vvfat: Fix partition table
[qemu/agraf.git] / cpus.c
blobb182b3d7d9884b580f279ed14e7faf0a4553f642
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
44 #ifdef CONFIG_LINUX
46 #include <sys/prctl.h>
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
60 #endif /* CONFIG_LINUX */
62 static CPUArchState *next_cpu;
64 /***********************************************************/
65 /* guest cycle counter */
67 /* Conversion factor from emulated instructions to virtual clock ticks. */
68 static int icount_time_shift;
69 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
70 #define MAX_ICOUNT_SHIFT 10
71 /* Compensate for varying guest execution speed. */
72 static int64_t qemu_icount_bias;
73 static QEMUTimer *icount_rt_timer;
74 static QEMUTimer *icount_vm_timer;
75 static QEMUTimer *icount_warp_timer;
76 static int64_t vm_clock_warp_start;
77 static int64_t qemu_icount;
79 typedef struct TimersState {
80 int64_t cpu_ticks_prev;
81 int64_t cpu_ticks_offset;
82 int64_t cpu_clock_offset;
83 int32_t cpu_ticks_enabled;
84 int64_t dummy;
85 } TimersState;
87 TimersState timers_state;
89 /* Return the virtual CPU time, based on the instruction counter. */
90 int64_t cpu_get_icount(void)
92 int64_t icount;
93 CPUArchState *env = cpu_single_env;
95 icount = qemu_icount;
96 if (env) {
97 if (!can_do_io(env)) {
98 fprintf(stderr, "Bad clock read\n");
100 icount -= (env->icount_decr.u16.low + env->icount_extra);
102 return qemu_icount_bias + (icount << icount_time_shift);
105 /* return the host CPU cycle counter and handle stop/restart */
106 int64_t cpu_get_ticks(void)
108 if (use_icount) {
109 return cpu_get_icount();
111 if (!timers_state.cpu_ticks_enabled) {
112 return timers_state.cpu_ticks_offset;
113 } else {
114 int64_t ticks;
115 ticks = cpu_get_real_ticks();
116 if (timers_state.cpu_ticks_prev > ticks) {
117 /* Note: non increasing ticks may happen if the host uses
118 software suspend */
119 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
121 timers_state.cpu_ticks_prev = ticks;
122 return ticks + timers_state.cpu_ticks_offset;
126 /* return the host CPU monotonic timer and handle stop/restart */
127 int64_t cpu_get_clock(void)
129 int64_t ti;
130 if (!timers_state.cpu_ticks_enabled) {
131 return timers_state.cpu_clock_offset;
132 } else {
133 ti = get_clock();
134 return ti + timers_state.cpu_clock_offset;
138 /* enable cpu_get_ticks() */
139 void cpu_enable_ticks(void)
141 if (!timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
143 timers_state.cpu_clock_offset -= get_clock();
144 timers_state.cpu_ticks_enabled = 1;
148 /* disable cpu_get_ticks() : the clock is stopped. You must not call
149 cpu_get_ticks() after that. */
150 void cpu_disable_ticks(void)
152 if (timers_state.cpu_ticks_enabled) {
153 timers_state.cpu_ticks_offset = cpu_get_ticks();
154 timers_state.cpu_clock_offset = cpu_get_clock();
155 timers_state.cpu_ticks_enabled = 0;
159 /* Correlation between real and virtual time is always going to be
160 fairly approximate, so ignore small variation.
