strongarm ioctl rename fallout
[qemu/aliguori.git] / hw / usb-musb.c
blobd3ccde91996aaecf4b14b3900397586914413475
1 /*
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 * Only host-mode and non-DMA accesses are currently supported.
23 #include "qemu-common.h"
24 #include "qemu-timer.h"
25 #include "usb.h"
26 #include "irq.h"
27 #include "hw.h"
29 /* Common USB registers */
30 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
31 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
33 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
34 #define MUSB_HDRC_INTRRX 0x04
35 #define MUSB_HDRC_INTRTXE 0x06
36 #define MUSB_HDRC_INTRRXE 0x08
37 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
38 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
39 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
40 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
41 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
43 /* Per-EP registers in indexed mode */
44 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
46 /* EP FIFOs */
47 #define MUSB_HDRC_FIFO 0x20
49 /* Additional Control Registers */
50 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
52 /* These are indexed */
53 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
54 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
55 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
56 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
58 /* Some more registers */
59 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
60 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
62 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
63 /* ULPI pass-through */
64 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
65 #define MUSB_HDRC_ULPI_REGDATA 0x74
66 #define MUSB_HDRC_ULPI_REGADDR 0x75
67 #define MUSB_HDRC_ULPI_REGCTL 0x76
69 /* Extended config & PHY control */
70 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
71 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
72 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
73 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
74 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
75 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
76 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
78 /* Per-EP BUSCTL registers */
79 #define MUSB_HDRC_BUSCTL 0x80
81 /* Per-EP registers in flat mode */
82 #define MUSB_HDRC_EP 0x100
84 /* offsets to registers in flat model */
85 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
86 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
87 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
88 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
91 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
92 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
93 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
94 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
95 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
96 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
97 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
98 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
99 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
101 /* "Bus control" registers */
102 #define MUSB_HDRC_TXFUNCADDR 0x00
103 #define MUSB_HDRC_TXHUBADDR 0x02
104 #define MUSB_HDRC_TXHUBPORT 0x03
106 #define MUSB_HDRC_RXFUNCADDR 0x04
107 #define MUSB_HDRC_RXHUBADDR 0x06
108 #define MUSB_HDRC_RXHUBPORT 0x07
111 * MUSBHDRC Register bit masks
114 /* POWER */
115 #define MGC_M_POWER_ISOUPDATE 0x80
116 #define MGC_M_POWER_SOFTCONN 0x40
117 #define MGC_M_POWER_HSENAB 0x20
118 #define MGC_M_POWER_HSMODE 0x10
119 #define MGC_M_POWER_RESET 0x08
120 #define MGC_M_POWER_RESUME 0x04
121 #define MGC_M_POWER_SUSPENDM 0x02
122 #define MGC_M_POWER_ENSUSPEND 0x01
124 /* INTRUSB */
125 #define MGC_M_INTR_SUSPEND 0x01
126 #define MGC_M_INTR_RESUME 0x02
127 #define MGC_M_INTR_RESET 0x04
128 #define MGC_M_INTR_BABBLE 0x04
129 #define MGC_M_INTR_SOF 0x08
130 #define MGC_M_INTR_CONNECT 0x10
131 #define MGC_M_INTR_DISCONNECT 0x20
132 #define MGC_M_INTR_SESSREQ 0x40
133 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
134 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
136 /* DEVCTL */
137 #define MGC_M_DEVCTL_BDEVICE 0x80
138 #define MGC_M_DEVCTL_FSDEV 0x40
139 #define MGC_M_DEVCTL_LSDEV 0x20
140 #define MGC_M_DEVCTL_VBUS 0x18
141 #define MGC_S_DEVCTL_VBUS 3
142 #define MGC_M_DEVCTL_HM 0x04
143 #define MGC_M_DEVCTL_HR 0x02
144 #define MGC_M_DEVCTL_SESSION 0x01
146 /* TESTMODE */
147 #define MGC_M_TEST_FORCE_HOST 0x80
148 #define MGC_M_TEST_FIFO_ACCESS 0x40
149 #define MGC_M_TEST_FORCE_FS 0x20
150 #define MGC_M_TEST_FORCE_HS 0x10
151 #define MGC_M_TEST_PACKET 0x08
152 #define MGC_M_TEST_K 0x04
153 #define MGC_M_TEST_J 0x02
154 #define MGC_M_TEST_SE0_NAK 0x01
156 /* CSR0 */
157 #define MGC_M_CSR0_FLUSHFIFO 0x0100
158 #define MGC_M_CSR0_TXPKTRDY 0x0002
159 #define MGC_M_CSR0_RXPKTRDY 0x0001
161 /* CSR0 in Peripheral mode */
162 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
163 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
164 #define MGC_M_CSR0_P_SENDSTALL 0x0020
165 #define MGC_M_CSR0_P_SETUPEND 0x0010
166 #define MGC_M_CSR0_P_DATAEND 0x0008
