb_start + tb->size;
1047 } else {
1048 tb_start = tb->page_addr[1];
1049 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1051 if (!(tb_end <= start || tb_start >= end)) {
1052 #ifdef TARGET_HAS_PRECISE_SMC
1053 if (current_tb_not_found) {
1054 current_tb_not_found = 0;
1055 current_tb = NULL;
1056 if (env->mem_io_pc) {
1057 /* now we have a real cpu fault */
1058 current_tb = tb_find_pc(env->mem_io_pc);
1061 if (current_tb == tb &&
1062 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1063 /* If we are modifying the current TB, we must stop
1064 its execution. We could be more precise by checking
1065 that the modification is after the current PC, but it
1066 would require a specialized function to partially
1067 restore the CPU state */
1069 current_tb_modified = 1;
1070 cpu_restore_state(current_tb, env,
1071 env->mem_io_pc, NULL);
1072 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1073 &current_flags);
1075 #endif /* TARGET_HAS_PRECISE_SMC */
1076 /* we need to do that to handle the case where a signal
1077 occurs while doing tb_phys_invalidate() */
1078 saved_tb = NULL;
1079 if (env) {
1080 saved_tb = env->current_tb;
1081 env->current_tb = NULL;
1083 tb_phys_invalidate(tb, -1);
1084 if (env) {
1085 env->current_tb = saved_tb;
1086 if (env->interrupt_request && env->current_tb)
1087 cpu_interrupt(env, env->interrupt_request);
1090 tb = tb_next;
1092 #if !defined(CONFIG_USER_ONLY)
1093 /* if no code remaining, no need to continue to use slow writes */
1094 if (!p->first_tb) {
1095 invalidate_page_bitmap(p);
1096 if (is_cpu_write_access) {
1097 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1100 #endif
1101 #ifdef TARGET_HAS_PRECISE_SMC
1102 if (current_tb_modified) {
1103 /* we generate a block containing just the instruction
1104 modifying the memory. It will ensure that it cannot modify
1105 itself */
1106 env->current_tb = NULL;
1107 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1108 cpu_resume_from_signal(env, NULL);
1110 #endif
1113 /* len must be <= 8 and start must be a multiple of len */
1114 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1116 PageDesc *p;
1117 int offset, b;
1118 #if 0
1119 if (1) {
1120 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1121 cpu_single_env->mem_io_vaddr, len,
1122 cpu_single_env->eip,
1123 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1125 #endif
1126 p = page_find(start >> TARGET_PAGE_BITS);
1127 if (!p)
1128 return;
1129 if (p->code_bitmap) {
1130 offset = start & ~TARGET_PAGE_MASK;
1131 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1132 if (b & ((1 << len) - 1))
1133 goto do_invalidate;
1134 } else {
1135 do_invalidate:
1136 tb_invalidate_phys_page_range(start, start + len, 1);
1140 #if !defined(CONFIG_SOFTMMU)
1141 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1142 unsigned long pc, void *puc)
1144 TranslationBlock *tb;
1145 PageDesc *p;
1146 int n;
1147 #ifdef TARGET_HAS_PRECISE_SMC
1148 TranslationBlock *current_tb = NULL;
1149 CPUState *env = cpu_single_env;
1150 int current_tb_modified = 0;
1151 target_ulong current_pc = 0;
1152 target_ulong current_cs_base = 0;
1153 int current_flags = 0;
1154 #endif
1156 addr &= TARGET_PAGE_MASK;
1157 p = page_find(addr >> TARGET_PAGE_BITS);
1158 if (!p)
1159 return;
1160 tb = p->first_tb;
1161 #ifdef TARGET_HAS_PRECISE_SMC
1162 if (tb && pc != 0) {
1163 current_tb = tb_find_pc(pc);
1165 #endif
1166 while (tb != NULL) {
1167 n = (long)tb & 3;
1168 tb = (TranslationBlock *)((long)tb & ~3);
1169 #ifdef TARGET_HAS_PRECISE_SMC
1170 if (current_tb == tb &&
1171 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1172 /* If we are modifying the current TB, we must stop
1173 its execution. We could be more precise by checking
1174 that the modification is after the current PC, but it
1175 would require a specialized function to partially
1176 restore the CPU state */
1178 current_tb_modified = 1;
1179 cpu_restore_state(current_tb, env, pc, puc);
1180 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1181 &current_flags);
1183 #endif /* TARGET_HAS_PRECISE_SMC */
1184 tb_phys_invalidate(tb, addr);
1185 tb = tb->page_next[n];
1187 p->first_tb = NULL;
1188 #ifdef TARGET_HAS_PRECISE_SMC
1189 if (current_tb_modified) {
1190 /* we generate a block containing just the instruction
1191 modifying the memory. It will ensure that it cannot modify
1192 itself */
1193 env->current_tb = NULL;
1194 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1195 cpu_resume_from_signal(env, puc);
1197 #endif
1199 #endif
1201 /* add the tb in the target page and protect it if necessary */
1202 static inline void tb_alloc_page(TranslationBlock *tb,
1203 unsigned int n, tb_page_addr_t page_addr)
1205 PageDesc *p;
1206 TranslationBlock *last_first_tb;
1208 tb->page_addr[n] = page_addr;
1209 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1210 tb->page_next[n] = p->first_tb;
1211 last_first_tb = p->first_tb;
1212 p->first_tb = (TranslationBlock *)((long)tb | n);
1213 invalidate_page_bitmap(p);
1215 #if defined(TARGET_HAS_SMC) || 1
1217 #if defined(CONFIG_USER_ONLY)
1218 if (p->flags & PAGE_WRITE) {
1219 target_ulong addr;
1220 PageDesc *p2;
1221 int prot;
1223 /* force the host page as non writable (writes will have a
1224 page fault + mprotect overhead) */
1225 page_addr &= qemu_host_page_mask;
1226 prot = 0;
1227 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1228 addr += TARGET_PAGE_SIZE) {
1230 p2 = page_find (addr >> TARGET_PAGE_BITS);
1231 if (!p2)
1232 continue;
1233 prot |= p2->flags;
1234 p2->flags &= ~PAGE_WRITE;
1236 mprotect(g2h(page_addr), qemu_host_page_size,
1237 (prot & PAGE_BITS) & ~PAGE_WRITE);
1238 #ifdef DEBUG_TB_INVALIDATE
1239 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1240 page_addr);
1241 #endif
1243 #else
1244 /* if some code is already present, then the pages are already
1245 protected. So we handle the case where only the first TB is
1246 allocated in a physical page */
1247 if (!last_first_tb) {
1248 tlb_protect_code(page_addr);
1250 #endif
1252 #endif /* TARGET_HAS_SMC */
1255 /* add a new TB and link it to the physical page tables. phys_page2 is
1256 (-1) to indicate that only one page contains the TB. */
1257 void tb_link_page(TranslationBlock *tb,
1258 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1260 unsigned int h;
1261 TranslationBlock **ptb;
1263 /* Grab the mmap lock to stop another thread invalidating this TB
1264 before we are done. */
1265 mmap_lock();
1266 /* add in the physical hash table */
1267 h = tb_phys_hash_func(phys_pc);
1268 ptb = &tb_phys_hash[h];
1269 tb->phys_hash_next = *ptb;
1270 *ptb = tb;
1272 /* add in the page list */
1273 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1274 if (phys_page2 != -1)
1275 tb_alloc_page(tb, 1, phys_page2);
1276 else
1277 tb->page_addr[1] = -1;
1279 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1280 tb->jmp_next[0] = NULL;
1281 tb->jmp_next[1] = NULL;
1283 /* init original jump addresses */
1284 if (tb->tb_next_offset[0] != 0xffff)
1285 tb_reset_jump(tb, 0);
1286 if (tb->tb_next_offset[1] != 0xffff)
1287 tb_reset_jump(tb, 1);
1289 #ifdef DEBUG_TB_CHECK
1290 tb_page_check();
1291 #endif
1292 mmap_unlock();
1295 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1296 tb[1].tc_ptr. Return NULL if not found */
1297 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1299 int m_min, m_max, m;
1300 unsigned long v;
1301 TranslationBlock *tb;
1303 if (nb_tbs <= 0)
1304 return NULL;
1305 if (tc_ptr < (unsigned long)code_gen_buffer ||
1306 tc_ptr >= (unsigned long)code_gen_ptr)
1307 return NULL;
1308 /* binary search (cf Knuth) */
1309 m_min = 0;
1310 m_max = nb_tbs - 1;
1311 while (m_min <= m_max) {
1312 m = (m_min + m_max) >> 1;
1313 tb = &tbs[m];
1314 v = (unsigned long)tb->tc_ptr;
1315 if (v == tc_ptr)
1316 return tb;
1317 else if (tc_ptr < v) {
1318 m_max = m - 1;
1319 } else {
1320 m_min = m + 1;
1323 return &tbs[m_max];
1326 static void tb_reset_jump_recursive(TranslationBlock *tb);
1328 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1330 TranslationBlock *tb1, *tb_next, **ptb;
1331 unsigned int n1;
1333 tb1 = tb->jmp_next[n];
1334 if (tb1 != NULL) {
1335 /* find head of list */
1336 for(;;) {
1337 n1 = (long)tb1 & 3;
1338 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1339 if (n1 == 2)
1340 break;
1341 tb1 = tb1->jmp_next[n1];
1343 /* we are now sure now that tb jumps to tb1 */
1344 tb_next = tb1;
1346 /* remove tb from the jmp_first list */
1347 ptb = &tb_next->jmp_first;
1348 for(;;) {
1349 tb1 = *ptb;
1350 n1 = (long)tb1 & 3;
1351 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1352 if (n1 == n && tb1 == tb)
1353 break;
1354 ptb = &tb1->jmp_next[n1];
1356 *ptb = tb->jmp_next[n];
1357 tb->jmp_next[n] = NULL;
1359 /* suppress the jump to next tb in generated code */
1360 tb_reset_jump(tb, n);
1362 /* suppress jumps in the tb on which we could have jumped */
1363 tb_reset_jump_recursive(tb_next);
1367 static void tb_reset_jump_recursive(TranslationBlock *tb)
1369 tb_reset_jump_recursive2(tb, 0);
1370 tb_reset_jump_recursive2(tb, 1);
1373 #if defined(TARGET_HAS_ICE)
1374 #if defined(CONFIG_USER_ONLY)
1375 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1377 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1379 #else
1380 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1382 target_phys_addr_t addr;
1383 target_ulong pd;
1384 ram_addr_t ram_addr;
1385 PhysPageDesc *p;
1387 addr = cpu_get_phys_page_debug(env, pc);
1388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1389 if (!p) {
1390 pd = IO_MEM_UNASSIGNED;
1391 } else {
1392 pd = p->phys_offset;
1394 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1395 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1397 #endif
1398 #endif /* TARGET_HAS_ICE */
1400 #if defined(CONFIG_USER_ONLY)
1401 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1407 int flags, CPUWatchpoint **watchpoint)
1409 return -ENOSYS;
1411 #else
1412 /* Add a watchpoint. */