161 When the guest is idle real and virtual time will be aligned in
162 the IO wait loop. */
163 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
165 static void icount_adjust(void)
167 int64_t cur_time;
168 int64_t cur_icount;
169 int64_t delta;
170 static int64_t last_delta;
171 /* If the VM is not running, then do nothing. */
172 if (!runstate_is_running()) {
173 return;
175 cur_time = cpu_get_clock();
176 cur_icount = qemu_get_clock_ns(vm_clock);
177 delta = cur_icount - cur_time;
178 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
179 if (delta > 0
180 && last_delta + ICOUNT_WOBBLE < delta * 2
181 && icount_time_shift > 0) {
182 /* The guest is getting too far ahead. Slow time down. */
183 icount_time_shift--;
185 if (delta < 0
186 && last_delta - ICOUNT_WOBBLE > delta * 2
187 && icount_time_shift < MAX_ICOUNT_SHIFT) {
188 /* The guest is getting too far behind. Speed time up. */
189 icount_time_shift++;
191 last_delta = delta;
192 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
195 static void icount_adjust_rt(void *opaque)
197 qemu_mod_timer(icount_rt_timer,
198 qemu_get_clock_ms(rt_clock) + 1000);
199 icount_adjust();
202 static void icount_adjust_vm(void *opaque)
204 qemu_mod_timer(icount_vm_timer,
205 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
206 icount_adjust();
209 static int64_t qemu_icount_round(int64_t count)
211 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
214 static void icount_warp_rt(void *opaque)
216 if (vm_clock_warp_start == -1) {
217 return;
220 if (runstate_is_running()) {
221 int64_t clock = qemu_get_clock_ns(rt_clock);
222 int64_t warp_delta = clock - vm_clock_warp_start;
223 if (use_icount == 1) {
224 qemu_icount_bias += warp_delta;
225 } else {
227 * In adaptive mode, do not let the vm_clock run too
228 * far ahead of real time.
230 int64_t cur_time = cpu_get_clock();
231 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
232 int64_t delta = cur_time - cur_icount;
233 qemu_icount_bias += MIN(warp_delta, delta);
235 if (qemu_clock_expired(vm_clock)) {
236 qemu_notify_event();
239 vm_clock_warp_start = -1;
242 void qtest_clock_warp(int64_t dest)
244 int64_t clock = qemu_get_clock_ns(vm_clock);
245 assert(qtest_enabled());
246 while (clock < dest) {
247 int64_t deadline = qemu_clock_deadline(vm_clock);
248 int64_t warp = MIN(dest - clock, deadline);
249 qemu_icount_bias += warp;
250 qemu_run_timers(vm_clock);
251 clock = qemu_get_clock_ns(vm_clock);
253 qemu_notify_event();
256 void qemu_clock_warp(QEMUClock *clock)
258 int64_t deadline;
261 * There are too many global variables to make the "warp" behavior
262 * applicable to other clocks. But a clock argument removes the
263 * need for if statements all over the place.
265 if (clock != vm_clock || !use_icount) {
266 return;
270 * If the CPUs have been sleeping, advance the vm_clock timer now. This
271 * ensures that the deadline for the timer is computed correctly below.
272 * This also makes sure that the insn counter is synchronized before the
273 * CPU starts running, in case the CPU is woken by an event other than
274 * the earliest vm_clock timer.
276 icount_warp_rt(NULL);
277 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
278 qemu_del_timer(icount_warp_timer);
279 return;
282 if (qtest_enabled()) {
283 /* When testing, qtest commands advance icount. */
284 return;
287 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
288 deadline = qemu_clock_deadline(vm_clock);
289 if (deadline > 0) {
291 * Ensure the vm_clock proceeds even when the virtual CPU goes to
292 * sleep. Otherwise, the CPU might be waiting for a future timer
293 * interrupt to wake it up, but the interrupt never comes because
294 * the vCPU isn't running any insns and thus doesn't advance the
295 * vm_clock.
297 * An extreme solution for this problem would be to never let VCPUs
298 * sleep in icount mode if there is a pending vm_clock timer; rather
299 * time could just advance to the next vm_clock event. Instead, we
300 * do stop VCPUs and only advance vm_clock after some "real" time,
301 * (related to the time left until the next event) has passed. This
302 * rt_clock timer will do this. This avoids that the warps are too
303 * visible externally---for example, you will not be sending network
304 * packets continuously instead of every 100ms.