167 #define MGC_M_CSR0_P_SENTSTALL 0x0004
169 /* CSR0 in Host mode */
170 #define MGC_M_CSR0_H_NO_PING 0x0800
171 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
172 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
173 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
174 #define MGC_M_CSR0_H_STATUSPKT 0x0040
175 #define MGC_M_CSR0_H_REQPKT 0x0020
176 #define MGC_M_CSR0_H_ERROR 0x0010
177 #define MGC_M_CSR0_H_SETUPPKT 0x0008
178 #define MGC_M_CSR0_H_RXSTALL 0x0004
180 /* CONFIGDATA */
181 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
182 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
183 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
184 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
185 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
186 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
187 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
188 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
190 /* TXCSR in Peripheral and Host mode */
191 #define MGC_M_TXCSR_AUTOSET 0x8000
192 #define MGC_M_TXCSR_ISO 0x4000
193 #define MGC_M_TXCSR_MODE 0x2000
194 #define MGC_M_TXCSR_DMAENAB 0x1000
195 #define MGC_M_TXCSR_FRCDATATOG 0x0800
196 #define MGC_M_TXCSR_DMAMODE 0x0400
197 #define MGC_M_TXCSR_CLRDATATOG 0x0040
198 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
199 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
200 #define MGC_M_TXCSR_TXPKTRDY 0x0001
202 /* TXCSR in Peripheral mode */
203 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
204 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
205 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
206 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
208 /* TXCSR in Host mode */
209 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
210 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
211 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
212 #define MGC_M_TXCSR_H_RXSTALL 0x0020
213 #define MGC_M_TXCSR_H_ERROR 0x0004
215 /* RXCSR in Peripheral and Host mode */
216 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
217 #define MGC_M_RXCSR_DMAENAB 0x2000
218 #define MGC_M_RXCSR_DISNYET 0x1000
219 #define MGC_M_RXCSR_DMAMODE 0x0800
220 #define MGC_M_RXCSR_INCOMPRX 0x0100
221 #define MGC_M_RXCSR_CLRDATATOG 0x0080
222 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
223 #define MGC_M_RXCSR_DATAERROR 0x0008
224 #define MGC_M_RXCSR_FIFOFULL 0x0002
225 #define MGC_M_RXCSR_RXPKTRDY 0x0001
227 /* RXCSR in Peripheral mode */
228 #define MGC_M_RXCSR_P_ISO 0x4000
229 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
230 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
231 #define MGC_M_RXCSR_P_OVERRUN 0x0004
233 /* RXCSR in Host mode */
234 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
235 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
236 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
237 #define MGC_M_RXCSR_H_RXSTALL 0x0040
238 #define MGC_M_RXCSR_H_REQPKT 0x0020
239 #define MGC_M_RXCSR_H_ERROR 0x0004
241 /* HUBADDR */
242 #define MGC_M_HUBADDR_MULTI_TT 0x80
244 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
247 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
248 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
249 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
250 #define MGC_M_ULPI_REGCTL_REG 0x01
252 /* #define MUSB_DEBUG */
254 #ifdef MUSB_DEBUG
255 #define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
256 __LINE__, ##__VA_ARGS__)
257 #else
258 #define TRACE(...)
259 #endif
262 static void musb_attach(USBPort *port);
263 static void musb_detach(USBPort *port);
264 static void musb_child_detach(USBPort *port, USBDevice *child);
265 static void musb_schedule_cb(USBPort *port, USBPacket *p);
266 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev);
268 static USBPortOps musb_port_ops = {
269 .attach = musb_attach,
270 .detach = musb_detach,
271 .child_detach = musb_child_detach,
272 .complete = musb_schedule_cb,
275 static USBBusOps musb_bus_ops = {
278 typedef struct MUSBPacket MUSBPacket;
279 typedef struct MUSBEndPoint MUSBEndPoint;
281 struct MUSBPacket {
282 USBPacket p;
283 MUSBEndPoint *ep;
284 int dir;
287 struct MUSBEndPoint {
288 uint16_t faddr[2];
289 uint8_t haddr[2];
290 uint8_t hport[2];
291 uint16_t csr[2];
292 uint16_t maxp[2];
293 uint16_t rxcount;
294 uint8_t type[2];
295 uint8_t interval[2];
296 uint8_t config;
297 uint8_t fifosize;
298 int timeout[2]; /* Always in microframes */
300 uint8_t *buf[2];
301 int fifolen[2];
302 int fifostart[2];
303 int fifoaddr[2];
304 MUSBPacket packey[2];
305 int status[2];
306 int ext_size[2];
308 /* For callbacks' use */
309 int epnum;
310 int interrupt[2];
311 MUSBState *musb;
312 USBCallback *delayed_cb[2];
313 QEMUTimer *intv_timer[2];
316 struct MUSBState {
317 qemu_irq *irqs;
318 USBBus bus;
319 USBPort port;
321 int idx;
322 uint8_t devctl;
323 uint8_t power;
324 uint8_t faddr;
326 uint8_t intr;
327 uint8_t mask;
328 uint16_t tx_intr;
329 uint16_t tx_mask;
330 uint16_t rx_intr;
331 uint16_t rx_mask;
333 int setup_len;
334 int session;
336 uint8_t buf[0x8000];
338 /* Duplicating the world since 2008!... probably we should have 32
339 * logical, single endpoints instead. */