1413 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1414 int flags, CPUWatchpoint **watchpoint)
1416 target_ulong len_mask = ~(len - 1);
1417 CPUWatchpoint *wp;
1419 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1420 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1421 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1422 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1423 return -EINVAL;
1425 wp = qemu_malloc(sizeof(*wp));
1427 wp->vaddr = addr;
1428 wp->len_mask = len_mask;
1429 wp->flags = flags;
1431 /* keep all GDB-injected watchpoints in front */
1432 if (flags & BP_GDB)
1433 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1434 else
1435 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1437 tlb_flush_page(env, addr);
1439 if (watchpoint)
1440 *watchpoint = wp;
1441 return 0;
1444 /* Remove a specific watchpoint. */
1445 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1446 int flags)
1448 target_ulong len_mask = ~(len - 1);
1449 CPUWatchpoint *wp;
1451 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1452 if (addr == wp->vaddr && len_mask == wp->len_mask
1453 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1454 cpu_watchpoint_remove_by_ref(env, wp);
1455 return 0;
1458 return -ENOENT;
1461 /* Remove a specific watchpoint by reference. */
1462 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1464 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1466 tlb_flush_page(env, watchpoint->vaddr);
1468 qemu_free(watchpoint);
1471 /* Remove all matching watchpoints. */
1472 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1474 CPUWatchpoint *wp, *next;
1476 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1477 if (wp->flags & mask)
1478 cpu_watchpoint_remove_by_ref(env, wp);
1481 #endif
1483 /* Add a breakpoint. */
1484 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1485 CPUBreakpoint **breakpoint)
1487 #if defined(TARGET_HAS_ICE)
1488 CPUBreakpoint *bp;
1490 bp = qemu_malloc(sizeof(*bp));
1492 bp->pc = pc;
1493 bp->flags = flags;
1495 /* keep all GDB-injected breakpoints in front */
1496 if (flags & BP_GDB)
1497 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1498 else
1499 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1501 breakpoint_invalidate(env, pc);
1503 if (breakpoint)
1504 *breakpoint = bp;
1505 return 0;
1506 #else
1507 return -ENOSYS;
1508 #endif
1511 /* Remove a specific breakpoint. */
1512 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1514 #if defined(TARGET_HAS_ICE)
1515 CPUBreakpoint *bp;
1517 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1518 if (bp->pc == pc && bp->flags == flags) {
1519 cpu_breakpoint_remove_by_ref(env, bp);
1520 return 0;
1523 return -ENOENT;
1524 #else
1525 return -ENOSYS;
1526 #endif
1529 /* Remove a specific breakpoint by reference. */
1530 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1532 #if defined(TARGET_HAS_ICE)
1533 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1535 breakpoint_invalidate(env, breakpoint->pc);
1537 qemu_free(breakpoint);
1538 #endif
1541 /* Remove all matching breakpoints. */
1542 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1544 #if defined(TARGET_HAS_ICE)
1545 CPUBreakpoint *bp, *next;
1547 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1548 if (bp->flags & mask)
1549 cpu_breakpoint_remove_by_ref(env, bp);
1551 #endif
1554 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1555 CPU loop after each instruction */
1556 void cpu_single_step(CPUState *env, int enabled)
1558 #if defined(TARGET_HAS_ICE)
1559 if (env->singlestep_enabled != enabled) {
1560 env->singlestep_enabled = enabled;
1561 if (kvm_enabled())
1562 kvm_update_guest_debug(env, 0);
1563 else {
1564 /* must flush all the translated code to avoid inconsistencies */
1565 /* XXX: only flush what is necessary */
1566 tb_flush(env);
1569 #endif
1572 /* enable or disable low levels log */
1573 void cpu_set_log(int log_flags)
1575 loglevel = log_flags;
1576 if (loglevel && !logfile) {
1577 logfile = fopen(logfilename, log_append ? "a" : "w");
1578 if (!logfile) {
1579 perror(logfilename);
1580 _exit(1);
1582 #if !defined(CONFIG_SOFTMMU)
1583 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1585 static char logfile_buf[4096];
1586 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1588 #elif !defined(_WIN32)
1589 /* Win32 doesn't support line-buffering and requires size >= 2 */
1590 setvbuf(logfile, NULL, _IOLBF, 0);
1591 #endif
1592 log_append = 1;
1594 if (!loglevel && logfile) {
1595 fclose(logfile);
1596 logfile = NULL;
1600 void cpu_set_log_filename(const char *filename)
1602 logfilename = strdup(filename);
1603 if (logfile) {
1604 fclose(logfile);
1605 logfile = NULL;
1607 cpu_set_log(loglevel);
1610 static void cpu_unlink_tb(CPUState *env)
1612 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1613 problem and hope the cpu will stop of its own accord. For userspace
1614 emulation this often isn't actually as bad as it sounds. Often
1615 signals are used primarily to interrupt blocking syscalls. */
1616 TranslationBlock *tb;
1617 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1619 spin_lock(&interrupt_lock);
1620 tb = env->current_tb;
1621 /* if the cpu is currently executing code, we must unlink it and
1622 all the potentially executing TB */
1623 if (tb) {
1624 env->current_tb = NULL;
1625 tb_reset_jump_recursive(tb);
1627 spin_unlock(&interrupt_lock);
1630 /* mask must never be zero, except for A20 change call */
1631 void cpu_interrupt(CPUState *env, int mask)
1633 int old_mask;
1635 old_mask = env->interrupt_request;
1636 env->interrupt_request |= mask;
1638 #ifndef CONFIG_USER_ONLY
1640 * If called from iothread context, wake the target cpu in
1641 * case its halted.
1643 if (!qemu_cpu_self(env)) {
1644 qemu_cpu_kick(env);
1645 return;
1647 #endif
1649 if (use_icount) {
1650 env->icount_decr.u16.high = 0xffff;
1651 #ifndef CONFIG_USER_ONLY
1652 if (!can_do_io(env)
1653 && (mask & ~old_mask) != 0) {
1654 cpu_abort(env, "Raised interrupt while not in I/O function");
1656 #endif
1657 } else {
1658 cpu_unlink_tb(env);
1662 void cpu_reset_interrupt(CPUState *env, int mask)
1664 env->interrupt_request &= ~mask;
1667 void cpu_exit(CPUState *env)
1669 env->exit_request = 1;
1670 cpu_unlink_tb(env);
1673 const CPULogItem cpu_log_items[] = {
1674 { CPU_LOG_TB_OUT_ASM, "out_asm",
1675 "show generated host assembly code for each compiled TB" },
1676 { CPU_LOG_TB_IN_ASM, "in_asm",
1677 "show target assembly code for each compiled TB" },
1678 { CPU_LOG_TB_OP, "op",
1679 "show micro ops for each compiled TB" },
1680 { CPU_LOG_TB_OP_OPT, "op_opt",
1681 "show micro ops "
1682 #ifdef TARGET_I386
1683 "before eflags optimization and "
1684 #endif
1685 "after liveness analysis" },
1686 { CPU_LOG_INT, "int",
1687 "show interrupts/exceptions in short format" },
1688 { CPU_LOG_EXEC, "exec",
1689 "show trace before each executed TB (lots of logs)" },
1690 { CPU_LOG_TB_CPU, "cpu",
1691 "show CPU state before block translation" },
1692 #ifdef TARGET_I386
1693 { CPU_LOG_PCALL, "pcall",
1694 "show protected mode far calls/returns/exceptions" },
1695 { CPU_LOG_RESET, "cpu_reset",
1696 "show CPU state before CPU resets" },
1697 #endif
1698 #ifdef DEBUG_IOPORT
1699 { CPU_LOG_IOPORT, "ioport",
1700 "show all i/o ports accesses" },
1701 #endif
1702 { 0, NULL, NULL },
1705 #ifndef CONFIG_USER_ONLY
1706 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1707 = QLIST_HEAD_INITIALIZER(memory_client_list);
1709 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1710 ram_addr_t size,
1711 ram_addr_t phys_offset)
1713 CPUPhysMemoryClient *client;
1714 QLIST_FOREACH(client, &memory_client_list, list) {
1715 client->set_memory(client, start_addr, size, phys_offset);
1719 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1720 target_phys_addr_t end)
1722 CPUPhysMemoryClient *client;
1723 QLIST_FOREACH(client, &memory_client_list, list) {
1724 int r = client->sync_dirty_bitmap(client, start, end);
1725 if (r < 0)
1726 return r;
1728 return 0;
1731 static int cpu_notify_migration_log(int enable)
1733 CPUPhysMemoryClient *client;
1734 QLIST_FOREACH(client, &memory_client_list, list) {
1735 int r = client->migration_log(client, enable);
1736 if (r < 0)
1737 return r;
1739 return 0;
1742 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1743 int level, void **lp)
1745 int i;
1747 if (*lp == NULL) {
1748 return;
1750 if (level == 0) {
1751 PhysPageDesc *pd = *lp;
1752 for (i = 0; i < L2_SIZE; ++i) {
1753 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1754 client->set_memory(client, pd[i].region_offset,
1755 TARGET_PAGE_SIZE, pd[i].phys_offset);
1758 } else {
1759 void **pp = *lp;
1760 for (i = 0; i < L2_SIZE; ++i) {
1761 phys_page_for_each_1(client, level - 1, pp + i);
1766 static void phys_page_for_each(CPUPhysMemoryClient *client)
1768 int i;
1769 for (i = 0; i < P_L1_SIZE; ++i) {
1770 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1771 l1_phys_map + 1);
1775 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1777 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1778 phys_page_for_each(client);
1781 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1783 QLIST_REMOVE(client, list);
1785 #endif
1787 static int cmp1(const char *s1, int n, const char *s2)
1789 if (strlen(s2) != n)
1790 return 0;
1791 return memcmp(s1, s2, n) == 0;
1794 /* takes a comma separated list of log masks. Return 0 if error. */
1795 int cpu_str_to_log_mask(const char *str)
1797 const CPULogItem *item;
1798 int mask;
1799 const char *p, *p1;
1801 p = str;
1802 mask = 0;
1803 for(;;) {
1804 p1 = strchr(p, ',');
1805 if (!p1)
1806 p1 = p + strlen(p);
1807 if(cmp1(p,p1-p,"all")) {
1808 for(item = cpu_log_items; item->mask != 0; item++) {
1809 mask |= item->mask;
1811 } else {
1812 for(item = cpu_log_items; item->mask != 0; item++) {
1813 if (cmp1(p, p1 - p, item->name))
1814 goto found;
1816 return 0;
1818 found:
1819 mask |= item->mask;
1820 if (*p1 != ',')
1821 break;
1822 p = p1 + 1;
1824 return mask;
1827 void cpu_abort(CPUState *env, const char *fmt, ...)