306 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
307 } else {
308 qemu_notify_event();
312 static const VMStateDescription vmstate_timers = {
313 .name = "timer",
314 .version_id = 2,
315 .minimum_version_id = 1,
316 .minimum_version_id_old = 1,
317 .fields = (VMStateField[]) {
318 VMSTATE_INT64(cpu_ticks_offset, TimersState),
319 VMSTATE_INT64(dummy, TimersState),
320 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
321 VMSTATE_END_OF_LIST()
325 void configure_icount(const char *option)
327 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
328 if (!option) {
329 return;
332 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
333 if (strcmp(option, "auto") != 0) {
334 icount_time_shift = strtol(option, NULL, 0);
335 use_icount = 1;
336 return;
339 use_icount = 2;
341 /* 125MIPS seems a reasonable initial guess at the guest speed.
342 It will be corrected fairly quickly anyway. */
343 icount_time_shift = 3;
345 /* Have both realtime and virtual time triggers for speed adjustment.
346 The realtime trigger catches emulated time passing too slowly,
347 the virtual time trigger catches emulated time passing too fast.
348 Realtime triggers occur even when idle, so use them less frequently
349 than VM triggers. */
350 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
351 qemu_mod_timer(icount_rt_timer,
352 qemu_get_clock_ms(rt_clock) + 1000);
353 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
354 qemu_mod_timer(icount_vm_timer,
355 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
358 /***********************************************************/
359 void hw_error(const char *fmt, ...)
361 va_list ap;
362 CPUArchState *env;
364 va_start(ap, fmt);
365 fprintf(stderr, "qemu: hardware error: ");
366 vfprintf(stderr, fmt, ap);
367 fprintf(stderr, "\n");
368 for(env = first_cpu; env != NULL; env = env->next_cpu) {
369 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
370 #ifdef TARGET_I386
371 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
372 #else
373 cpu_dump_state(env, stderr, fprintf, 0);
374 #endif
376 va_end(ap);
377 abort();
380 void cpu_synchronize_all_states(void)
382 CPUArchState *cpu;
384 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
385 cpu_synchronize_state(cpu);
389 void cpu_synchronize_all_post_reset(void)
391 CPUArchState *cpu;
393 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
394 cpu_synchronize_post_reset(cpu);
398 void cpu_synchronize_all_post_init(void)
400 CPUArchState *cpu;
402 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
403 cpu_synchronize_post_init(cpu);
407 int cpu_is_stopped(CPUArchState *env)
409 return !runstate_is_running() || env->stopped;
412 static void do_vm_stop(RunState state)
414 if (runstate_is_running()) {
415 cpu_disable_ticks();
416 pause_all_vcpus();
417 runstate_set(state);
418 vm_state_notify(0, state);
419 bdrv_drain_all();
420 bdrv_flush_all();
421 monitor_protocol_event(QEVENT_STOP, NULL);
425 static int cpu_can_run(CPUArchState *env)
427 if (env->stop) {
428 return 0;
430 if (env->stopped || !runstate_is_running()) {
431 return 0;
433 return 1;
436 static bool cpu_thread_is_idle(CPUArchState *env)
438 if (env->stop || env->queued_work_first) {
439 return false;
441 if (env->stopped || !runstate_is_running()) {
442 return true;
444 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
445 return false;
447 return true;
450 bool all_cpu_threads_idle(void)
452 CPUArchState *env;
454 for (env = first_cpu; env != NULL; env = env->next_cpu) {
455 if (!cpu_thread_is_idle(env)) {
456 return false;
459 return true;
462 static void cpu_handle_guest_debug(CPUArchState *env)
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
469 static void cpu_signal(int sig)