340 MUSBEndPoint ep[16];
343 struct MUSBState *musb_init(qemu_irq *irqs)
345 MUSBState *s = qemu_mallocz(sizeof(*s));
346 int i;
348 s->irqs = irqs;
350 s->faddr = 0x00;
351 s->power = MGC_M_POWER_HSENAB;
352 s->tx_intr = 0x0000;
353 s->rx_intr = 0x0000;
354 s->tx_mask = 0xffff;
355 s->rx_mask = 0xffff;
356 s->intr = 0x00;
357 s->mask = 0x06;
358 s->idx = 0;
360 /* TODO: _DW */
361 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
362 for (i = 0; i < 16; i ++) {
363 s->ep[i].fifosize = 64;
364 s->ep[i].maxp[0] = 0x40;
365 s->ep[i].maxp[1] = 0x40;
366 s->ep[i].musb = s;
367 s->ep[i].epnum = i;
368 usb_packet_init(&s->ep[i].packey[0].p);
369 usb_packet_init(&s->ep[i].packey[1].p);
372 usb_bus_new(&s->bus, &musb_bus_ops, NULL /* FIXME */);
373 usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops,
374 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
376 return s;
379 static void musb_vbus_set(MUSBState *s, int level)
381 if (level)
382 s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
383 else
384 s->devctl &= ~MGC_M_DEVCTL_VBUS;
386 qemu_set_irq(s->irqs[musb_set_vbus], level);
389 static void musb_intr_set(MUSBState *s, int line, int level)
391 if (!level) {
392 s->intr &= ~(1 << line);
393 qemu_irq_lower(s->irqs[line]);
394 } else if (s->mask & (1 << line)) {
395 s->intr |= 1 << line;
396 qemu_irq_raise(s->irqs[line]);
400 static void musb_tx_intr_set(MUSBState *s, int line, int level)
402 if (!level) {
403 s->tx_intr &= ~(1 << line);
404 if (!s->tx_intr)
405 qemu_irq_lower(s->irqs[musb_irq_tx]);
406 } else if (s->tx_mask & (1 << line)) {
407 s->tx_intr |= 1 << line;
408 qemu_irq_raise(s->irqs[musb_irq_tx]);
412 static void musb_rx_intr_set(MUSBState *s, int line, int level)
414 if (line) {
415 if (!level) {
416 s->rx_intr &= ~(1 << line);
417 if (!s->rx_intr)
418 qemu_irq_lower(s->irqs[musb_irq_rx]);
419 } else if (s->rx_mask & (1 << line)) {
420 s->rx_intr |= 1 << line;
421 qemu_irq_raise(s->irqs[musb_irq_rx]);
423 } else
424 musb_tx_intr_set(s, line, level);
427 uint32_t musb_core_intr_get(MUSBState *s)
429 return (s->rx_intr << 15) | s->tx_intr;
432 void musb_core_intr_clear(MUSBState *s, uint32_t mask)
434 if (s->rx_intr) {
435 s->rx_intr &= mask >> 15;
436 if (!s->rx_intr)
437 qemu_irq_lower(s->irqs[musb_irq_rx]);
440 if (s->tx_intr) {
441 s->tx_intr &= mask & 0xffff;
442 if (!s->tx_intr)
443 qemu_irq_lower(s->irqs[musb_irq_tx]);
447 void musb_set_size(MUSBState *s, int epnum, int size, int is_tx)
449 s->ep[epnum].ext_size[!is_tx] = size;
450 s->ep[epnum].fifostart[0] = 0;
451 s->ep[epnum].fifostart[1] = 0;
452 s->ep[epnum].fifolen[0] = 0;
453 s->ep[epnum].fifolen[1] = 0;
456 static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess)
458 int detect_prev = prev_dev && prev_sess;
459 int detect = !!s->port.dev && s->session;
461 if (detect && !detect_prev) {
462 /* Let's skip the ID pin sense and VBUS sense formalities and
463 * and signal a successful SRP directly. This should work at least
464 * for the Linux driver stack. */
465 musb_intr_set(s, musb_irq_connect, 1);
467 if (s->port.dev->speed == USB_SPEED_LOW) {
468 s->devctl &= ~MGC_M_DEVCTL_FSDEV;
469 s->devctl |= MGC_M_DEVCTL_LSDEV;
470 } else {
471 s->devctl |= MGC_M_DEVCTL_FSDEV;
472 s->devctl &= ~MGC_M_DEVCTL_LSDEV;
475 /* A-mode? */
476 s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
478 /* Host-mode bit? */
479 s->devctl |= MGC_M_DEVCTL_HM;
480 #if 1
481 musb_vbus_set(s, 1);
482 #endif
483 } else if (!detect && detect_prev) {
484 #if 1
485 musb_vbus_set(s, 0);
486 #endif
490 /* Attach or detach a device on our only port. */
491 static void musb_attach(USBPort *port)
493 MUSBState *s = (MUSBState *) port->opaque;
495 musb_intr_set(s, musb_irq_vbus_request, 1);
496 musb_session_update(s, 0, s->session);
499 static void musb_detach(USBPort *port)
501 MUSBState *s = (MUSBState *) port->opaque;
503 musb_async_cancel_device(s, port->dev);
505 musb_intr_set(s, musb_irq_disconnect, 1);
506 musb_session_update(s, 1, s->session);
509 static void musb_child_detach(USBPort *port, USBDevice *child)
511 MUSBState *s = (MUSBState *) port->opaque;
513 musb_async_cancel_device(s, child);
516 static void musb_cb_tick0(void *opaque)
518 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
520 ep->delayed_cb[0](&ep->packey[0].p, opaque);
523 static void musb_cb_tick1(void *opaque)
525 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
527 ep->delayed_cb[1](&ep->packey[1].p, opaque);
530 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
532 static void musb_schedule_cb(USBPort *port, USBPacket *packey)
534 MUSBPacket *p = container_of(packey, MUSBPacket, p);
535 MUSBEndPoint *ep = p->ep;
536 int dir = p->dir;
537 int timeout = 0;
539 if (ep->status[dir] == USB_RET_NAK)
540 timeout = ep->timeout[dir];
541 else if (ep->interrupt[dir])
542 timeout = 8;
543 else
544 return musb_cb_tick(ep);
546 if (!ep->intv_timer[dir])
547 ep->intv_timer[dir] = qemu_new_timer_ns(vm_clock, musb_cb_tick, ep);
549 qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock_ns(vm_clock) +
550 muldiv64(timeout, get_ticks_per_sec(), 8000));
553 static int musb_timeout(int ttype, int speed, int val)
555 #if 1
556 return val << 3;
557 #endif