1829 va_list ap;
1830 va_list ap2;
1832 va_start(ap, fmt);
1833 va_copy(ap2, ap);
1834 fprintf(stderr, "qemu: fatal: ");
1835 vfprintf(stderr, fmt, ap);
1836 fprintf(stderr, "\n");
1837 #ifdef TARGET_I386
1838 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1839 #else
1840 cpu_dump_state(env, stderr, fprintf, 0);
1841 #endif
1842 if (qemu_log_enabled()) {
1843 qemu_log("qemu: fatal: ");
1844 qemu_log_vprintf(fmt, ap2);
1845 qemu_log("\n");
1846 #ifdef TARGET_I386
1847 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1848 #else
1849 log_cpu_state(env, 0);
1850 #endif
1851 qemu_log_flush();
1852 qemu_log_close();
1854 va_end(ap2);
1855 va_end(ap);
1856 #if defined(CONFIG_USER_ONLY)
1858 struct sigaction act;
1859 sigfillset(&act.sa_mask);
1860 act.sa_handler = SIG_DFL;
1861 sigaction(SIGABRT, &act, NULL);
1863 #endif
1864 abort();
1867 CPUState *cpu_copy(CPUState *env)
1869 CPUState *new_env = cpu_init(env->cpu_model_str);
1870 CPUState *next_cpu = new_env->next_cpu;
1871 int cpu_index = new_env->cpu_index;
1872 #if defined(TARGET_HAS_ICE)
1873 CPUBreakpoint *bp;
1874 CPUWatchpoint *wp;
1875 #endif
1877 memcpy(new_env, env, sizeof(CPUState));
1879 /* Preserve chaining and index. */
1880 new_env->next_cpu = next_cpu;
1881 new_env->cpu_index = cpu_index;
1883 /* Clone all break/watchpoints.
1884 Note: Once we support ptrace with hw-debug register access, make sure
1885 BP_CPU break/watchpoints are handled correctly on clone. */
1886 QTAILQ_INIT(&env->breakpoints);
1887 QTAILQ_INIT(&env->watchpoints);
1888 #if defined(TARGET_HAS_ICE)
1889 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1890 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1892 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1893 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1894 wp->flags, NULL);
1896 #endif
1898 return new_env;
1901 #if !defined(CONFIG_USER_ONLY)
1903 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1905 unsigned int i;
1907 /* Discard jump cache entries for any tb which might potentially
1908 overlap the flushed page. */
1909 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1910 memset (&env->tb_jmp_cache[i], 0,
1911 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1913 i = tb_jmp_cache_hash_page(addr);
1914 memset (&env->tb_jmp_cache[i], 0,
1915 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1918 static CPUTLBEntry s_cputlb_empty_entry = {
1919 .addr_read = -1,
1920 .addr_write = -1,
1921 .addr_code = -1,
1922 .addend = -1,
1925 /* NOTE: if flush_global is true, also flush global entries (not
1926 implemented yet) */
1927 void tlb_flush(CPUState *env, int flush_global)
1929 int i;
1931 #if defined(DEBUG_TLB)
1932 printf("tlb_flush:\n");
1933 #endif
1934 /* must reset current TB so that interrupts cannot modify the
1935 links while we are modifying them */
1936 env->current_tb = NULL;
1938 for(i = 0; i < CPU_TLB_SIZE; i++) {
1939 int mmu_idx;
1940 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1941 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1945 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1947 env->tlb_flush_addr = -1;
1948 env->tlb_flush_mask = 0;
1949 tlb_flush_count++;
1952 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1954 if (addr == (tlb_entry->addr_read &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_write &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1958 addr == (tlb_entry->addr_code &
1959 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1960 *tlb_entry = s_cputlb_empty_entry;
1964 void tlb_flush_page(CPUState *env, target_ulong addr)
1966 int i;
1967 int mmu_idx;
1969 #if defined(DEBUG_TLB)
1970 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1971 #endif
1972 /* Check if we need to flush due to large pages. */
1973 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1974 #if defined(DEBUG_TLB)
1975 printf("tlb_flush_page: forced full flush ("
1976 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1977 env->tlb_flush_addr, env->tlb_flush_mask);
1978 #endif
1979 tlb_flush(env, 1);
1980 return;
1982 /* must reset current TB so that interrupts cannot modify the
1983 links while we are modifying them */
1984 env->current_tb = NULL;
1986 addr &= TARGET_PAGE_MASK;
1987 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1988 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1989 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1991 tlb_flush_jmp_cache(env, addr);
1994 /* update the TLBs so that writes to code in the virtual page 'addr'
1995 can be detected */
1996 static void tlb_protect_code(ram_addr_t ram_addr)
1998 cpu_physical_memory_reset_dirty(ram_addr,
1999 ram_addr + TARGET_PAGE_SIZE,
2000 CODE_DIRTY_FLAG);
2003 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2004 tested for self modifying code */
2005 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2006 target_ulong vaddr)
2008 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2011 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2012 unsigned long start, unsigned long length)
2014 unsigned long addr;
2015 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2016 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2017 if ((addr - start) < length) {
2018 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2023 /* Note: start and end must be within the same ram block. */
2024 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2025 int dirty_flags)
2027 CPUState *env;
2028 unsigned long length, start1;
2029 int i;
2031 start &= TARGET_PAGE_MASK;
2032 end = TARGET_PAGE_ALIGN(end);
2034 length = end - start;
2035 if (length == 0)
2036 return;
2037 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2039 /* we modify the TLB cache so that the dirty bit will be set again
2040 when accessing the range */
2041 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2042 /* Chek that we don't span multiple blocks - this breaks the
2043 address comparisons below. */
2044 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2045 != (end - 1) - start) {
2046 abort();
2049 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2050 int mmu_idx;
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2052 for(i = 0; i < CPU_TLB_SIZE; i++)
2053 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2054 start1, length);
2059 int cpu_physical_memory_set_dirty_tracking(int enable)
2061 int ret = 0;
2062 in_migration = enable;
2063 ret = cpu_notify_migration_log(!!enable);
2064 return ret;
2067 int cpu_physical_memory_get_dirty_tracking(void)
2069 return in_migration;
2072 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2073 target_phys_addr_t end_addr)
2075 int ret;
2077 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2078 return ret;
2081 int cpu_physical_log_start(target_phys_addr_t start_addr,
2082 ram_addr_t size)
2084 CPUPhysMemoryClient *client;
2085 QLIST_FOREACH(client, &memory_client_list, list) {
2086 if (client->log_start) {
2087 int r = client->log_start(client, start_addr, size);
2088 if (r < 0) {
2089 return r;
2093 return 0;
2096 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2097 ram_addr_t size)
2099 CPUPhysMemoryClient *client;
2100 QLIST_FOREACH(client, &memory_client_list, list) {
2101 if (client->log_stop) {
2102 int r = client->log_stop(client, start_addr, size);
2103 if (r < 0) {
2104 return r;
2108 return 0;
2111 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2113 ram_addr_t ram_addr;
2114 void *p;
2116 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2117 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2118 + tlb_entry->addend);
2119 ram_addr = qemu_ram_addr_from_host_nofail(p);
2120 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2121 tlb_entry->addr_write |= TLB_NOTDIRTY;
2126 /* update the TLB according to the current state of the dirty bits */
2127 void cpu_tlb_update_dirty(CPUState *env)
2129 int i;
2130 int mmu_idx;
2131 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2132 for(i = 0; i < CPU_TLB_SIZE; i++)
2133 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2137 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2139 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2140 tlb_entry->addr_write = vaddr;
2143 /* update the TLB corresponding to virtual page vaddr
2144 so that it is no longer dirty */
2145 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2147 int i;
2148 int mmu_idx;
2150 vaddr &= TARGET_PAGE_MASK;
2151 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2153 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2156 /* Our TLB does not support large pages, so remember the area covered by
2157 large pages and trigger a full TLB flush if these are invalidated. */
2158 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2159 target_ulong size)
2161 target_ulong mask = ~(size - 1);
2163 if (env->tlb_flush_addr == (target_ulong)-1) {
2164 env->tlb_flush_addr = vaddr & mask;
2165 env->tlb_flush_mask = mask;
2166 return;
2168 /* Extend the existing region to include the new page.
2169 This is a compromise between unnecessary flushes and the cost
2170 of maintaining a full variable size TLB. */
2171 mask &= env->tlb_flush_mask;
2172 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2173 mask <<= 1;
2175 env->tlb_flush_addr &= mask;
2176 env->tlb_flush_mask = mask;
2179 /* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182 void tlb_set_page(CPUState *env, target_ulong vaddr,
2183 target_phys_addr_t paddr, int prot,
2184 int mmu_idx, target_ulong size)
2186 PhysPageDesc *p;
2187 unsigned long pd;
2188 unsigned int index;
2189 target_ulong address;
2190 target_ulong code_address;
2191 unsigned long addend;
2192 CPUTLBEntry *te;
2193 CPUWatchpoint *wp;
2194 target_phys_addr_t iotlb;
2196 assert(size >= TARGET_PAGE_SIZE);
2197 if (size != TARGET_PAGE_SIZE) {
2198 tlb_add_large_page(env, vaddr, size);
2200 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2201 if (!p) {
2202 pd = IO_MEM_UNASSIGNED;
2203 } else {
2204 pd = p->phys_offset;
2206 #if defined(DEBUG_TLB)
2207 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2208 " prot=%x idx=%d pd=0x%08lx\n",
2209 vaddr, paddr, prot, mmu_idx, pd);
2210 #endif
2212 address = vaddr;
2213 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2214 /* IO memory case (romd handled later) */
2215 address |= TLB_MMIO;
2217 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2218 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2219 /* Normal RAM. */
2220 iotlb = pd & TARGET_PAGE_MASK;
2221 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2222 iotlb |= IO_MEM_NOTDIRTY;
2223 else
2224 iotlb |= IO_MEM_ROM;
2225 } else {
2226 /* IO handlers are currently passed a physical address.