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
474 exit_request = 1;
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
480 sigset_t set;
481 struct sigaction action;
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
504 static void qemu_init_sigbus(void)
506 struct sigaction action;
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516 static void qemu_kvm_eat_signals(CPUArchState *env)
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
540 break;
541 default:
542 break;
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553 #else /* !CONFIG_LINUX */
555 static void qemu_init_sigbus(void)
559 static void qemu_kvm_eat_signals(CPUArchState *env)
562 #endif /* !CONFIG_LINUX */
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
589 static void qemu_tcg_init_cpu_signals(void)
591 sigset_t set;
592 struct sigaction sigact;
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
606 abort();
609 static void qemu_tcg_init_cpu_signals(void)
612 #endif /* _WIN32 */
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
618 static QemuThread io_thread;
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
629 void qemu_init_cpu_loop(void)
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
638 qemu_thread_get_self(&io_thread);
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
643 struct qemu_work_item wi;
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
670 static void flush_queued_work(CPUArchState *env)
672 struct qemu_work_item *wi;
674 if (!env->queued_work_first) {
675 return;
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
687 static void qemu_wait_io_event_common(CPUArchState *env)
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
694 flush_queued_work(env);
695 env->thread_kicked = false;
698 static void qemu_tcg_wait_io_event(void)
700 CPUArchState *env;
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
713 for (env = first_cpu; env != NULL; env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
718 static void qemu_kvm_wait_io_event(CPUArchState *env)
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
728 static void *qemu_kvm_cpu_thread_fn(void *arg)
730 CPUArchState *env = arg;
731 int r;
733 qemu_mutex_lock(&qemu_global_mutex);
734 qemu_thread_get_self(env->thread);
735 env->thread_id = qemu_get_thread_id();
736 cpu_single_env = env;
738 r = kvm_init_vcpu(env);
739 if (r < 0) {
740 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
741 exit(1);
744 qemu_kvm_init_cpu_signals(env);
746 /* signal CPU creation */
747 env->created = 1;
748 qemu_cond_signal(&qemu_cpu_cond);
750 while (1) {
751 if (cpu_can_run(env)) {
752 r = kvm_cpu_exec(env);
753 if (r == EXCP_DEBUG) {
754 cpu_handle_guest_debug(env);
757 qemu_kvm_wait_io_event(env);
760 return NULL;
763 static void *qemu_dummy_cpu_thread_fn(void *arg)
765 #ifdef _WIN32
766 fprintf(stderr, "qtest is not supported under Windows\n");
767 exit(1);
768 #else
769 CPUArchState *env = arg;
770 sigset_t waitset;
771 int r;
773 qemu_mutex_lock_iothread();
774 qemu_thread_get_self(env->thread);
775 env->thread_id = qemu_get_thread_id();
777 sigemptyset(&waitset);
778 sigaddset(&waitset, SIG_IPI);
780 /* signal CPU creation */
781 env->created = 1;
782 qemu_cond_signal(&qemu_cpu_cond);
784 cpu_single_env = env;
785 while (1) {
786 cpu_single_env = NULL;
787 qemu_mutex_unlock_iothread();
788 do {
789 int sig;
790 r = sigwait(&waitset, &sig);
791 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
792 if (r == -1) {
793 perror("sigwait");
794 exit(1);
796 qemu_mutex_lock_iothread();
797 cpu_single_env = env;
798 qemu_wait_io_event_common(env);
801 return NULL;
802 #endif
805 static void tcg_exec_all(void);
807 static void *qemu_tcg_cpu_thread_fn(void *arg)
