fix event fallout in sh_serial.c
[qemu/aliguori.git] / hw / nand.c
blob28d9f0b60d82b8381a362955c49a97433eb2062c
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
16 #ifndef NAND_IO
18 # include "hw.h"
19 # include "flash.h"
20 # include "blockdev.h"
21 # include "sysbus.h"
23 # define NAND_CMD_READ0 0x00
24 # define NAND_CMD_READ1 0x01
25 # define NAND_CMD_READ2 0x50
26 # define NAND_CMD_LPREAD2 0x30
27 # define NAND_CMD_NOSERIALREAD2 0x35
28 # define NAND_CMD_RANDOMREAD1 0x05
29 # define NAND_CMD_RANDOMREAD2 0xe0
30 # define NAND_CMD_READID 0x90
31 # define NAND_CMD_RESET 0xff
32 # define NAND_CMD_PAGEPROGRAM1 0x80
33 # define NAND_CMD_PAGEPROGRAM2 0x10
34 # define NAND_CMD_CACHEPROGRAM2 0x15
35 # define NAND_CMD_BLOCKERASE1 0x60
36 # define NAND_CMD_BLOCKERASE2 0xd0
37 # define NAND_CMD_READSTATUS 0x70
38 # define NAND_CMD_COPYBACKPRG1 0x85
40 # define NAND_IOSTATUS_ERROR (1 << 0)
41 # define NAND_IOSTATUS_PLANE0 (1 << 1)
42 # define NAND_IOSTATUS_PLANE1 (1 << 2)
43 # define NAND_IOSTATUS_PLANE2 (1 << 3)
44 # define NAND_IOSTATUS_PLANE3 (1 << 4)
45 # define NAND_IOSTATUS_BUSY (1 << 6)
46 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
48 # define MAX_PAGE 0x800
49 # define MAX_OOB 0x40
51 typedef struct NANDFlashState NANDFlashState;
52 struct NANDFlashState {
53 SysBusDevice busdev;
54 uint8_t manf_id, chip_id;
55 uint8_t buswidth; /* in BYTES */
56 int size, pages;
57 int page_shift, oob_shift, erase_shift, addr_shift;
58 uint8_t *storage;
59 BlockDriverState *bdrv;
60 int mem_oob;
62 uint8_t cle, ale, ce, wp, gnd;
64 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
65 uint8_t *ioaddr;
66 int iolen;
68 uint32_t cmd;
69 uint64_t addr;
70 int addrlen;
71 int status;
72 int offset;
74 void (*blk_write)(NANDFlashState *s);
75 void (*blk_erase)(NANDFlashState *s);
76 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
78 uint32_t ioaddr_vmstate;
81 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
83 /* Like memcpy() but we logical-AND the data into the destination */
84 int i;
85 for (i = 0; i < n; i++) {
86 dest[i] &= src[i];
90 # define NAND_NO_AUTOINCR 0x00000001
91 # define NAND_BUSWIDTH_16 0x00000002
92 # define NAND_NO_PADDING 0x00000004
93 # define NAND_CACHEPRG 0x00000008
94 # define NAND_COPYBACK 0x00000010
95 # define NAND_IS_AND 0x00000020
96 # define NAND_4PAGE_ARRAY 0x00000040
97 # define NAND_NO_READRDY 0x00000100
98 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
100 # define NAND_IO
102 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
103 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
104 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
105 # define OOB_SHIFT (PAGE_SHIFT - 5)
106 # define OOB_SIZE (1 << OOB_SHIFT)
107 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
108 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
110 # define PAGE_SIZE 256
111 # define PAGE_SHIFT 8
112 # define PAGE_SECTORS 1
113 # define ADDR_SHIFT 8
114 # include "nand.c"
115 # define PAGE_SIZE 512
116 # define PAGE_SHIFT 9
117 # define PAGE_SECTORS 1
118 # define ADDR_SHIFT 8
119 # include "nand.c"
120 # define PAGE_SIZE 2048
121 # define PAGE_SHIFT 11
122 # define PAGE_SECTORS 4
123 # define ADDR_SHIFT 16
124 # include "nand.c"
126 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
127 static const struct {
128 int size;
129 int width;
130 int page_shift;
131 int erase_shift;
132 uint32_t options;
133 } nand_flash_ids[0x100] = {
134 [0 ... 0xff] = { 0 },
136 [0x6e] = { 1, 8, 8, 4, 0 },
137 [0x64] = { 2, 8, 8, 4, 0 },
138 [0x6b] = { 4, 8, 9, 4, 0 },
139 [0xe8] = { 1, 8, 8, 4, 0 },
140 [0xec] = { 1, 8, 8, 4, 0 },
141 [0xea] = { 2, 8, 8, 4, 0 },
142 [0xd5] = { 4, 8, 9, 4, 0 },
143 [0xe3] = { 4, 8, 9, 4, 0 },
144 [0xe5] = { 4, 8, 9, 4, 0 },
145 [0xd6] = { 8, 8, 9, 4, 0 },