559 switch (ttype) {
560 case USB_ENDPOINT_XFER_CONTROL:
561 if (val < 2)
562 return 0;
563 else if (speed == USB_SPEED_HIGH)
564 return 1 << (val - 1);
565 else
566 return 8 << (val - 1);
568 case USB_ENDPOINT_XFER_INT:
569 if (speed == USB_SPEED_HIGH)
570 if (val < 2)
571 return 0;
572 else
573 return 1 << (val - 1);
574 else
575 return val << 3;
577 case USB_ENDPOINT_XFER_BULK:
578 case USB_ENDPOINT_XFER_ISOC:
579 if (val < 2)
580 return 0;
581 else if (speed == USB_SPEED_HIGH)
582 return 1 << (val - 1);
583 else
584 return 8 << (val - 1);
585 /* TODO: what with low-speed Bulk and Isochronous? */
588 hw_error("bad interval\n");
591 static void musb_packet(MUSBState *s, MUSBEndPoint *ep,
592 int epnum, int pid, int len, USBCallback cb, int dir)
594 int ret;
595 int idx = epnum && dir;
596 int ttype;
598 /* ep->type[0,1] contains:
599 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
600 * in bits 5:4 the transfer type (BULK / INT)
601 * in bits 3:0 the EP num
603 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
605 ep->timeout[dir] = musb_timeout(ttype,
606 ep->type[idx] >> 6, ep->interval[idx]);
607 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
608 ep->delayed_cb[dir] = cb;
610 /* A wild guess on the FADDR semantics... */
611 usb_packet_setup(&ep->packey[dir].p, pid, ep->faddr[idx],
612 ep->type[idx] & 0xf);
613 usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len);
614 ep->packey[dir].ep = ep;
615 ep->packey[dir].dir = dir;
617 if (s->port.dev)
618 ret = usb_handle_packet(s->port.dev, &ep->packey[dir].p);
619 else
620 ret = USB_RET_NODEV;
622 if (ret == USB_RET_ASYNC) {
623 ep->status[dir] = len;
624 return;
627 ep->status[dir] = ret;
628 musb_schedule_cb(&s->port, &ep->packey[dir].p);
631 static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
633 /* Unfortunately we can't use packey->devep because that's the remote
634 * endpoint number and may be different than our local. */
635 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
636 int epnum = ep->epnum;
637 MUSBState *s = ep->musb;
639 ep->fifostart[0] = 0;
640 ep->fifolen[0] = 0;
641 #ifdef CLEAR_NAK
642 if (ep->status[0] != USB_RET_NAK) {
643 #endif
644 if (epnum)
645 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
646 else
647 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
648 #ifdef CLEAR_NAK
650 #endif
652 /* Clear all of the error bits first */
653 if (epnum)
654 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
655 MGC_M_TXCSR_H_NAKTIMEOUT);
656 else
657 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
658 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
660 if (ep->status[0] == USB_RET_STALL) {
661 /* Command not supported by target! */
662 ep->status[0] = 0;
664 if (epnum)
665 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
666 else
667 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
670 if (ep->status[0] == USB_RET_NAK) {
671 ep->status[0] = 0;
673 /* NAK timeouts are only generated in Bulk transfers and
674 * Data-errors in Isochronous. */
675 if (ep->interrupt[0]) {
676 return;
679 if (epnum)
680 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
681 else
682 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
685 if (ep->status[0] < 0) {
686 if (ep->status[0] == USB_RET_BABBLE)
687 musb_intr_set(s, musb_irq_rst_babble, 1);
689 /* Pretend we've tried three times already and failed (in
690 * case of USB_TOKEN_SETUP). */
691 if (epnum)
692 ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
693 else
694 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
696 musb_tx_intr_set(s, epnum, 1);
697 return;
699 /* TODO: check len for over/underruns of an OUT packet? */
701 #ifdef SETUPLEN_HACK
702 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
703 s->setup_len = ep->packey[0].data[6];
704 #endif
706 /* In DMA mode: if no error, assert DMA request for this EP,
707 * and skip the interrupt. */
708 musb_tx_intr_set(s, epnum, 1);
711 static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
713 /* Unfortunately we can't use packey->devep because that's the remote
714 * endpoint number and may be different than our local. */
715 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
716 int epnum = ep->epnum;
717 MUSBState *s = ep->musb;
719 ep->fifostart[1] = 0;
720 ep->fifolen[1] = 0;
722 #ifdef CLEAR_NAK
723 if (ep->status[1] != USB_RET_NAK) {
724 #endif
725 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
726 if (!epnum)
727 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
728 #ifdef CLEAR_NAK
730 #endif
732 /* Clear all of the imaginable error bits first */
733 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
734 MGC_M_RXCSR_DATAERROR);
735 if (!epnum)
736 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
737 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
739 if (ep->status[1] == USB_RET_STALL) {
740 ep->status[1] = 0;
741 packey->result = 0;
743 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
744 if (!epnum)
745 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
748 if (ep->status[1] == USB_RET_NAK) {
749 ep->status[1] = 0;
751 /* NAK timeouts are only generated in Bulk transfers and
752 * Data-errors in Isochronous. */
753 if (ep->interrupt[1])