2227 It would be nice to pass an offset from the base address
2228 of that region. This would avoid having to special case RAM,
2229 and avoid full address decoding in every device.
2230 We can't use the high bits of pd for this because
2231 IO_MEM_ROMD uses these as a ram address. */
2232 iotlb = (pd & ~TARGET_PAGE_MASK);
2233 if (p) {
2234 iotlb += p->region_offset;
2235 } else {
2236 iotlb += paddr;
2240 code_address = address;
2241 /* Make accesses to pages with watchpoints go via the
2242 watchpoint trap routines. */
2243 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2244 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2245 /* Avoid trapping reads of pages with a write breakpoint. */
2246 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2247 iotlb = io_mem_watch + paddr;
2248 address |= TLB_MMIO;
2249 break;
2254 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2255 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2256 te = &env->tlb_table[mmu_idx][index];
2257 te->addend = addend - vaddr;
2258 if (prot & PAGE_READ) {
2259 te->addr_read = address;
2260 } else {
2261 te->addr_read = -1;
2264 if (prot & PAGE_EXEC) {
2265 te->addr_code = code_address;
2266 } else {
2267 te->addr_code = -1;
2269 if (prot & PAGE_WRITE) {
2270 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2271 (pd & IO_MEM_ROMD)) {
2272 /* Write access calls the I/O callback. */
2273 te->addr_write = address | TLB_MMIO;
2274 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2275 !cpu_physical_memory_is_dirty(pd)) {
2276 te->addr_write = address | TLB_NOTDIRTY;
2277 } else {
2278 te->addr_write = address;
2280 } else {
2281 te->addr_write = -1;
2285 #else
2287 void tlb_flush(CPUState *env, int flush_global)
2291 void tlb_flush_page(CPUState *env, target_ulong addr)
2296 * Walks guest process memory "regions" one by one
2297 * and calls callback function 'fn' for each region.
2300 struct walk_memory_regions_data
2302 walk_memory_regions_fn fn;
2303 void *priv;
2304 unsigned long start;
2305 int prot;
2308 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2309 abi_ulong end, int new_prot)
2311 if (data->start != -1ul) {
2312 int rc = data->fn(data->priv, data->start, end, data->prot);
2313 if (rc != 0) {
2314 return rc;
2318 data->start = (new_prot ? end : -1ul);
2319 data->prot = new_prot;
2321 return 0;
2324 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2325 abi_ulong base, int level, void **lp)
2327 abi_ulong pa;
2328 int i, rc;
2330 if (*lp == NULL) {
2331 return walk_memory_regions_end(data, base, 0);
2334 if (level == 0) {
2335 PageDesc *pd = *lp;
2336 for (i = 0; i < L2_SIZE; ++i) {
2337 int prot = pd[i].flags;
2339 pa = base | (i << TARGET_PAGE_BITS);
2340 if (prot != data->prot) {
2341 rc = walk_memory_regions_end(data, pa, prot);
2342 if (rc != 0) {
2343 return rc;
2347 } else {
2348 void **pp = *lp;
2349 for (i = 0; i < L2_SIZE; ++i) {
2350 pa = base | ((abi_ulong)i <<
2351 (TARGET_PAGE_BITS + L2_BITS * level));
2352 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2353 if (rc != 0) {
2354 return rc;
2359 return 0;
2362 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2364 struct walk_memory_regions_data data;
2365 unsigned long i;
2367 data.fn = fn;
2368 data.priv = priv;
2369 data.start = -1ul;
2370 data.prot = 0;
2372 for (i = 0; i < V_L1_SIZE; i++) {
2373 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2374 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2375 if (rc != 0) {
2376 return rc;
2380 return walk_memory_regions_end(&data, 0, 0);
2383 static int dump_region(void *priv, abi_ulong start,
2384 abi_ulong end, unsigned long prot)
2386 FILE *f = (FILE *)priv;
2388 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2389 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2390 start, end, end - start,
2391 ((prot & PAGE_READ) ? 'r' : '-'),
2392 ((prot & PAGE_WRITE) ? 'w' : '-'),
2393 ((prot & PAGE_EXEC) ? 'x' : '-'));
2395 return (0);
2398 /* dump memory mappings */
2399 void page_dump(FILE *f)
2401 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2402 "start", "end", "size", "prot");
2403 walk_memory_regions(f, dump_region);
2406 int page_get_flags(target_ulong address)
2408 PageDesc *p;
2410 p = page_find(address >> TARGET_PAGE_BITS);
2411 if (!p)
2412 return 0;
2413 return p->flags;
2416 /* Modify the flags of a page and invalidate the code if necessary.
2417 The flag PAGE_WRITE_ORG is positioned automatically depending
2418 on PAGE_WRITE. The mmap_lock should already be held. */
2419 void page_set_flags(target_ulong start, target_ulong end, int flags)
2421 target_ulong addr, len;
2423 /* This function should never be called with addresses outside the
2424 guest address space. If this assert fires, it probably indicates
2425 a missing call to h2g_valid. */
2426 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2427 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2428 #endif
2429 assert(start < end);
2431 start = start & TARGET_PAGE_MASK;
2432 end = TARGET_PAGE_ALIGN(end);
2434 if (flags & PAGE_WRITE) {
2435 flags |= PAGE_WRITE_ORG;
2438 for (addr = start, len = end - start;
2439 len != 0;
2440 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2441 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2443 /* If the write protection bit is set, then we invalidate
2444 the code inside. */
2445 if (!(p->flags & PAGE_WRITE) &&
2446 (flags & PAGE_WRITE) &&
2447 p->first_tb) {
2448 tb_invalidate_phys_page(addr, 0, NULL);
2450 p->flags = flags;
2454 int page_check_range(target_ulong start, target_ulong len, int flags)
2456 PageDesc *p;
2457 target_ulong end;
2458 target_ulong addr;
2460 /* This function should never be called with addresses outside the
2461 guest address space. If this assert fires, it probably indicates
2462 a missing call to h2g_valid. */
2463 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2464 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2465 #endif
2467 if (len == 0) {
2468 return 0;
2470 if (start + len - 1 < start) {
2471 /* We've wrapped around. */
2472 return -1;
2475 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2476 start = start & TARGET_PAGE_MASK;
2478 for (addr = start, len = end - start;
2479 len != 0;
2480 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2481 p = page_find(addr >> TARGET_PAGE_BITS);
2482 if( !p )
2483 return -1;
2484 if( !(p->flags & PAGE_VALID) )
2485 return -1;
2487 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2488 return -1;
2489 if (flags & PAGE_WRITE) {
2490 if (!(p->flags & PAGE_WRITE_ORG))
2491 return -1;
2492 /* unprotect the page if it was put read-only because it
2493 contains translated code */
2494 if (!(p->flags & PAGE_WRITE)) {
2495 if (!page_unprotect(addr, 0, NULL))
2496 return -1;
2498 return 0;
2501 return 0;
2504 /* called from signal handler: invalidate the code and unprotect the
2505 page. Return TRUE if the fault was successfully handled. */
2506 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2508 unsigned int prot;
2509 PageDesc *p;
2510 target_ulong host_start, host_end, addr;
2512 /* Technically this isn't safe inside a signal handler. However we
2513 know this only ever happens in a synchronous SEGV handler, so in
2514 practice it seems to be ok. */
2515 mmap_lock();
2517 p = page_find(address >> TARGET_PAGE_BITS);
2518 if (!p) {
2519 mmap_unlock();
2520 return 0;
2523 /* if the page was really writable, then we change its
2524 protection back to writable */
2525 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2526 host_start = address & qemu_host_page_mask;
2527 host_end = host_start + qemu_host_page_size;
2529 prot = 0;
2530 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2531 p = page_find(addr >> TARGET_PAGE_BITS);
2532 p->flags |= PAGE_WRITE;
2533 prot |= p->flags;
2535 /* and since the content will be modified, we must invalidate
2536 the corresponding translated code. */
2537 tb_invalidate_phys_page(addr, pc, puc);
2538 #ifdef DEBUG_TB_CHECK
2539 tb_invalidate_check(addr);
2540 #endif
2542 mprotect((void *)g2h(host_start), qemu_host_page_size,
2543 prot & PAGE_BITS);
2545 mmap_unlock();
2546 return 1;
2548 mmap_unlock();
2549 return 0;
2552 static inline void tlb_set_dirty(CPUState *env,
2553 unsigned long addr, target_ulong vaddr)
2556 #endif /* defined(CONFIG_USER_ONLY) */
2558 #if !defined(CONFIG_USER_ONLY)
2560 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2561 typedef struct subpage_t {
2562 target_phys_addr_t base;
2563 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2564 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2565 } subpage_t;
2567 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2568 ram_addr_t memory, ram_addr_t region_offset);
2569 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2570 ram_addr_t orig_memory,
2571 ram_addr_t region_offset);
2572 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2573 need_subpage) \
2574 do { \
2575 if (addr > start_addr) \
2576 start_addr2 = 0; \
2577 else { \
2578 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2579 if (start_addr2 > 0) \
2580 need_subpage = 1; \
2583 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2584 end_addr2 = TARGET_PAGE_SIZE - 1; \
2585 else { \
2586 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2587 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2588 need_subpage = 1; \
2590 } while (0)
2592 /* register physical memory.