147 [0x39] = { 8, 8, 9, 4, 0 },
148 [0xe6] = { 8, 8, 9, 4, 0 },
149 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
150 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
152 [0x33] = { 16, 8, 9, 5, 0 },
153 [0x73] = { 16, 8, 9, 5, 0 },
154 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
155 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
157 [0x35] = { 32, 8, 9, 5, 0 },
158 [0x75] = { 32, 8, 9, 5, 0 },
159 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
160 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
162 [0x36] = { 64, 8, 9, 5, 0 },
163 [0x76] = { 64, 8, 9, 5, 0 },
164 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
165 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
167 [0x78] = { 128, 8, 9, 5, 0 },
168 [0x39] = { 128, 8, 9, 5, 0 },
169 [0x79] = { 128, 8, 9, 5, 0 },
170 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
171 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
172 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
173 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x71] = { 256, 8, 9, 5, 0 },
178 * These are the new chips with large page size. The pagesize and the
179 * erasesize is determined from the extended id bytes
181 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
182 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
184 /* 512 Megabit */
185 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
186 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
187 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
188 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
190 /* 1 Gigabit */
191 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
192 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
193 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
194 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
196 /* 2 Gigabit */
197 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
198 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
199 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
200 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
202 /* 4 Gigabit */
203 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
204 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
205 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
206 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
208 /* 8 Gigabit */
209 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
210 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
211 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
212 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
214 /* 16 Gigabit */
215 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
216 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
217 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
218 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
221 static void nand_reset(DeviceState *dev)
223 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, sysbus_from_qdev(dev));
224 s->cmd = NAND_CMD_READ0;
225 s->addr = 0;
226 s->addrlen = 0;
227 s->iolen = 0;
228 s->offset = 0;
229 s->status &= NAND_IOSTATUS_UNPROTCT;
232 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
234 s->ioaddr[s->iolen++] = value;
235 for (value = s->buswidth; --value;) {
236 s->ioaddr[s->iolen++] = 0;
240 static void nand_command(NANDFlashState *s)
242 unsigned int offset;
243 switch (s->cmd) {
244 case NAND_CMD_READ0:
245 s->iolen = 0;
246 break;
248 case NAND_CMD_READID:
249 s->ioaddr = s->io;
250 s->iolen = 0;
251 nand_pushio_byte(s, s->manf_id);
252 nand_pushio_byte(s, s->chip_id);
253 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
254 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
255 /* Page Size, Block Size, Spare Size; bit 6 indicates
256 * 8 vs 16 bit width NAND.