754 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
755 packey->iov.size, musb_rx_packet_complete, 1);
757 ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
758 if (!epnum)
759 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
762 if (ep->status[1] < 0) {
763 if (ep->status[1] == USB_RET_BABBLE) {
764 musb_intr_set(s, musb_irq_rst_babble, 1);
765 return;
768 /* Pretend we've tried three times already and failed (in
769 * case of a control transfer). */
770 ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
771 if (!epnum)
772 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
774 musb_rx_intr_set(s, epnum, 1);
775 return;
777 /* TODO: check len for over/underruns of an OUT packet? */
778 /* TODO: perhaps make use of e->ext_size[1] here. */
780 packey->result = ep->status[1];
782 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
783 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
784 if (!epnum)
785 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
787 ep->rxcount = packey->result; /* XXX: MIN(packey->len, ep->maxp[1]); */
788 /* In DMA mode: assert DMA request for this EP */
791 /* Only if DMA has not been asserted */
792 musb_rx_intr_set(s, epnum, 1);
795 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev)
797 int ep, dir;
799 for (ep = 0; ep < 16; ep++) {
800 for (dir = 0; dir < 2; dir++) {
801 if (s->ep[ep].packey[dir].p.owner != dev) {
802 continue;
804 usb_cancel_packet(&s->ep[ep].packey[dir].p);
805 /* status updates needed here? */
810 static void musb_tx_rdy(MUSBState *s, int epnum)
812 MUSBEndPoint *ep = s->ep + epnum;
813 int pid;
814 int total, valid = 0;
815 TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] );
816 ep->fifostart[0] += ep->fifolen[0];
817 ep->fifolen[0] = 0;
819 /* XXX: how's the total size of the packet retrieved exactly in
820 * the generic case? */
821 total = ep->maxp[0] & 0x3ff;
823 if (ep->ext_size[0]) {
824 total = ep->ext_size[0];
825 ep->ext_size[0] = 0;
826 valid = 1;
829 /* If the packet is not fully ready yet, wait for a next segment. */
830 if (epnum && (ep->fifostart[0]) < total)
831 return;
833 if (!valid)
834 total = ep->fifostart[0];
836 pid = USB_TOKEN_OUT;
837 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
838 pid = USB_TOKEN_SETUP;
839 if (total != 8) {
840 TRACE("illegal SETUPPKT length of %i bytes", total);
842 /* Controller should retry SETUP packets three times on errors
843 * but it doesn't make sense for us to do that. */
846 return musb_packet(s, ep, epnum, pid,
847 total, musb_tx_packet_complete, 0);
850 static void musb_rx_req(MUSBState *s, int epnum)
852 MUSBEndPoint *ep = s->ep + epnum;
853 int total;
855 /* If we already have a packet, which didn't fit into the
856 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
857 if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
858 (ep->fifostart[1]) + ep->rxcount <
859 ep->packey[1].p.iov.size) {
860 TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount );
861 ep->fifostart[1] += ep->rxcount;
862 ep->fifolen[1] = 0;
864 ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]),
865 ep->maxp[1]);
867 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
868 if (!epnum)
869 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
871 /* Clear all of the error bits first */
872 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
873 MGC_M_RXCSR_DATAERROR);
874 if (!epnum)
875 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
876 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
878 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
879 if (!epnum)
880 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
881 musb_rx_intr_set(s, epnum, 1);
882 return;
885 /* The driver sets maxp[1] to 64 or less because it knows the hardware
886 * FIFO is this deep. Bigger packets get split in
887 * usb_generic_handle_packet but we can also do the splitting locally
888 * for performance. It turns out we can also have a bigger FIFO and
889 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
890 * OK with single packets of even 32KB and we avoid splitting, however
891 * usb_msd.c sometimes sends a packet bigger than what Linux expects
892 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
893 * hides this overrun from Linux. Up to 4096 everything is fine
894 * though. Currently this is disabled.
896 * XXX: mind ep->fifosize. */
897 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
899 #ifdef SETUPLEN_HACK
900 /* Why should *we* do that instead of Linux? */
901 if (!epnum) {
902 if (ep->packey[0].p.devaddr == 2) {
903 total = MIN(s->setup_len, 8);
904 } else {
905 total = MIN(s->setup_len, 64);
907 s->setup_len -= total;
909 #endif
911 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
912 total, musb_rx_packet_complete, 1);
915 static uint8_t musb_read_fifo(MUSBEndPoint *ep)
917 uint8_t value;
918 if (ep->fifolen[1] >= 64) {
919 /* We have a FIFO underrun */
920 TRACE("EP%d FIFO is now empty, stop reading", ep->epnum);
921 return 0x00000000;
923 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
924 * (if AUTOREQ is set) */
926 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
927 value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