2593 For RAM, 'size' must be a multiple of the target page size.
2594 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2595 io memory page. The address used when calling the IO function is
2596 the offset from the start of the region, plus region_offset. Both
2597 start_addr and region_offset are rounded down to a page boundary
2598 before calculating this offset. This should not be a problem unless
2599 the low bits of start_addr and region_offset differ. */
2600 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2601 ram_addr_t size,
2602 ram_addr_t phys_offset,
2603 ram_addr_t region_offset)
2605 target_phys_addr_t addr, end_addr;
2606 PhysPageDesc *p;
2607 CPUState *env;
2608 ram_addr_t orig_size = size;
2609 subpage_t *subpage;
2611 cpu_notify_set_memory(start_addr, size, phys_offset);
2613 if (phys_offset == IO_MEM_UNASSIGNED) {
2614 region_offset = start_addr;
2616 region_offset &= TARGET_PAGE_MASK;
2617 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2618 end_addr = start_addr + (target_phys_addr_t)size;
2619 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2620 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2621 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2622 ram_addr_t orig_memory = p->phys_offset;
2623 target_phys_addr_t start_addr2, end_addr2;
2624 int need_subpage = 0;
2626 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2627 need_subpage);
2628 if (need_subpage) {
2629 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2630 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2631 &p->phys_offset, orig_memory,
2632 p->region_offset);
2633 } else {
2634 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2635 >> IO_MEM_SHIFT];
2637 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2638 region_offset);
2639 p->region_offset = 0;
2640 } else {
2641 p->phys_offset = phys_offset;
2642 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2643 (phys_offset & IO_MEM_ROMD))
2644 phys_offset += TARGET_PAGE_SIZE;
2646 } else {
2647 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2648 p->phys_offset = phys_offset;
2649 p->region_offset = region_offset;
2650 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2651 (phys_offset & IO_MEM_ROMD)) {
2652 phys_offset += TARGET_PAGE_SIZE;
2653 } else {
2654 target_phys_addr_t start_addr2, end_addr2;
2655 int need_subpage = 0;
2657 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2658 end_addr2, need_subpage);
2660 if (need_subpage) {
2661 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2662 &p->phys_offset, IO_MEM_UNASSIGNED,
2663 addr & TARGET_PAGE_MASK);
2664 subpage_register(subpage, start_addr2, end_addr2,
2665 phys_offset, region_offset);
2666 p->region_offset = 0;
2670 region_offset += TARGET_PAGE_SIZE;
2673 /* since each CPU stores ram addresses in its TLB cache, we must
2674 reset the modified entries */
2675 /* XXX: slow ! */
2676 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2677 tlb_flush(env, 1);
2681 /* XXX: temporary until new memory mapping API */
2682 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2684 PhysPageDesc *p;
2686 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2687 if (!p)
2688 return IO_MEM_UNASSIGNED;
2689 return p->phys_offset;
2692 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2694 if (kvm_enabled())
2695 kvm_coalesce_mmio_region(addr, size);
2698 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2700 if (kvm_enabled())
2701 kvm_uncoalesce_mmio_region(addr, size);
2704 void qemu_flush_coalesced_mmio_buffer(void)
2706 if (kvm_enabled())
2707 kvm_flush_coalesced_mmio_buffer();
2710 #if defined(__linux__) && !defined(TARGET_S390X)
2712 #include <sys/vfs.h>
2714 #define HUGETLBFS_MAGIC 0x958458f6
2716 static long gethugepagesize(const char *path)
2718 struct statfs fs;
2719 int ret;
2721 do {
2722 ret = statfs(path, &fs);
2723 } while (ret != 0 && errno == EINTR);
2725 if (ret != 0) {
2726 perror(path);
2727 return 0;
2730 if (fs.f_type != HUGETLBFS_MAGIC)
2731 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2733 return fs.f_bsize;
2736 static void *file_ram_alloc(RAMBlock *block,
2737 ram_addr_t memory,
2738 const char *path)
2740 char *filename;
2741 void *area;
2742 int fd;
2743 #ifdef MAP_POPULATE
2744 int flags;
2745 #endif
2746 unsigned long hpagesize;
2748 hpagesize = gethugepagesize(path);
2749 if (!hpagesize) {
2750 return NULL;
2753 if (memory < hpagesize) {
2754 return NULL;
2757 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2758 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2759 return NULL;
2762 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2763 return NULL;
2766 fd = mkstemp(filename);
2767 if (fd < 0) {
2768 perror("unable to create backing store for hugepages");
2769 free(filename);
2770 return NULL;
2772 unlink(filename);
2773 free(filename);
2775 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2778 * ftruncate is not supported by hugetlbfs in older
2779 * hosts, so don't bother bailing out on errors.
2780 * If anything goes wrong with it under other filesystems,
2781 * mmap will fail.
2783 if (ftruncate(fd, memory))
2784 perror("ftruncate");
2786 #ifdef MAP_POPULATE
2787 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2788 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2789 * to sidestep this quirk.
2791 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2792 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2793 #else
2794 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2795 #endif
2796 if (area == MAP_FAILED) {
2797 perror("file_ram_alloc: can't mmap RAM pages");
2798 close(fd);
2799 return (NULL);
2801 block->fd = fd;
2802 return area;
2804 #endif
2806 static ram_addr_t find_ram_offset(ram_addr_t size)
2808 RAMBlock *block, *next_block;
2809 ram_addr_t offset = 0, mingap = ULONG_MAX;
2811 if (QLIST_EMPTY(&ram_list.blocks))
2812 return 0;
2814 QLIST_FOREACH(block, &ram_list.blocks, next) {
2815 ram_addr_t end, next = ULONG_MAX;
2817 end = block->offset + block->length;
2819 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2820 if (next_block->offset >= end) {
2821 next = MIN(next, next_block->offset);
2824 if (next - end >= size && next - end < mingap) {
2825 offset = end;
2826 mingap = next - end;
2829 return offset;
2832 static ram_addr_t last_ram_offset(void)
2834 RAMBlock *block;
2835 ram_addr_t last = 0;
2837 QLIST_FOREACH(block, &ram_list.blocks, next)
2838 last = MAX(last, block->offset + block->length);
2840 return last;
2843 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2844 ram_addr_t size, void *host)
2846 RAMBlock *new_block, *block;
2848 size = TARGET_PAGE_ALIGN(size);
2849 new_block = qemu_mallocz(sizeof(*new_block));
2851 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2852 char *id = dev->parent_bus->info->get_dev_path(dev);
2853 if (id) {
2854 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2855 qemu_free(id);
2858 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2860 QLIST_FOREACH(block, &ram_list.blocks, next) {
2861 if (!strcmp(block->idstr, new_block->idstr)) {
2862 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2863 new_block->idstr);
2864 abort();
2868 if (host) {
2869 new_block->host = host;
2870 } else {
2871 if (mem_path) {
2872 #if defined (__linux__) && !defined(TARGET_S390X)
2873 new_block->host = file_ram_alloc(new_block, size, mem_path);
2874 if (!new_block->host) {
2875 new_block->host = qemu_vmalloc(size);
2876 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2878 #else
2879 fprintf(stderr, "-mem-path option unsupported\n");
2880 exit(1);
2881 #endif
2882 } else {
2883 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2884 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2885 new_block->host = mmap((void*)0x1000000, size,
2886 PROT_EXEC|PROT_READ|PROT_WRITE,
2887 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2888 #else
2889 new_block->host = qemu_vmalloc(size);
2890 #endif
2891 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2895 new_block->offset = find_ram_offset(size);
2896 new_block->length = size;
2898 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2900 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2901 last_ram_offset() >> TARGET_PAGE_BITS);
2902 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2903 0xff, size >> TARGET_PAGE_BITS);
2905 if (kvm_enabled())
2906 kvm_setup_guest_memory(new_block->host, size);
2908 return new_block->offset;
2911 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2913 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2916 void qemu_ram_free(ram_addr_t addr)
2918 RAMBlock *block;
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr == block->offset) {
2922 QLIST_REMOVE(block, next);
2923 if (mem_path) {
2924 #if defined (__linux__) && !defined(TARGET_S390X)
2925 if (block->fd) {
2926 munmap(block->host, block->length);
2927 close(block->fd);
2928 } else {
2929 qemu_vfree(block->host);
2931 #endif
2932 } else {
2933 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2934 munmap(block->host, block->length);
2935 #else
2936 qemu_vfree(block->host);
2937 #endif
2939 qemu_free(block);
2940 return;
2946 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2947 With the exception of the softmmu code in this file, this should
2948 only be used for local memory (e.g. video ram) that the device owns,
2949 and knows it isn't going to access beyond the end of the block.