258 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
259 } else {
260 nand_pushio_byte(s, 0xc0); /* Multi-plane */
262 break;
264 case NAND_CMD_RANDOMREAD2:
265 case NAND_CMD_NOSERIALREAD2:
266 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
267 break;
268 offset = s->addr & ((1 << s->addr_shift) - 1);
269 s->blk_load(s, s->addr, offset);
270 if (s->gnd)
271 s->iolen = (1 << s->page_shift) - offset;
272 else
273 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
274 break;
276 case NAND_CMD_RESET:
277 nand_reset(&s->busdev.qdev);
278 break;
280 case NAND_CMD_PAGEPROGRAM1:
281 s->ioaddr = s->io;
282 s->iolen = 0;
283 break;
285 case NAND_CMD_PAGEPROGRAM2:
286 if (s->wp) {
287 s->blk_write(s);
289 break;
291 case NAND_CMD_BLOCKERASE1:
292 break;
294 case NAND_CMD_BLOCKERASE2:
295 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
296 s->addr <<= 16;
297 else
298 s->addr <<= 8;
300 if (s->wp) {
301 s->blk_erase(s);
303 break;
305 case NAND_CMD_READSTATUS:
306 s->ioaddr = s->io;
307 s->iolen = 0;
308 nand_pushio_byte(s, s->status);
309 break;
311 default:
312 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
316 static void nand_pre_save(void *opaque)
318 NANDFlashState *s = opaque;
320 s->ioaddr_vmstate = s->ioaddr - s->io;
323 static int nand_post_load(void *opaque, int version_id)
325 NANDFlashState *s = opaque;
327 if (s->ioaddr_vmstate > sizeof(s->io)) {
328 return -EINVAL;
330 s->ioaddr = s->io + s->ioaddr_vmstate;
332 return 0;
335 static const VMStateDescription vmstate_nand = {
336 .name = "nand",
337 .version_id = 1,
338 .minimum_version_id = 1,
339 .minimum_version_id_old = 1,
340 .pre_save = nand_pre_save,
341 .post_load = nand_post_load,
342 .fields = (VMStateField[]) {
343 VMSTATE_UINT8(cle, NANDFlashState),
344 VMSTATE_UINT8(ale, NANDFlashState),
345 VMSTATE_UINT8(ce, NANDFlashState),
346 VMSTATE_UINT8(wp, NANDFlashState),
347 VMSTATE_UINT8(gnd, NANDFlashState),
348 VMSTATE_BUFFER(io, NANDFlashState),
349 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
350 VMSTATE_INT32(iolen, NANDFlashState),
351 VMSTATE_UINT32(cmd, NANDFlashState),
352 VMSTATE_UINT64(addr, NANDFlashState),
353 VMSTATE_INT32(addrlen, NANDFlashState),
354 VMSTATE_INT32(status, NANDFlashState),
355 VMSTATE_INT32(offset, NANDFlashState),
356 /* XXX: do we want to save s->storage too? */
357 VMSTATE_END_OF_LIST()
361 static int nand_device_init(SysBusDevice *dev)
363 int pagesize;
364 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
366 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
367 s->size = nand_flash_ids[s->chip_id].size << 20;
368 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
369 s->page_shift = 11;
370 s->erase_shift = 6;
371 } else {
372 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
373 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
376 switch (1 << s->page_shift) {
377 case 256:
378 nand_init_256(s);
379 break;
380 case 512:
381 nand_init_512(s);
382 break;
383 case 2048:
384 nand_init_2048(s);
385 break;
386 default:
387 hw_error("%s: Unsupported NAND block size.\n", __func__);
390 pagesize = 1 << s->oob_shift;
391 s->mem_oob = 1;
392 if (s->bdrv && bdrv_getlength(s->bdrv) >=
393 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
394 pagesize = 0;
395 s->mem_oob = 0;
398 if (!s->bdrv) {
399 pagesize += 1 << s->page_shift;
401 if (pagesize) {
402 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
403 0xff, s->pages * pagesize);
405 /* Give s->ioaddr a sane value in case we save state before it is used. */
406 s->ioaddr = s->io;
408 return 0;
411 static SysBusDeviceInfo nand_info = {
412 .init = nand_device_init,
413 .qdev.name = "nand",
414 .qdev.size = sizeof(NANDFlashState),
415 .qdev.reset = nand_reset,
416 .qdev.vmsd = &vmstate_nand,
417 .qdev.props = (Property[]) {
418 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
419 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
420 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
421 DEFINE_PROP_END_OF_LIST()
425 static void nand_create_device(void)
427 sysbus_register_withprop(&nand_info);
431 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
432 * outputs are R/B and eight I/O pins.