928 TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] );
929 return value;
932 static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value)
934 TRACE("EP%d = %02x", ep->epnum, value);
935 if (ep->fifolen[0] >= 64) {
936 /* We have a FIFO overrun */
937 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum);
938 return;
941 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
942 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
945 static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir)
947 if (ep->intv_timer[dir])
948 qemu_del_timer(ep->intv_timer[dir]);
951 /* Bus control */
952 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
954 MUSBState *s = (MUSBState *) opaque;
956 switch (addr) {
957 /* For USB2.0 HS hubs only */
958 case MUSB_HDRC_TXHUBADDR:
959 return s->ep[ep].haddr[0];
960 case MUSB_HDRC_TXHUBPORT:
961 return s->ep[ep].hport[0];
962 case MUSB_HDRC_RXHUBADDR:
963 return s->ep[ep].haddr[1];
964 case MUSB_HDRC_RXHUBPORT:
965 return s->ep[ep].hport[1];
967 default:
968 TRACE("unknown register 0x%02x", addr);
969 return 0x00;
973 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
975 MUSBState *s = (MUSBState *) opaque;
977 switch (addr) {
978 case MUSB_HDRC_TXFUNCADDR:
979 s->ep[ep].faddr[0] = value;
980 break;
981 case MUSB_HDRC_RXFUNCADDR:
982 s->ep[ep].faddr[1] = value;
983 break;
984 case MUSB_HDRC_TXHUBADDR:
985 s->ep[ep].haddr[0] = value;
986 break;
987 case MUSB_HDRC_TXHUBPORT:
988 s->ep[ep].hport[0] = value;
989 break;
990 case MUSB_HDRC_RXHUBADDR:
991 s->ep[ep].haddr[1] = value;
992 break;
993 case MUSB_HDRC_RXHUBPORT:
994 s->ep[ep].hport[1] = value;
995 break;
997 default:
998 TRACE("unknown register 0x%02x", addr);
999 break;
1003 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
1005 MUSBState *s = (MUSBState *) opaque;
1007 switch (addr) {
1008 case MUSB_HDRC_TXFUNCADDR:
1009 return s->ep[ep].faddr[0];
1010 case MUSB_HDRC_RXFUNCADDR:
1011 return s->ep[ep].faddr[1];
1013 default:
1014 return musb_busctl_readb(s, ep, addr) |
1015 (musb_busctl_readb(s, ep, addr | 1) << 8);
1019 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
1021 MUSBState *s = (MUSBState *) opaque;
1023 switch (addr) {
1024 case MUSB_HDRC_TXFUNCADDR:
1025 s->ep[ep].faddr[0] = value;
1026 break;
1027 case MUSB_HDRC_RXFUNCADDR:
1028 s->ep[ep].faddr[1] = value;
1029 break;
1031 default:
1032 musb_busctl_writeb(s, ep, addr, value & 0xff);
1033 musb_busctl_writeb(s, ep, addr | 1, value >> 8);
1037 /* Endpoint control */
1038 static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
1040 MUSBState *s = (MUSBState *) opaque;
1042 switch (addr) {
1043 case MUSB_HDRC_TXTYPE:
1044 return s->ep[ep].type[0];
1045 case MUSB_HDRC_TXINTERVAL:
1046 return s->ep[ep].interval[0];
1047 case MUSB_HDRC_RXTYPE:
1048 return s->ep[ep].type[1];
1049 case MUSB_HDRC_RXINTERVAL:
1050 return s->ep[ep].interval[1];
1051 case (MUSB_HDRC_FIFOSIZE & ~1):
1052 return 0x00;
1053 case MUSB_HDRC_FIFOSIZE:
1054 return ep ? s->ep[ep].fifosize : s->ep[ep].config;
1055 case MUSB_HDRC_RXCOUNT:
1056 return s->ep[ep].rxcount;
1058 default:
1059 TRACE("unknown register 0x%02x", addr);
1060 return 0x00;
1064 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
1066 MUSBState *s = (MUSBState *) opaque;
1068 switch (addr) {
1069 case MUSB_HDRC_TXTYPE:
1070 s->ep[ep].type[0] = value;
1071 break;
1072 case MUSB_HDRC_TXINTERVAL:
1073 s->ep[ep].interval[0] = value;
1074 musb_ep_frame_cancel(&s->ep[ep], 0);
1075 break;
1076 case MUSB_HDRC_RXTYPE:
1077 s->ep[ep].type[1] = value;
1078 break;
1079 case MUSB_HDRC_RXINTERVAL:
1080 s->ep[ep].interval[1] = value;
1081 musb_ep_frame_cancel(&s->ep[ep], 1);
1082 break;
1083 case (MUSB_HDRC_FIFOSIZE & ~1):
1084 break;
1085 case MUSB_HDRC_FIFOSIZE:
1086 TRACE("somebody messes with fifosize (now %i bytes)", value);
1087 s->ep[ep].fifosize = value;
1088 break;
1089 default:
1090 TRACE("unknown register 0x%02x", addr);
1091 break;
1095 static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1097 MUSBState *s = (MUSBState *) opaque;
1098 uint16_t ret;
1100 switch (addr) {
1101 case MUSB_HDRC_TXMAXP:
1102 return s->ep[ep].maxp[0];
1103 case MUSB_HDRC_TXCSR:
1104 return s->ep[ep].csr[0];
1105 case MUSB_HDRC_RXMAXP:
1106 return s->ep[ep].maxp[1];
1107 case MUSB_HDRC_RXCSR:
1108 ret = s->ep[ep].csr[1];
1110 /* TODO: This and other bits probably depend on
1111 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1112 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1113 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1115 return ret;
1116 case MUSB_HDRC_RXCOUNT:
1117 return s->ep[ep].rxcount;
1119 default:
1120 return musb_ep_readb(s, ep, addr) |
1121 (musb_ep_readb(s, ep, addr | 1) << 8);
1125 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1127 MUSBState *s = (MUSBState *) opaque;
1129 switch (addr) {
1130 case MUSB_HDRC_TXMAXP:
1131 s->ep[ep].maxp[0] = value;
1132 break;
1133 case MUSB_HDRC_TXCSR:
1134 if (ep) {
1135 s->ep[ep].csr[0] &= value & 0xa6;
1136 s->ep[ep].csr[0] |= value & 0xff59;
1137 } else {
1138 s->ep[ep].csr[0] &= value & 0x85;
1139 s->ep[ep].csr[0] |= value & 0xf7a;
1142 musb_ep_frame_cancel(&s->ep[ep], 0);
1144 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1145 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1146 s->ep[ep].fifolen[0] = 0;