2951 It should not be used for general purpose DMA.
2952 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2954 void *qemu_get_ram_ptr(ram_addr_t addr)
2956 RAMBlock *block;
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (addr - block->offset < block->length) {
2960 QLIST_REMOVE(block, next);
2961 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2962 return block->host + (addr - block->offset);
2966 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2967 abort();
2969 return NULL;
2972 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2973 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2975 void *qemu_safe_ram_ptr(ram_addr_t addr)
2977 RAMBlock *block;
2979 QLIST_FOREACH(block, &ram_list.blocks, next) {
2980 if (addr - block->offset < block->length) {
2981 return block->host + (addr - block->offset);
2985 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2986 abort();
2988 return NULL;
2991 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2993 RAMBlock *block;
2994 uint8_t *host = ptr;
2996 QLIST_FOREACH(block, &ram_list.blocks, next) {
2997 if (host - block->host < block->length) {
2998 *ram_addr = block->offset + (host - block->host);
2999 return 0;
3002 return -1;
3005 /* Some of the softmmu routines need to translate from a host pointer
3006 (typically a TLB entry) back to a ram offset. */
3007 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3009 ram_addr_t ram_addr;
3011 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3012 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3013 abort();
3015 return ram_addr;
3018 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3020 #ifdef DEBUG_UNASSIGNED
3021 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3022 #endif
3023 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3024 do_unassigned_access(addr, 0, 0, 0, 1);
3025 #endif
3026 return 0;
3029 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3031 #ifdef DEBUG_UNASSIGNED
3032 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3033 #endif
3034 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3035 do_unassigned_access(addr, 0, 0, 0, 2);
3036 #endif
3037 return 0;
3040 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3042 #ifdef DEBUG_UNASSIGNED
3043 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3044 #endif
3045 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3046 do_unassigned_access(addr, 0, 0, 0, 4);
3047 #endif
3048 return 0;
3051 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3053 #ifdef DEBUG_UNASSIGNED
3054 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3055 #endif
3056 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3057 do_unassigned_access(addr, 1, 0, 0, 1);
3058 #endif
3061 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3063 #ifdef DEBUG_UNASSIGNED
3064 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3065 #endif
3066 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3067 do_unassigned_access(addr, 1, 0, 0, 2);
3068 #endif
3071 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3073 #ifdef DEBUG_UNASSIGNED
3074 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3075 #endif
3076 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3077 do_unassigned_access(addr, 1, 0, 0, 4);
3078 #endif
3081 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3082 unassigned_mem_readb,
3083 unassigned_mem_readw,
3084 unassigned_mem_readl,
3087 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3088 unassigned_mem_writeb,
3089 unassigned_mem_writew,
3090 unassigned_mem_writel,
3093 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3094 uint32_t val)
3096 int dirty_flags;
3097 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3098 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3099 #if !defined(CONFIG_USER_ONLY)
3100 tb_invalidate_phys_page_fast(ram_addr, 1);
3101 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3102 #endif
3104 stb_p(qemu_get_ram_ptr(ram_addr), val);
3105 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3106 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3107 /* we remove the notdirty callback only if the code has been
3108 flushed */
3109 if (dirty_flags == 0xff)
3110 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3113 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3114 uint32_t val)
3116 int dirty_flags;
3117 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3118 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3119 #if !defined(CONFIG_USER_ONLY)
3120 tb_invalidate_phys_page_fast(ram_addr, 2);
3121 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3122 #endif
3124 stw_p(qemu_get_ram_ptr(ram_addr), val);
3125 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3126 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3127 /* we remove the notdirty callback only if the code has been
3128 flushed */
3129 if (dirty_flags == 0xff)
3130 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3133 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3134 uint32_t val)
3136 int dirty_flags;
3137 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3138 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3139 #if !defined(CONFIG_USER_ONLY)
3140 tb_invalidate_phys_page_fast(ram_addr, 4);
3141 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3142 #endif
3144 stl_p(qemu_get_ram_ptr(ram_addr), val);
3145 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3146 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3147 /* we remove the notdirty callback only if the code has been
3148 flushed */
3149 if (dirty_flags == 0xff)
3150 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3153 static CPUReadMemoryFunc * const error_mem_read[3] = {
3154 NULL, /* never used */
3155 NULL, /* never used */
3156 NULL, /* never used */
3159 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3160 notdirty_mem_writeb,
3161 notdirty_mem_writew,
3162 notdirty_mem_writel,
3165 /* Generate a debug exception if a watchpoint has been hit. */
3166 static void check_watchpoint(int offset, int len_mask, int flags)
3168 CPUState *env = cpu_single_env;
3169 target_ulong pc, cs_base;
3170 TranslationBlock *tb;
3171 target_ulong vaddr;
3172 CPUWatchpoint *wp;
3173 int cpu_flags;
3175 if (env->watchpoint_hit) {
3176 /* We re-entered the check after replacing the TB. Now raise
3177 * the debug interrupt so that is will trigger after the
3178 * current instruction. */
3179 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3180 return;
3182 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3183 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3184 if ((vaddr == (wp->vaddr & len_mask) ||
3185 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3186 wp->flags |= BP_WATCHPOINT_HIT;
3187 if (!env->watchpoint_hit) {
3188 env->watchpoint_hit = wp;
3189 tb = tb_find_pc(env->mem_io_pc);
3190 if (!tb) {
3191 cpu_abort(env, "check_watchpoint: could not find TB for "
3192 "pc=%p", (void *)env->mem_io_pc);
3194 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3195 tb_phys_invalidate(tb, -1);
3196 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3197 env->exception_index = EXCP_DEBUG;
3198 } else {
3199 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3200 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3202 cpu_resume_from_signal(env, NULL);
3204 } else {
3205 wp->flags &= ~BP_WATCHPOINT_HIT;
3210 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3211 so these check for a hit then pass through to the normal out-of-line
3212 phys routines. */
3213 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3215 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3216 return ldub_phys(addr);
3219 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3221 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3222 return lduw_phys(addr);
3225 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3227 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3228 return ldl_phys(addr);
3231 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3232 uint32_t val)
3234 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3235 stb_phys(addr, val);
3238 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3239 uint32_t val)
3241 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3242 stw_phys(addr, val);
3245 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3246 uint32_t val)
3248 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3249 stl_phys(addr, val);
3252 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3253 watch_mem_readb,
3254 watch_mem_readw,
3255 watch_mem_readl,
3258 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3259 watch_mem_writeb,
3260 watch_mem_writew,
3261 watch_mem_writel,
3264 static inline uint32_t subpage_readlen (subpage_t *mmio,
3265 target_phys_addr_t addr,
3266 unsigned int len)
3268 unsigned int idx = SUBPAGE_IDX(addr);
3269 #if defined(DEBUG_SUBPAGE)
3270 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3271 mmio, len, addr, idx);
3272 #endif
3274 addr += mmio->region_offset[idx];
3275 idx = mmio->sub_io_index[idx];
3276 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3279 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3280 uint32_t value, unsigned int len)
3282 unsigned int idx = SUBPAGE_IDX(addr);
3283 #if defined(DEBUG_SUBPAGE)
3284 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3285 __func__, mmio, len, addr, idx, value);
3286 #endif
3288 addr += mmio->region_offset[idx];
3289 idx = mmio->sub_io_index[idx];
3290 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3293 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3295 return subpage_readlen(opaque, addr, 0);
3298 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3299 uint32_t value)
3301 subpage_writelen(opaque, addr, value, 0);
3304 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3306 return subpage_readlen(opaque, addr, 1);
3309 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3310 uint32_t value)
3312 subpage_writelen(opaque, addr, value, 1);
3315 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3317 return subpage_readlen(opaque, addr, 2);
3320 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3321 uint32_t value)
3323 subpage_writelen(opaque, addr, value, 2);
3326 static CPUReadMemoryFunc * const subpage_read[] = {
3327 &subpage_readb,
3328 &subpage_readw,
3329 &subpage_readl,
3332 static CPUWriteMemoryFunc * const subpage_write[] = {
3333 &subpage_writeb,
3334 &subpage_writew,
3335 &subpage_writel,
3338 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3339 ram_addr_t memory, ram_addr_t region_offset)
3341 int idx, eidx;
3343 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3344 return -1;
3345 idx = SUBPAGE_IDX(start);
3346 eidx = SUBPAGE_IDX(end);
3347 #if defined(DEBUG_SUBPAGE)
3348 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3349 mmio, start, end, idx, eidx, memory);
3350 #endif
3351 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3352 memory = IO_MEM_UNASSIGNED;
3353 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3354 for (; idx <= eidx; idx++) {
3355 mmio->sub_io_index[idx] = memory;
3356 mmio->region_offset[idx] = region_offset;
3359 return 0;
3362 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3363 ram_addr_t orig_memory,
3364 ram_addr_t region_offset)
3366 subpage_t *mmio;
3367 int subpage_memory;
3369 mmio = qemu_mallocz(sizeof(subpage_t));
3371 mmio->base = base;
3372 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3373 DEVICE_NATIVE_ENDIAN);
3374 #if defined(DEBUG_SUBPAGE)
3375 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3376 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3377 #endif
3378 *phys = subpage_memory | IO_MEM_SUBPAGE;
3379 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3381 return mmio;
3384 static int get_free_io_mem_idx(void)
3386 int i;
3388 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3389 if (!io_mem_used[i]) {
3390 io_mem_used[i] = 1;
3391 return i;
3393 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3394 return -1;
3398 * Usually, devices operate in little endian mode. There are devices out
3399 * there that operate in big endian too. Each device gets byte swapped
3400 * mmio if plugged onto a CPU that does the other endianness.
3402 * CPU Device swap?
3404 * little little no
3405 * little big yes
3406 * big little yes
3407 * big big no
3410 typedef struct SwapEndianContainer {
3411 CPUReadMemoryFunc *read[3];
3412 CPUWriteMemoryFunc *write[3];
3413 void *opaque;
3414 } SwapEndianContainer;
3416 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3418 uint32_t val;
3419 SwapEndianContainer *c = opaque;
3420 val = c->read[0](c->opaque, addr);
3421 return val;
3424 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3426 uint32_t val;
3427 SwapEndianContainer *c = opaque;
3428 val = bswap16(c->read[1](c->opaque, addr));
3429 return val;
3432 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3434 uint32_t val;
3435 SwapEndianContainer *c = opaque;
3436 val = bswap32(c->read[2](c->opaque, addr));
3437 return val;
3440 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3441 swapendian_mem_readb,
3442 swapendian_mem_readw,
3443 swapendian_mem_readl
3446 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3447 uint32_t val)
3449 SwapEndianContainer *c = opaque;
3450 c->write[0](c->opaque, addr, val);
3453 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3454 uint32_t val)
3456 SwapEndianContainer *c = opaque;
3457 c->write[1](c->opaque, addr, bswap16(val));
3460 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3461 uint32_t val)
3463 SwapEndianContainer *c = opaque;
3464 c->write[2](c->opaque, addr, bswap32(val));
3467 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3468 swapendian_mem_writeb,
3469 swapendian_mem_writew,
3470 swapendian_mem_writel
3473 static void swapendian_init(int io_index)
3475 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3476 int i;
3478 /* Swap mmio for big endian targets */
3479 c->opaque = io_mem_opaque[io_index];
3480 for (i = 0; i < 3; i++) {
3481 c->read[i] = io_mem_read[io_index][i];
3482 c->write[i] = io_mem_write[io_index][i];
3484 io_mem_read[io_index][i] = swapendian_readfn[i];
3485 io_mem_write[io_index][i] = swapendian_writefn[i];
3487 io_mem_opaque[io_index] = c;
3490 static void swapendian_del(int io_index)
3492 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3493 qemu_free(io_mem_opaque[io_index]);
3497 /* mem_read and mem_write are arrays of functions containing the
3498 function to access byte (index 0), word (index 1) and dword (index
3499 2). Functions can be omitted with a NULL function pointer.