809 CPUArchState *env = arg;
811 qemu_tcg_init_cpu_signals();
812 qemu_thread_get_self(env->thread);
814 /* signal CPU creation */
815 qemu_mutex_lock(&qemu_global_mutex);
816 for (env = first_cpu; env != NULL; env = env->next_cpu) {
817 env->thread_id = qemu_get_thread_id();
818 env->created = 1;
820 qemu_cond_signal(&qemu_cpu_cond);
822 /* wait for initial kick-off after machine start */
823 while (first_cpu->stopped) {
824 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
826 /* process any pending work */
827 for (env = first_cpu; env != NULL; env = env->next_cpu) {
828 qemu_wait_io_event_common(env);
832 while (1) {
833 tcg_exec_all();
834 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
835 qemu_notify_event();
837 qemu_tcg_wait_io_event();
840 return NULL;
843 static void qemu_cpu_kick_thread(CPUArchState *env)
845 #ifndef _WIN32
846 int err;
848 err = pthread_kill(env->thread->thread, SIG_IPI);
849 if (err) {
850 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
851 exit(1);
853 #else /* _WIN32 */
854 if (!qemu_cpu_is_self(env)) {
855 SuspendThread(env->hThread);
856 cpu_signal(0);
857 ResumeThread(env->hThread);
859 #endif
862 void qemu_cpu_kick(void *_env)
864 CPUArchState *env = _env;
866 qemu_cond_broadcast(env->halt_cond);
867 if (!tcg_enabled() && !env->thread_kicked) {
868 qemu_cpu_kick_thread(env);
869 env->thread_kicked = true;
873 void qemu_cpu_kick_self(void)
875 #ifndef _WIN32
876 assert(cpu_single_env);
878 if (!cpu_single_env->thread_kicked) {
879 qemu_cpu_kick_thread(cpu_single_env);
880 cpu_single_env->thread_kicked = true;
882 #else
883 abort();
884 #endif
887 int qemu_cpu_is_self(void *_env)
889 CPUArchState *env = _env;
891 return qemu_thread_is_self(env->thread);
894 void qemu_mutex_lock_iothread(void)
896 if (!tcg_enabled()) {
897 qemu_mutex_lock(&qemu_global_mutex);
898 } else {
899 iothread_requesting_mutex = true;
900 if (qemu_mutex_trylock(&qemu_global_mutex)) {
901 qemu_cpu_kick_thread(first_cpu);
902 qemu_mutex_lock(&qemu_global_mutex);
904 iothread_requesting_mutex = false;
905 qemu_cond_broadcast(&qemu_io_proceeded_cond);
909 void qemu_mutex_unlock_iothread(void)
911 qemu_mutex_unlock(&qemu_global_mutex);
914 static int all_vcpus_paused(void)
916 CPUArchState *penv = first_cpu;
918 while (penv) {
919 if (!penv->stopped) {
920 return 0;
922 penv = penv->next_cpu;
925 return 1;
928 void pause_all_vcpus(void)
930 CPUArchState *penv = first_cpu;
932 qemu_clock_enable(vm_clock, false);
933 while (penv) {
934 penv->stop = 1;
935 qemu_cpu_kick(penv);
936 penv = penv->next_cpu;
939 if (!qemu_thread_is_self(&io_thread)) {
940 cpu_stop_current();
941 if (!kvm_enabled()) {
942 while (penv) {
943 penv->stop = 0;
944 penv->stopped = 1;
945 penv = penv->next_cpu;
947 return;
951 while (!all_vcpus_paused()) {
952 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
953 penv = first_cpu;
954 while (penv) {
955 qemu_cpu_kick(penv);
956 penv = penv->next_cpu;
961 void resume_all_vcpus(void)
963 CPUArchState *penv = first_cpu;
965 qemu_clock_enable(vm_clock, true);
966 while (penv) {
967 penv->stop = 0;
968 penv->stopped = 0;
969 qemu_cpu_kick(penv);
970 penv = penv->next_cpu;
974 static void qemu_tcg_init_vcpu(void *_env)
976 CPUArchState *env = _env;
978 /* share a single thread for all cpus with TCG */
979 if (!tcg_cpu_thread) {
980 env->thread = g_malloc0(sizeof(QemuThread));
981 env->halt_cond = g_malloc0(sizeof(QemuCond));
982 qemu_cond_init(env->halt_cond);
983 tcg_halt_cond = env->halt_cond;
984 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
985 QEMU_THREAD_JOINABLE);
986 #ifdef _WIN32
987 env->hThread = qemu_thread_get_handle(env->thread);
988 #endif
989 while (env->created == 0) {