434 * CE, WP and R/B are active low.
436 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
437 uint8_t ce, uint8_t wp, uint8_t gnd)
439 NANDFlashState *s = (NANDFlashState *) dev;
440 s->cle = cle;
441 s->ale = ale;
442 s->ce = ce;
443 s->wp = wp;
444 s->gnd = gnd;
445 if (wp)
446 s->status |= NAND_IOSTATUS_UNPROTCT;
447 else
448 s->status &= ~NAND_IOSTATUS_UNPROTCT;
451 void nand_getpins(DeviceState *dev, int *rb)
453 *rb = 1;
456 void nand_setio(DeviceState *dev, uint32_t value)
458 int i;
459 NANDFlashState *s = (NANDFlashState *) dev;
460 if (!s->ce && s->cle) {
461 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
462 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
463 return;
464 if (value == NAND_CMD_RANDOMREAD1) {
465 s->addr &= ~((1 << s->addr_shift) - 1);
466 s->addrlen = 0;
467 return;
470 if (value == NAND_CMD_READ0)
471 s->offset = 0;
472 else if (value == NAND_CMD_READ1) {
473 s->offset = 0x100;
474 value = NAND_CMD_READ0;
476 else if (value == NAND_CMD_READ2) {
477 s->offset = 1 << s->page_shift;
478 value = NAND_CMD_READ0;
481 s->cmd = value;
483 if (s->cmd == NAND_CMD_READSTATUS ||
484 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
485 s->cmd == NAND_CMD_BLOCKERASE1 ||
486 s->cmd == NAND_CMD_BLOCKERASE2 ||
487 s->cmd == NAND_CMD_NOSERIALREAD2 ||
488 s->cmd == NAND_CMD_RANDOMREAD2 ||
489 s->cmd == NAND_CMD_RESET)
490 nand_command(s);
492 if (s->cmd != NAND_CMD_RANDOMREAD2) {
493 s->addrlen = 0;
497 if (s->ale) {
498 unsigned int shift = s->addrlen * 8;
499 unsigned int mask = ~(0xff << shift);
500 unsigned int v = value << shift;
502 s->addr = (s->addr & mask) | v;
503 s->addrlen ++;
505 switch (s->addrlen) {
506 case 1:
507 if (s->cmd == NAND_CMD_READID) {
508 nand_command(s);
510 break;
511 case 2: /* fix cache address as a byte address */
512 s->addr <<= (s->buswidth - 1);
513 break;
514 case 3:
515 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
516 (s->cmd == NAND_CMD_READ0 ||
517 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
518 nand_command(s);
520 break;
521 case 4:
522 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
523 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
524 (s->cmd == NAND_CMD_READ0 ||
525 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
526 nand_command(s);
528 break;
529 case 5:
530 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
531 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
532 (s->cmd == NAND_CMD_READ0 ||
533 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
534 nand_command(s);
536 break;
537 default:
538 break;
542 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
543 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
544 for (i = s->buswidth; i--; value >>= 8) {
545 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
548 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
549 if ((s->addr & ((1 << s->addr_shift) - 1)) <
550 (1 << s->page_shift) + (1 << s->oob_shift)) {
551 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
552 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
553 (uint8_t) (value & 0xff);
559 uint32_t nand_getio(DeviceState *dev)
561 int offset;
562 uint32_t x = 0;
563 NANDFlashState *s = (NANDFlashState *) dev;
565 /* Allow sequential reading */
566 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
567 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
568 s->offset = 0;
570 s->blk_load(s, s->addr, offset);
571 if (s->gnd)
572 s->iolen = (1 << s->page_shift) - offset;
573 else
574 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
577 if (s->ce || s->iolen <= 0)
578 return 0;
580 for (offset = s->buswidth; offset--;) {
581 x |= s->ioaddr[offset] << (offset << 3);
583 /* after receiving READ STATUS command all subsequent reads will
584 * return the status register value until another command is issued
586 if (s->cmd != NAND_CMD_READSTATUS) {
587 s->addr += s->buswidth;
588 s->ioaddr += s->buswidth;
589 s->iolen -= s->buswidth;
591 return x;
594 uint32_t nand_getbuswidth(DeviceState *dev)
596 NANDFlashState *s = (NANDFlashState *) dev;
597 return s->buswidth << 3;
600 DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
602 DeviceState *dev;
604 if (nand_flash_ids[chip_id].size == 0) {
605 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
607 dev = qdev_create(NULL, "nand");
608 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
609 qdev_prop_set_uint8(dev, "chip_id", chip_id);
610 if (bdrv) {
611 qdev_prop_set_drive_nofail(dev, "drive", bdrv);