3500 If io_index is non zero, the corresponding io zone is
3501 modified. If it is zero, a new io zone is allocated. The return
3502 value can be used with cpu_register_physical_memory(). (-1) is
3503 returned if error. */
3504 static int cpu_register_io_memory_fixed(int io_index,
3505 CPUReadMemoryFunc * const *mem_read,
3506 CPUWriteMemoryFunc * const *mem_write,
3507 void *opaque, enum device_endian endian)
3509 int i;
3511 if (io_index <= 0) {
3512 io_index = get_free_io_mem_idx();
3513 if (io_index == -1)
3514 return io_index;
3515 } else {
3516 io_index >>= IO_MEM_SHIFT;
3517 if (io_index >= IO_MEM_NB_ENTRIES)
3518 return -1;
3521 for (i = 0; i < 3; ++i) {
3522 io_mem_read[io_index][i]
3523 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3525 for (i = 0; i < 3; ++i) {
3526 io_mem_write[io_index][i]
3527 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3529 io_mem_opaque[io_index] = opaque;
3531 switch (endian) {
3532 case DEVICE_BIG_ENDIAN:
3533 #ifndef TARGET_WORDS_BIGENDIAN
3534 swapendian_init(io_index);
3535 #endif
3536 break;
3537 case DEVICE_LITTLE_ENDIAN:
3538 #ifdef TARGET_WORDS_BIGENDIAN
3539 swapendian_init(io_index);
3540 #endif
3541 break;
3542 case DEVICE_NATIVE_ENDIAN:
3543 default:
3544 break;
3547 return (io_index << IO_MEM_SHIFT);
3550 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3551 CPUWriteMemoryFunc * const *mem_write,
3552 void *opaque, enum device_endian endian)
3554 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3557 void cpu_unregister_io_memory(int io_table_address)
3559 int i;
3560 int io_index = io_table_address >> IO_MEM_SHIFT;
3562 swapendian_del(io_index);
3564 for (i=0;i < 3; i++) {
3565 io_mem_read[io_index][i] = unassigned_mem_read[i];
3566 io_mem_write[io_index][i] = unassigned_mem_write[i];
3568 io_mem_opaque[io_index] = NULL;
3569 io_mem_used[io_index] = 0;
3572 static void io_mem_init(void)
3574 int i;
3576 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3577 unassigned_mem_write, NULL,
3578 DEVICE_NATIVE_ENDIAN);
3579 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3580 unassigned_mem_write, NULL,
3581 DEVICE_NATIVE_ENDIAN);
3582 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3583 notdirty_mem_write, NULL,
3584 DEVICE_NATIVE_ENDIAN);
3585 for (i=0; i<5; i++)
3586 io_mem_used[i] = 1;
3588 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3589 watch_mem_write, NULL,
3590 DEVICE_NATIVE_ENDIAN);
3593 #endif /* !defined(CONFIG_USER_ONLY) */
3595 /* physical memory access (slow version, mainly for debug) */
3596 #if defined(CONFIG_USER_ONLY)
3597 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3598 uint8_t *buf, int len, int is_write)
3600 int l, flags;
3601 target_ulong page;
3602 void * p;
3604 while (len > 0) {
3605 page = addr & TARGET_PAGE_MASK;
3606 l = (page + TARGET_PAGE_SIZE) - addr;
3607 if (l > len)
3608 l = len;
3609 flags = page_get_flags(page);
3610 if (!(flags & PAGE_VALID))
3611 return -1;
3612 if (is_write) {
3613 if (!(flags & PAGE_WRITE))
3614 return -1;
3615 /* XXX: this code should not depend on lock_user */
3616 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3617 return -1;
3618 memcpy(p, buf, l);
3619 unlock_user(p, addr, l);
3620 } else {
3621 if (!(flags & PAGE_READ))
3622 return -1;
3623 /* XXX: this code should not depend on lock_user */
3624 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3625 return -1;
3626 memcpy(buf, p, l);
3627 unlock_user(p, addr, 0);
3629 len -= l;
3630 buf += l;
3631 addr += l;
3633 return 0;
3636 #else
3637 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3638 int len, int is_write)
3640 int l, io_index;
3641 uint8_t *ptr;
3642 uint32_t val;
3643 target_phys_addr_t page;
3644 unsigned long pd;
3645 PhysPageDesc *p;
3647 while (len > 0) {
3648 page = addr & TARGET_PAGE_MASK;
3649 l = (page + TARGET_PAGE_SIZE) - addr;
3650 if (l > len)
3651 l = len;
3652 p = phys_page_find(page >> TARGET_PAGE_BITS);
3653 if (!p) {
3654 pd = IO_MEM_UNASSIGNED;
3655 } else {
3656 pd = p->phys_offset;
3659 if (is_write) {
3660 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3661 target_phys_addr_t addr1 = addr;
3662 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3663 if (p)
3664 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3665 /* XXX: could force cpu_single_env to NULL to avoid
3666 potential bugs */
3667 if (l >= 4 && ((addr1 & 3) == 0)) {
3668 /* 32 bit write access */
3669 val = ldl_p(buf);
3670 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3671 l = 4;
3672 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3673 /* 16 bit write access */
3674 val = lduw_p(buf);
3675 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3676 l = 2;
3677 } else {
3678 /* 8 bit write access */
3679 val = ldub_p(buf);
3680 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3681 l = 1;
3683 } else {
3684 unsigned long addr1;
3685 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3686 /* RAM case */
3687 ptr = qemu_get_ram_ptr(addr1);
3688 memcpy(ptr, buf, l);
3689 if (!cpu_physical_memory_is_dirty(addr1)) {
3690 /* invalidate code */
3691 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3692 /* set dirty bit */
3693 cpu_physical_memory_set_dirty_flags(
3694 addr1, (0xff & ~CODE_DIRTY_FLAG));
3697 } else {
3698 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3699 !(pd & IO_MEM_ROMD)) {
3700 target_phys_addr_t addr1 = addr;
3701 /* I/O case */
3702 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3703 if (p)
3704 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3705 if (l >= 4 && ((addr1 & 3) == 0)) {
3706 /* 32 bit read access */
3707 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3708 stl_p(buf, val);
3709 l = 4;
3710 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3711 /* 16 bit read access */
3712 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3713 stw_p(buf, val);
3714 l = 2;
3715 } else {
3716 /* 8 bit read access */
3717 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3718 stb_p(buf, val);
3719 l = 1;
3721 } else {
3722 /* RAM case */
3723 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3724 (addr & ~TARGET_PAGE_MASK);
3725 memcpy(buf, ptr, l);
3728 len -= l;
3729 buf += l;
3730 addr += l;
3734 /* used for ROM loading : can write in RAM and ROM */
3735 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3736 const uint8_t *buf, int len)
3738 int l;
3739 uint8_t *ptr;
3740 target_phys_addr_t page;
3741 unsigned long pd;
3742 PhysPageDesc *p;
3744 while (len > 0) {
3745 page = addr & TARGET_PAGE_MASK;
3746 l = (page + TARGET_PAGE_SIZE) - addr;
3747 if (l > len)
3748 l = len;
3749 p = phys_page_find(page >> TARGET_PAGE_BITS);
3750 if (!p) {
3751 pd = IO_MEM_UNASSIGNED;
3752 } else {
3753 pd = p->phys_offset;
3756 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3757 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3758 !(pd & IO_MEM_ROMD)) {
3759 /* do nothing */
3760 } else {
3761 unsigned long addr1;
3762 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3763 /* ROM/RAM case */
3764 ptr = qemu_get_ram_ptr(addr1);
3765 memcpy(ptr, buf, l);
3767 len -= l;
3768 buf += l;
3769 addr += l;
3773 typedef struct {
3774 void *buffer;
3775 target_phys_addr_t addr;
3776 target_phys_addr_t len;
3777 } BounceBuffer;
3779 static BounceBuffer bounce;
3781 typedef struct MapClient {
3782 void *opaque;
3783 void (*callback)(void *opaque);
3784 QLIST_ENTRY(MapClient) link;
3785 } MapClient;
3787 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3788 = QLIST_HEAD_INITIALIZER(map_client_list);
3790 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3792 MapClient *client = qemu_malloc(sizeof(*client));
3794 client->opaque = opaque;
3795 client->callback = callback;
3796 QLIST_INSERT_HEAD(&map_client_list, client, link);
3797 return client;
3800 void cpu_unregister_map_client(void *_client)
3802 MapClient *client = (MapClient *)_client;
3804 QLIST_REMOVE(client, link);
3805 qemu_free(client);
3808 static void cpu_notify_map_clients(void)
3810 MapClient *client;
3812 while (!QLIST_EMPTY(&map_client_list)) {
3813 client = QLIST_FIRST(&map_client_list);
3814 client->callback(client->opaque);
3815 cpu_unregister_map_client(client);
3819 /* Map a physical memory region into a host virtual address.
3820 * May map a subset of the requested range, given by and returned in *plen.
3821 * May return NULL if resources needed to perform the mapping are exhausted.
3822 * Use only for reads OR writes - not for read-modify-write operations.
3823 * Use cpu_register_map_client() to know when retrying the map operation is
3824 * likely to succeed.
3826 void *cpu_physical_memory_map(target_phys_addr_t addr,
3827 target_phys_addr_t *plen,
3828 int is_write)
3830 target_phys_addr_t len = *plen;
3831 target_phys_addr_t done = 0;
3832 int l;
3833 uint8_t *ret = NULL;
3834 uint8_t *ptr;
3835 target_phys_addr_t page;
3836 unsigned long pd;
3837 PhysPageDesc *p;
3838 unsigned long addr1;
3840 while (len > 0) {
3841 page = addr & TARGET_PAGE_MASK;
3842 l = (page + TARGET_PAGE_SIZE) - addr;
3843 if (l > len)
3844 l = len;
3845 p = phys_page_find(page >> TARGET_PAGE_BITS);
3846 if (!p) {
3847 pd = IO_MEM_UNASSIGNED;
3848 } else {
3849 pd = p->phys_offset;
3852 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3853 if (done || bounce.buffer) {
3854 break;
3856 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3857 bounce.addr = addr;
3858 bounce.len = l;
3859 if (!is_write) {
3860 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3862 ptr = bounce.buffer;
3863 } else {
3864 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3865 ptr = qemu_get_ram_ptr(addr1);
3867 if (!done) {
3868 ret = ptr;
3869 } else if (ret + done != ptr) {
3870 break;
3873 len -= l;
3874 addr += l;
3875 done += l;
3877 *plen = done;
3878 return ret;
3881 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3882 * Will also mark the memory as dirty if is_write == 1. access_len gives
3883 * the amount of memory that was actually read or written by the caller.