990 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
992 tcg_cpu_thread = env->thread;
993 } else {
994 env->thread = tcg_cpu_thread;
995 env->halt_cond = tcg_halt_cond;
999 static void qemu_kvm_start_vcpu(CPUArchState *env)
1001 env->thread = g_malloc0(sizeof(QemuThread));
1002 env->halt_cond = g_malloc0(sizeof(QemuCond));
1003 qemu_cond_init(env->halt_cond);
1004 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1005 QEMU_THREAD_JOINABLE);
1006 while (env->created == 0) {
1007 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1011 static void qemu_dummy_start_vcpu(CPUArchState *env)
1013 env->thread = g_malloc0(sizeof(QemuThread));
1014 env->halt_cond = g_malloc0(sizeof(QemuCond));
1015 qemu_cond_init(env->halt_cond);
1016 qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1017 QEMU_THREAD_JOINABLE);
1018 while (env->created == 0) {
1019 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1023 void qemu_init_vcpu(void *_env)
1025 CPUArchState *env = _env;
1027 env->nr_cores = smp_cores;
1028 env->nr_threads = smp_threads;
1029 env->stopped = 1;
1030 if (kvm_enabled()) {
1031 qemu_kvm_start_vcpu(env);
1032 } else if (tcg_enabled()) {
1033 qemu_tcg_init_vcpu(env);
1034 } else {
1035 qemu_dummy_start_vcpu(env);
1039 void cpu_stop_current(void)
1041 if (cpu_single_env) {
1042 cpu_single_env->stop = 0;
1043 cpu_single_env->stopped = 1;
1044 cpu_exit(cpu_single_env);
1045 qemu_cond_signal(&qemu_pause_cond);
1049 void vm_stop(RunState state)
1051 if (!qemu_thread_is_self(&io_thread)) {
1052 qemu_system_vmstop_request(state);
1054 * FIXME: should not return to device code in case
1055 * vm_stop() has been requested.
1057 cpu_stop_current();
1058 return;
1060 do_vm_stop(state);
1063 /* does a state transition even if the VM is already stopped,
1064 current state is forgotten forever */
1065 void vm_stop_force_state(RunState state)
1067 if (runstate_is_running()) {
1068 vm_stop(state);
1069 } else {
1070 runstate_set(state);
1074 static int tcg_cpu_exec(CPUArchState *env)
1076 int ret;
1077 #ifdef CONFIG_PROFILER
1078 int64_t ti;
1079 #endif
1081 #ifdef CONFIG_PROFILER
1082 ti = profile_getclock();
1083 #endif
1084 if (use_icount) {
1085 int64_t count;
1086 int decr;
1087 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1088 env->icount_decr.u16.low = 0;
1089 env->icount_extra = 0;
1090 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1091 qemu_icount += count;
1092 decr = (count > 0xffff) ? 0xffff : count;
1093 count -= decr;
1094 env->icount_decr.u16.low = decr;
1095 env->icount_extra = count;
1097 ret = cpu_exec(env);
1098 #ifdef CONFIG_PROFILER
1099 qemu_time += profile_getclock() - ti;
1100 #endif
1101 if (use_icount) {
1102 /* Fold pending instructions back into the
1103 instruction counter, and clear the interrupt flag. */
1104 qemu_icount -= (env->icount_decr.u16.low
1105 + env->icount_extra);
1106 env->icount_decr.u32 = 0;
1107 env->icount_extra = 0;
1109 return ret;
1112 static void tcg_exec_all(void)
1114 int r;
1116 /* Account partial waits to the vm_clock. */
1117 qemu_clock_warp(vm_clock);
1119 if (next_cpu == NULL) {
1120 next_cpu = first_cpu;
1122 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1123 CPUArchState *env = next_cpu;
1125 qemu_clock_enable(vm_clock,
1126 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1128 if (cpu_can_run(env)) {
1129 r = tcg_cpu_exec(env);
1130 if (r == EXCP_DEBUG) {
1131 cpu_handle_guest_debug(env);
1132 break;
1134 } else if (env->stop || env->stopped) {
1135 break;
1138 exit_request = 0;
1141 void set_numa_modes(void)
1143 CPUArchState *env;
1144 int i;
1146 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1147 for (i = 0; i < nb_numa_nodes; i++) {