614 qdev_init_nofail(dev);
615 return dev;
618 device_init(nand_create_device)
620 #else
622 /* Program a single page */
623 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
625 uint64_t off, page, sector, soff;
626 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
627 if (PAGE(s->addr) >= s->pages)
628 return;
630 if (!s->bdrv) {
631 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
632 s->offset, s->io, s->iolen);
633 } else if (s->mem_oob) {
634 sector = SECTOR(s->addr);
635 off = (s->addr & PAGE_MASK) + s->offset;
636 soff = SECTOR_OFFSET(s->addr);
637 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
638 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
639 return;
642 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
643 if (off + s->iolen > PAGE_SIZE) {
644 page = PAGE(s->addr);
645 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
646 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
649 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
650 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
651 } else {
652 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
653 sector = off >> 9;
654 soff = off & 0x1ff;
655 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
656 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
657 return;
660 mem_and(iobuf + soff, s->io, s->iolen);
662 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
663 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
665 s->offset = 0;
668 /* Erase a single block */
669 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
671 uint64_t i, page, addr;
672 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
673 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
675 if (PAGE(addr) >= s->pages)
676 return;
678 if (!s->bdrv) {
679 memset(s->storage + PAGE_START(addr),
680 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
681 } else if (s->mem_oob) {
682 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
683 0xff, OOB_SIZE << s->erase_shift);
684 i = SECTOR(addr);
685 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
686 for (; i < page; i ++)
687 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
688 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
689 } else {
690 addr = PAGE_START(addr);
691 page = addr >> 9;
692 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
693 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
694 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
695 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
696 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
698 memset(iobuf, 0xff, 0x200);
699 i = (addr & ~0x1ff) + 0x200;
700 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
701 i < addr; i += 0x200)
702 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
703 printf("%s: write error in sector %" PRIu64 "\n",
704 __func__, i >> 9);
706 page = i >> 9;
707 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
708 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
709 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
710 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
711 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
715 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
716 uint64_t addr, int offset)
718 if (PAGE(addr) >= s->pages)
719 return;
721 if (s->bdrv) {
722 if (s->mem_oob) {
723 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
724 printf("%s: read error in sector %" PRIu64 "\n",
725 __func__, SECTOR(addr));
726 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
727 s->storage + (PAGE(s->addr) << OOB_SHIFT),
728 OOB_SIZE);
729 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
730 } else {
731 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
732 s->io, (PAGE_SECTORS + 2)) == -1)
733 printf("%s: read error in sector %" PRIu64 "\n",
734 __func__, PAGE_START(addr) >> 9);
735 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
737 } else {
738 memcpy(s->io, s->storage + PAGE_START(s->addr) +
739 offset, PAGE_SIZE + OOB_SIZE - offset);
740 s->ioaddr = s->io;
744 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
746 s->oob_shift = PAGE_SHIFT - 5;
747 s->pages = s->size >> PAGE_SHIFT;
748 s->addr_shift = ADDR_SHIFT;
750 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
751 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
752 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
755 # undef PAGE_SIZE
756 # undef PAGE_SHIFT
757 # undef PAGE_SECTORS
758 # undef ADDR_SHIFT
759 #endif /* NAND_IO */