1147 s->ep[ep].fifostart[0] = 0;
1148 if (ep)
1149 s->ep[ep].csr[0] &=
1150 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1151 else
1152 s->ep[ep].csr[0] &=
1153 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1155 if (
1156 (ep &&
1157 #ifdef CLEAR_NAK
1158 (value & MGC_M_TXCSR_TXPKTRDY) &&
1159 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1160 #else
1161 (value & MGC_M_TXCSR_TXPKTRDY)) ||
1162 #endif
1163 (!ep &&
1164 #ifdef CLEAR_NAK
1165 (value & MGC_M_CSR0_TXPKTRDY) &&
1166 !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1167 #else
1168 (value & MGC_M_CSR0_TXPKTRDY)))
1169 #endif
1170 musb_tx_rdy(s, ep);
1171 if (!ep &&
1172 (value & MGC_M_CSR0_H_REQPKT) &&
1173 #ifdef CLEAR_NAK
1174 !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1175 MGC_M_CSR0_RXPKTRDY)))
1176 #else
1177 !(value & MGC_M_CSR0_RXPKTRDY))
1178 #endif
1179 musb_rx_req(s, ep);
1180 break;
1182 case MUSB_HDRC_RXMAXP:
1183 s->ep[ep].maxp[1] = value;
1184 break;
1185 case MUSB_HDRC_RXCSR:
1186 /* (DMA mode only) */
1187 if (
1188 (value & MGC_M_RXCSR_H_AUTOREQ) &&
1189 !(value & MGC_M_RXCSR_RXPKTRDY) &&
1190 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1191 value |= MGC_M_RXCSR_H_REQPKT;
1193 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1194 s->ep[ep].csr[1] |= value & 0xfeb0;
1196 musb_ep_frame_cancel(&s->ep[ep], 1);
1198 if (value & MGC_M_RXCSR_FLUSHFIFO) {
1199 s->ep[ep].fifolen[1] = 0;
1200 s->ep[ep].fifostart[1] = 0;
1201 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1202 /* If double buffering and we have two packets ready, flush
1203 * only the first one and set up the fifo at the second packet. */
1205 #ifdef CLEAR_NAK
1206 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1207 #else
1208 if (value & MGC_M_RXCSR_H_REQPKT)
1209 #endif
1210 musb_rx_req(s, ep);
1211 break;
1212 case MUSB_HDRC_RXCOUNT:
1213 s->ep[ep].rxcount = value;
1214 break;
1216 default:
1217 musb_ep_writeb(s, ep, addr, value & 0xff);
1218 musb_ep_writeb(s, ep, addr | 1, value >> 8);
1222 /* Generic control */
1223 static uint32_t musb_readb(void *opaque, target_phys_addr_t addr)
1225 MUSBState *s = (MUSBState *) opaque;
1226 int ep, i;
1227 uint8_t ret;
1229 switch (addr) {
1230 case MUSB_HDRC_FADDR:
1231 return s->faddr;
1232 case MUSB_HDRC_POWER:
1233 return s->power;
1234 case MUSB_HDRC_INTRUSB:
1235 ret = s->intr;
1236 for (i = 0; i < sizeof(ret) * 8; i ++)
1237 if (ret & (1 << i))
1238 musb_intr_set(s, i, 0);
1239 return ret;
1240 case MUSB_HDRC_INTRUSBE:
1241 return s->mask;
1242 case MUSB_HDRC_INDEX:
1243 return s->idx;
1244 case MUSB_HDRC_TESTMODE:
1245 return 0x00;
1247 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1248 return musb_ep_readb(s, s->idx, addr & 0xf);
1250 case MUSB_HDRC_DEVCTL:
1251 return s->devctl;
1253 case MUSB_HDRC_TXFIFOSZ:
1254 case MUSB_HDRC_RXFIFOSZ:
1255 case MUSB_HDRC_VCTRL:
1256 /* TODO */
1257 return 0x00;
1259 case MUSB_HDRC_HWVERS:
1260 return (1 << 10) | 400;
1262 case (MUSB_HDRC_VCTRL | 1):
1263 case (MUSB_HDRC_HWVERS | 1):
1264 case (MUSB_HDRC_DEVCTL | 1):
1265 return 0x00;
1267 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1268 ep = (addr >> 3) & 0xf;
1269 return musb_busctl_readb(s, ep, addr & 0x7);
1271 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1272 ep = (addr >> 4) & 0xf;
1273 return musb_ep_readb(s, ep, addr & 0xf);
1275 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1276 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1277 return musb_read_fifo(s->ep + ep);
1279 default:
1280 TRACE("unknown register 0x%02x", (int) addr);
1281 return 0x00;
1285 static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
1287 MUSBState *s = (MUSBState *) opaque;
1288 int ep;
1290 switch (addr) {
1291 case MUSB_HDRC_FADDR:
1292 s->faddr = value & 0x7f;
1293 break;
1294 case MUSB_HDRC_POWER:
1295 s->power = (value & 0xef) | (s->power & 0x10);
1296 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1297 if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1298 usb_send_msg(s->port.dev, USB_MSG_RESET);
1299 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1300 if ((value & MGC_M_POWER_HSENAB) &&
1301 s->port.dev->speed == USB_SPEED_HIGH)
1302 s->power |= MGC_M_POWER_HSMODE; /* Success */
1303 /* Restart frame counting. */
1305 if (value & MGC_M_POWER_SUSPENDM) {
1306 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1307 * is set, also go into low power mode. Frame counting stops. */
1308 /* XXX: Cleared when the interrupt register is read */
1310 if (value & MGC_M_POWER_RESUME) {
1311 /* Wait 20ms and signal resuming on the bus. Frame counting
1312 * restarts. */
1314 break;
1315 case MUSB_HDRC_INTRUSB:
1316 break;
1317 case MUSB_HDRC_INTRUSBE:
1318 s->mask = value & 0xff;
1319 break;
1320 case MUSB_HDRC_INDEX:
1321 s->idx = value & 0xf;
1322 break;
1323 case MUSB_HDRC_TESTMODE:
1324 break;
1326 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1327 musb_ep_writeb(s, s->idx, addr & 0xf, value);
1328 break;
1330 case MUSB_HDRC_DEVCTL:
1331 s->session = !!(value & MGC_M_DEVCTL_SESSION);
1332 musb_session_update(s,
1333 !!s->port.dev,
1334 !!(s->devctl & MGC_M_DEVCTL_SESSION));