1148 if (node_cpumask[i] & (1 << env->cpu_index)) {
1149 env->numa_node = i;
1155 void set_cpu_log(const char *optarg)
1157 int mask;
1158 const CPULogItem *item;
1160 mask = cpu_str_to_log_mask(optarg);
1161 if (!mask) {
1162 printf("Log items (comma separated):\n");
1163 for (item = cpu_log_items; item->mask != 0; item++) {
1164 printf("%-10s %s\n", item->name, item->help);
1166 exit(1);
1168 cpu_set_log(mask);
1171 void set_cpu_log_filename(const char *optarg)
1173 cpu_set_log_filename(optarg);
1176 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1178 /* XXX: implement xxx_cpu_list for targets that still miss it */
1179 #if defined(cpu_list_id)
1180 cpu_list_id(f, cpu_fprintf, optarg);
1181 #elif defined(cpu_list)
1182 cpu_list(f, cpu_fprintf); /* deprecated */
1183 #endif
1186 CpuInfoList *qmp_query_cpus(Error **errp)
1188 CpuInfoList *head = NULL, *cur_item = NULL;
1189 CPUArchState *env;
1191 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1192 CpuInfoList *info;
1194 cpu_synchronize_state(env);
1196 info = g_malloc0(sizeof(*info));
1197 info->value = g_malloc0(sizeof(*info->value));
1198 info->value->CPU = env->cpu_index;
1199 info->value->current = (env == first_cpu);
1200 info->value->halted = env->halted;
1201 info->value->thread_id = env->thread_id;
1202 #if defined(TARGET_I386)
1203 info->value->has_pc = true;
1204 info->value->pc = env->eip + env->segs[R_CS].base;
1205 #elif defined(TARGET_PPC)
1206 info->value->has_nip = true;
1207 info->value->nip = env->nip;
1208 #elif defined(TARGET_SPARC)
1209 info->value->has_pc = true;
1210 info->value->pc = env->pc;
1211 info->value->has_npc = true;
1212 info->value->npc = env->npc;
1213 #elif defined(TARGET_MIPS)
1214 info->value->has_PC = true;
1215 info->value->PC = env->active_tc.PC;
1216 #endif
1218 /* XXX: waiting for the qapi to support GSList */
1219 if (!cur_item) {
1220 head = cur_item = info;
1221 } else {
1222 cur_item->next = info;
1223 cur_item = info;
1227 return head;
1230 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1231 bool has_cpu, int64_t cpu_index, Error **errp)
1233 FILE *f;
1234 uint32_t l;
1235 CPUArchState *env;
1236 uint8_t buf[1024];
1238 if (!has_cpu) {
1239 cpu_index = 0;
1242 for (env = first_cpu; env; env = env->next_cpu) {
1243 if (cpu_index == env->cpu_index) {
1244 break;
1248 if (env == NULL) {
1249 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1250 "a CPU number");
1251 return;
1254 f = fopen(filename, "wb");
1255 if (!f) {
1256 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1257 return;
1260 while (size != 0) {
1261 l = sizeof(buf);
1262 if (l > size)
1263 l = size;
1264 cpu_memory_rw_debug(env, addr, buf, l, 0);
1265 if (fwrite(buf, 1, l, f) != l) {
1266 error_set(errp, QERR_IO_ERROR);
1267 goto exit;
1269 addr += l;
1270 size -= l;
1273 exit:
1274 fclose(f);
1277 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1278 Error **errp)
1280 FILE *f;
1281 uint32_t l;
1282 uint8_t buf[1024];
1284 f = fopen(filename, "wb");
1285 if (!f) {
1286 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1287 return;
1290 while (size != 0) {
1291 l = sizeof(buf);
1292 if (l > size)
1293 l = size;
1294 cpu_physical_memory_rw(addr, buf, l, 0);
1295 if (fwrite(buf, 1, l, f) != l) {
1296 error_set(errp, QERR_IO_ERROR);
1297 goto exit;
1299 addr += l;
1300 size -= l;
1303 exit:
1304 fclose(f);
1307 void qmp_inject_nmi(Error **errp)
1309 #if defined(TARGET_I386)
1310 CPUArchState *env;
1312 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1313 if (!env->apic_state) {
1314 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1315 } else {
1316 apic_deliver_nmi(env->apic_state);
1319 #else
1320 error_set(errp, QERR_UNSUPPORTED);
1321 #endif