3885 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3886 int is_write, target_phys_addr_t access_len)
3888 if (buffer != bounce.buffer) {
3889 if (is_write) {
3890 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3891 while (access_len) {
3892 unsigned l;
3893 l = TARGET_PAGE_SIZE;
3894 if (l > access_len)
3895 l = access_len;
3896 if (!cpu_physical_memory_is_dirty(addr1)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3899 /* set dirty bit */
3900 cpu_physical_memory_set_dirty_flags(
3901 addr1, (0xff & ~CODE_DIRTY_FLAG));
3903 addr1 += l;
3904 access_len -= l;
3907 return;
3909 if (is_write) {
3910 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3912 qemu_vfree(bounce.buffer);
3913 bounce.buffer = NULL;
3914 cpu_notify_map_clients();
3917 /* warning: addr must be aligned */
3918 uint32_t ldl_phys(target_phys_addr_t addr)
3920 int io_index;
3921 uint8_t *ptr;
3922 uint32_t val;
3923 unsigned long pd;
3924 PhysPageDesc *p;
3926 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3927 if (!p) {
3928 pd = IO_MEM_UNASSIGNED;
3929 } else {
3930 pd = p->phys_offset;
3933 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3934 !(pd & IO_MEM_ROMD)) {
3935 /* I/O case */
3936 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3937 if (p)
3938 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3939 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3940 } else {
3941 /* RAM case */
3942 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3943 (addr & ~TARGET_PAGE_MASK);
3944 val = ldl_p(ptr);
3946 return val;
3949 /* warning: addr must be aligned */
3950 uint64_t ldq_phys(target_phys_addr_t addr)
3952 int io_index;
3953 uint8_t *ptr;
3954 uint64_t val;
3955 unsigned long pd;
3956 PhysPageDesc *p;
3958 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3959 if (!p) {
3960 pd = IO_MEM_UNASSIGNED;
3961 } else {
3962 pd = p->phys_offset;
3965 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3966 !(pd & IO_MEM_ROMD)) {
3967 /* I/O case */
3968 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3969 if (p)
3970 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3971 #ifdef TARGET_WORDS_BIGENDIAN
3972 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3973 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3974 #else
3975 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3976 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3977 #endif
3978 } else {
3979 /* RAM case */
3980 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3981 (addr & ~TARGET_PAGE_MASK);
3982 val = ldq_p(ptr);
3984 return val;
3987 /* XXX: optimize */
3988 uint32_t ldub_phys(target_phys_addr_t addr)
3990 uint8_t val;
3991 cpu_physical_memory_read(addr, &val, 1);
3992 return val;
3995 /* warning: addr must be aligned */
3996 uint32_t lduw_phys(target_phys_addr_t addr)
3998 int io_index;
3999 uint8_t *ptr;
4000 uint64_t val;
4001 unsigned long pd;
4002 PhysPageDesc *p;
4004 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4005 if (!p) {
4006 pd = IO_MEM_UNASSIGNED;
4007 } else {
4008 pd = p->phys_offset;
4011 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4012 !(pd & IO_MEM_ROMD)) {
4013 /* I/O case */
4014 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4015 if (p)
4016 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4017 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4018 } else {
4019 /* RAM case */
4020 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4021 (addr & ~TARGET_PAGE_MASK);
4022 val = lduw_p(ptr);
4024 return val;
4027 /* warning: addr must be aligned. The ram page is not masked as dirty
4028 and the code inside is not invalidated. It is useful if the dirty
4029 bits are used to track modified PTEs */
4030 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4032 int io_index;
4033 uint8_t *ptr;
4034 unsigned long pd;
4035 PhysPageDesc *p;
4037 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4038 if (!p) {
4039 pd = IO_MEM_UNASSIGNED;
4040 } else {
4041 pd = p->phys_offset;
4044 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4045 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4046 if (p)
4047 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4048 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4049 } else {
4050 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4051 ptr = qemu_get_ram_ptr(addr1);
4052 stl_p(ptr, val);
4054 if (unlikely(in_migration)) {
4055 if (!cpu_physical_memory_is_dirty(addr1)) {
4056 /* invalidate code */
4057 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4058 /* set dirty bit */
4059 cpu_physical_memory_set_dirty_flags(
4060 addr1, (0xff & ~CODE_DIRTY_FLAG));
4066 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4068 int io_index;
4069 uint8_t *ptr;
4070 unsigned long pd;
4071 PhysPageDesc *p;
4073 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4074 if (!p) {
4075 pd = IO_MEM_UNASSIGNED;
4076 } else {
4077 pd = p->phys_offset;
4080 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4081 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4082 if (p)
4083 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4084 #ifdef TARGET_WORDS_BIGENDIAN
4085 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4086 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4087 #else
4088 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4089 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4090 #endif
4091 } else {
4092 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4093 (addr & ~TARGET_PAGE_MASK);
4094 stq_p(ptr, val);
4098 /* warning: addr must be aligned */
4099 void stl_phys(target_phys_addr_t addr, uint32_t val)
4101 int io_index;
4102 uint8_t *ptr;
4103 unsigned long pd;
4104 PhysPageDesc *p;
4106 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4107 if (!p) {
4108 pd = IO_MEM_UNASSIGNED;
4109 } else {
4110 pd = p->phys_offset;
4113 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4114 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4115 if (p)
4116 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4117 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4118 } else {
4119 unsigned long addr1;
4120 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4121 /* RAM case */
4122 ptr = qemu_get_ram_ptr(addr1);
4123 stl_p(ptr, val);
4124 if (!cpu_physical_memory_is_dirty(addr1)) {
4125 /* invalidate code */
4126 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4127 /* set dirty bit */
4128 cpu_physical_memory_set_dirty_flags(addr1,
4129 (0xff & ~CODE_DIRTY_FLAG));
4134 /* XXX: optimize */
4135 void stb_phys(target_phys_addr_t addr, uint32_t val)
4137 uint8_t v = val;
4138 cpu_physical_memory_write(addr, &v, 1);
4141 /* warning: addr must be aligned */
4142 void stw_phys(target_phys_addr_t addr, uint32_t val)
4144 int io_index;
4145 uint8_t *ptr;
4146 unsigned long pd;
4147 PhysPageDesc *p;
4149 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4150 if (!p) {
4151 pd = IO_MEM_UNASSIGNED;
4152 } else {
4153 pd = p->phys_offset;
4156 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4157 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4158 if (p)
4159 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4160 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4161 } else {
4162 unsigned long addr1;
4163 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4164 /* RAM case */
4165 ptr = qemu_get_ram_ptr(addr1);
4166 stw_p(ptr, val);
4167 if (!cpu_physical_memory_is_dirty(addr1)) {
4168 /* invalidate code */
4169 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4170 /* set dirty bit */
4171 cpu_physical_memory_set_dirty_flags(addr1,
4172 (0xff & ~CODE_DIRTY_FLAG));
4177 /* XXX: optimize */
4178 void stq_phys(target_phys_addr_t addr, uint64_t val)
4180 val = tswap64(val);
4181 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4184 /* virtual memory access for debug (includes writing to ROM) */
4185 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4186 uint8_t *buf, int len, int is_write)
4188 int l;
4189 target_phys_addr_t phys_addr;
4190 target_ulong page;
4192 while (len > 0) {
4193 page = addr & TARGET_PAGE_MASK;
4194 phys_addr = cpu_get_phys_page_debug(env, page);
4195 /* if no physical page mapped, return an error */
4196 if (phys_addr == -1)
4197 return -1;
4198 l = (page + TARGET_PAGE_SIZE) - addr;
4199 if (l > len)
4200 l = len;
4201 phys_addr += (addr & ~TARGET_PAGE_MASK);
4202 if (is_write)
4203 cpu_physical_memory_write_rom(phys_addr, buf, l);
4204 else
4205 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4206 len -= l;
4207 buf += l;
4208 addr += l;
4210 return 0;
4212 #endif
4214 /* in deterministic execution mode, instructions doing device I/Os
4215 must be at the end of the TB */
4216 void cpu_io_recompile(CPUState *env, void *retaddr)
4218 TranslationBlock *tb;
4219 uint32_t n, cflags;
4220 target_ulong pc, cs_base;
4221 uint64_t flags;
4223 tb = tb_find_pc((unsigned long)retaddr);
4224 if (!tb) {
4225 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4226 retaddr);
4228 n = env->icount_decr.u16.low + tb->icount;
4229 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4230 /* Calculate how many instructions had been executed before the fault
4231 occurred. */
4232 n = n - env->icount_decr.u16.low;
4233 /* Generate a new TB ending on the I/O insn. */
4234 n++;
4235 /* On MIPS and SH, delay slot instructions can only be restarted if
4236 they were already the first instruction in the TB. If this is not
4237 the first instruction in a TB then re-execute the preceding
4238 branch. */
4239 #if defined(TARGET_MIPS)
4240 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4241 env->active_tc.PC -= 4;
4242 env->icount_decr.u16.low++;
4243 env->hflags &= ~MIPS_HFLAG_BMASK;
4245 #elif defined(TARGET_SH4)
4246 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4247 && n > 1) {
4248 env->pc -= 2;
4249 env->icount_decr.u16.low++;
4250 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4252 #endif
4253 /* This should never happen. */
4254 if (n > CF_COUNT_MASK)
4255 cpu_abort(env, "TB too big during recompile");
4257 cflags = n | CF_LAST_IO;
4258 pc = tb->pc;
4259 cs_base = tb->cs_base;
4260 flags = tb->flags;
4261 tb_phys_invalidate(tb, -1);
4262 /* FIXME: In theory this could raise an exception. In practice
4263 we have already translated the block once so it's probably ok. */
4264 tb_gen_code(env, pc, cs_base, flags, cflags);
4265 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4266 the first in the TB) then we end up generating a whole new TB and
4267 repeating the fault, which is horribly inefficient.
4268 Better would be to execute just this insn uncached, or generate a
4269 second new TB. */
4270 cpu_resume_from_signal(env, NULL);
4273 #if !defined(CONFIG_USER_ONLY)
4275 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4277 int i, target_code_size, max_target_code_size;
4278 int direct_jmp_count, direct_jmp2_count, cross_page;
4279 TranslationBlock *tb;
4281 target_code_size = 0;
4282 max_target_code_size = 0;
4283 cross_page = 0;
4284 direct_jmp_count = 0;
4285 direct_jmp2_count = 0;
4286 for(i = 0; i < nb_tbs; i++) {
4287 tb = &tbs[i];
4288 target_code_size += tb->size;
4289 if (tb->size > max_target_code_size)
4290 max_target_code_size = tb->size;
4291 if (tb->page_addr[1] != -1)
4292 cross_page++;
4293 if (tb->tb_next_offset[0] != 0xffff) {
4294 direct_jmp_count++;
4295 if (tb->tb_next_offset[1] != 0xffff) {
4296 direct_jmp2_count++;
4300 /* XXX: avoid using doubles ? */
4301 cpu_fprintf(f, "Translation buffer state:\n");
4302 cpu_fprintf(f, "gen code size %td/%ld\n",
4303 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4304 cpu_fprintf(f, "TB count %d/%d\n",
4305 nb_tbs, code_gen_max_blocks);
4306 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4307 nb_tbs ? target_code_size / nb_tbs : 0,
4308 max_target_code_size);
4309 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4310 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4311 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4312 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4313 cross_page,
4314 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4315 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4316 direct_jmp_count,
4317 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4318 direct_jmp2_count,
4319 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4320 cpu_fprintf(f, "\nStatistics:\n");
4321 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4322 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4323 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4324 tcg_dump_info(f, cpu_fprintf);
4327 #define MMUSUFFIX _cmmu
4328 #define GETPC() NULL
4329 #define env cpu_single_env
4330 #define SOFTMMU_CODE_ACCESS
4332 #define SHIFT 0
4333 #include "softmmu_template.h"
4335 #define SHIFT 1
4336 #include "softmmu_template.h"
4338 #define SHIFT 2
4339 #include "softmmu_template.h"
4341 #define SHIFT 3
4342 #include "softmmu_template.h"
4344 #undef env
4346 #endif