1336 /* It seems this is the only R/W bit in this register? */
1337 s->devctl &= ~MGC_M_DEVCTL_SESSION;
1338 s->devctl |= value & MGC_M_DEVCTL_SESSION;
1339 break;
1341 case MUSB_HDRC_TXFIFOSZ:
1342 case MUSB_HDRC_RXFIFOSZ:
1343 case MUSB_HDRC_VCTRL:
1344 /* TODO */
1345 break;
1347 case (MUSB_HDRC_VCTRL | 1):
1348 case (MUSB_HDRC_DEVCTL | 1):
1349 break;
1351 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1352 ep = (addr >> 3) & 0xf;
1353 musb_busctl_writeb(s, ep, addr & 0x7, value);
1354 break;
1356 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1357 ep = (addr >> 4) & 0xf;
1358 musb_ep_writeb(s, ep, addr & 0xf, value);
1359 break;
1361 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1362 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1363 musb_write_fifo(s->ep + ep, value & 0xff);
1364 break;
1366 default:
1367 TRACE("unknown register 0x%02x", (int) addr);
1368 break;
1372 static uint32_t musb_readh(void *opaque, target_phys_addr_t addr)
1374 MUSBState *s = (MUSBState *) opaque;
1375 int ep, i;
1376 uint16_t ret;
1378 switch (addr) {
1379 case MUSB_HDRC_INTRTX:
1380 ret = s->tx_intr;
1381 /* Auto clear */
1382 for (i = 0; i < sizeof(ret) * 8; i ++)
1383 if (ret & (1 << i))
1384 musb_tx_intr_set(s, i, 0);
1385 return ret;
1386 case MUSB_HDRC_INTRRX:
1387 ret = s->rx_intr;
1388 /* Auto clear */
1389 for (i = 0; i < sizeof(ret) * 8; i ++)
1390 if (ret & (1 << i))
1391 musb_rx_intr_set(s, i, 0);
1392 return ret;
1393 case MUSB_HDRC_INTRTXE:
1394 return s->tx_mask;
1395 case MUSB_HDRC_INTRRXE:
1396 return s->rx_mask;
1398 case MUSB_HDRC_FRAME:
1399 /* TODO */
1400 return 0x0000;
1401 case MUSB_HDRC_TXFIFOADDR:
1402 return s->ep[s->idx].fifoaddr[0];
1403 case MUSB_HDRC_RXFIFOADDR:
1404 return s->ep[s->idx].fifoaddr[1];
1406 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1407 return musb_ep_readh(s, s->idx, addr & 0xf);
1409 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1410 ep = (addr >> 3) & 0xf;
1411 return musb_busctl_readh(s, ep, addr & 0x7);
1413 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1414 ep = (addr >> 4) & 0xf;
1415 return musb_ep_readh(s, ep, addr & 0xf);
1417 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1418 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1419 return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8);
1421 default:
1422 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1426 static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value)
1428 MUSBState *s = (MUSBState *) opaque;
1429 int ep;
1431 switch (addr) {
1432 case MUSB_HDRC_INTRTXE:
1433 s->tx_mask = value;
1434 /* XXX: the masks seem to apply on the raising edge like with
1435 * edge-triggered interrupts, thus no need to update. I may be
1436 * wrong though. */
1437 break;
1438 case MUSB_HDRC_INTRRXE:
1439 s->rx_mask = value;
1440 break;
1442 case MUSB_HDRC_FRAME:
1443 /* TODO */
1444 break;
1445 case MUSB_HDRC_TXFIFOADDR:
1446 s->ep[s->idx].fifoaddr[0] = value;
1447 s->ep[s->idx].buf[0] =
1448 s->buf + ((value << 3) & 0x7ff );
1449 break;
1450 case MUSB_HDRC_RXFIFOADDR:
1451 s->ep[s->idx].fifoaddr[1] = value;
1452 s->ep[s->idx].buf[1] =
1453 s->buf + ((value << 3) & 0x7ff);
1454 break;
1456 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1457 musb_ep_writeh(s, s->idx, addr & 0xf, value);
1458 break;
1460 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1461 ep = (addr >> 3) & 0xf;
1462 musb_busctl_writeh(s, ep, addr & 0x7, value);
1463 break;
1465 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1466 ep = (addr >> 4) & 0xf;
1467 musb_ep_writeh(s, ep, addr & 0xf, value);
1468 break;
1470 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1471 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1472 musb_write_fifo(s->ep + ep, value & 0xff);
1473 musb_write_fifo(s->ep + ep, (value >> 8) & 0xff);
1474 break;
1476 default:
1477 musb_writeb(s, addr, value & 0xff);
1478 musb_writeb(s, addr | 1, value >> 8);
1482 static uint32_t musb_readw(void *opaque, target_phys_addr_t addr)
1484 MUSBState *s = (MUSBState *) opaque;
1485 int ep;
1487 switch (addr) {
1488 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1489 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1490 return ( musb_read_fifo(s->ep + ep) |
1491 musb_read_fifo(s->ep + ep) << 8 |
1492 musb_read_fifo(s->ep + ep) << 16 |
1493 musb_read_fifo(s->ep + ep) << 24 );
1494 default:
1495 TRACE("unknown register 0x%02x", (int) addr);
1496 return 0x00000000;
1500 static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value)
1502 MUSBState *s = (MUSBState *) opaque;
1503 int ep;
1505 switch (addr) {
1506 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1507 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1508 musb_write_fifo(s->ep + ep, value & 0xff);
1509 musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff);
1510 musb_write_fifo(s->ep + ep, (value >> 16) & 0xff);
1511 musb_write_fifo(s->ep + ep, (value >> 24) & 0xff);
1512 break;
1513 default:
1514 TRACE("unknown register 0x%02x", (int) addr);
1515 break;
1519 CPUReadMemoryFunc * const musb_read[] = {
1520 musb_readb,
1521 musb_readh,
1522 musb_readw,
1525 CPUWriteMemoryFunc * const musb_write[] = {
1526 musb_writeb,
1527 musb_writeh,
1528 musb_writew,