8 #include "qemu-common.h"
9 #include "host-utils.h"
10 #if !defined(CONFIG_USER_ONLY)
11 #include "hw/loader.h"
14 static uint32_t cortexa9_cp15_c0_c1
[8] =
15 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17 static uint32_t cortexa9_cp15_c0_c2
[8] =
18 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20 static uint32_t cortexa8_cp15_c0_c1
[8] =
21 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23 static uint32_t cortexa8_cp15_c0_c2
[8] =
24 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26 static uint32_t mpcore_cp15_c0_c1
[8] =
27 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29 static uint32_t mpcore_cp15_c0_c2
[8] =
30 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32 static uint32_t arm1136_cp15_c0_c1
[8] =
33 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35 static uint32_t arm1136_cp15_c0_c2
[8] =
36 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38 static uint32_t arm1176_cp15_c0_c1
[8] =
39 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
41 static uint32_t arm1176_cp15_c0_c2
[8] =
42 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
44 static uint32_t cpu_arm_find_by_name(const char *name
);
46 static inline void set_feature(CPUARMState
*env
, int feature
)
48 env
->features
|= 1u << feature
;
51 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
53 env
->cp15
.c0_cpuid
= id
;
55 case ARM_CPUID_ARM926
:
56 set_feature(env
, ARM_FEATURE_V4T
);
57 set_feature(env
, ARM_FEATURE_V5
);
58 set_feature(env
, ARM_FEATURE_VFP
);
59 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
60 env
->cp15
.c0_cachetype
= 0x1dd20d2;
61 env
->cp15
.c1_sys
= 0x00090078;
63 case ARM_CPUID_ARM946
:
64 set_feature(env
, ARM_FEATURE_V4T
);
65 set_feature(env
, ARM_FEATURE_V5
);
66 set_feature(env
, ARM_FEATURE_MPU
);
67 env
->cp15
.c0_cachetype
= 0x0f004006;
68 env
->cp15
.c1_sys
= 0x00000078;
70 case ARM_CPUID_ARM1026
:
71 set_feature(env
, ARM_FEATURE_V4T
);
72 set_feature(env
, ARM_FEATURE_V5
);
73 set_feature(env
, ARM_FEATURE_VFP
);
74 set_feature(env
, ARM_FEATURE_AUXCR
);
75 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
76 env
->cp15
.c0_cachetype
= 0x1dd20d2;
77 env
->cp15
.c1_sys
= 0x00090078;
79 case ARM_CPUID_ARM1136
:
80 /* This is the 1136 r1, which is a v6K core */
81 set_feature(env
, ARM_FEATURE_V6K
);
83 case ARM_CPUID_ARM1136_R2
:
84 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
85 * older core than plain "arm1136". In particular this does not
86 * have the v6K features.
88 set_feature(env
, ARM_FEATURE_V4T
);
89 set_feature(env
, ARM_FEATURE_V5
);
90 set_feature(env
, ARM_FEATURE_V6
);
91 set_feature(env
, ARM_FEATURE_VFP
);
92 set_feature(env
, ARM_FEATURE_AUXCR
);
93 /* These ID register values are correct for 1136 but may be wrong
94 * for 1136_r2 (in particular r0p2 does not actually implement most
95 * of the ID registers).
97 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
98 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
99 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
100 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
101 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
102 env
->cp15
.c0_cachetype
= 0x1dd20d2;
103 env
->cp15
.c1_sys
= 0x00050078;
105 case ARM_CPUID_ARM1176
:
106 set_feature(env
, ARM_FEATURE_V4T
);
107 set_feature(env
, ARM_FEATURE_V5
);
108 set_feature(env
, ARM_FEATURE_V6
);
109 set_feature(env
, ARM_FEATURE_V6K
);
110 set_feature(env
, ARM_FEATURE_VFP
);
111 set_feature(env
, ARM_FEATURE_AUXCR
);
112 set_feature(env
, ARM_FEATURE_VAPA
);
113 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b5;
114 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
115 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
116 memcpy(env
->cp15
.c0_c1
, arm1176_cp15_c0_c1
, 8 * sizeof(uint32_t));
117 memcpy(env
->cp15
.c0_c2
, arm1176_cp15_c0_c2
, 8 * sizeof(uint32_t));
118 env
->cp15
.c0_cachetype
= 0x1dd20d2;
119 env
->cp15
.c1_sys
= 0x00050078;
121 case ARM_CPUID_ARM11MPCORE
:
122 set_feature(env
, ARM_FEATURE_V4T
);
123 set_feature(env
, ARM_FEATURE_V5
);
124 set_feature(env
, ARM_FEATURE_V6
);
125 set_feature(env
, ARM_FEATURE_V6K
);
126 set_feature(env
, ARM_FEATURE_VFP
);
127 set_feature(env
, ARM_FEATURE_AUXCR
);
128 set_feature(env
, ARM_FEATURE_VAPA
);
129 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
130 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
131 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
132 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
133 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
134 env
->cp15
.c0_cachetype
= 0x1dd20d2;
136 case ARM_CPUID_CORTEXA8
:
137 set_feature(env
, ARM_FEATURE_V4T
);
138 set_feature(env
, ARM_FEATURE_V5
);
139 set_feature(env
, ARM_FEATURE_V6
);
140 set_feature(env
, ARM_FEATURE_V6K
);
141 set_feature(env
, ARM_FEATURE_V7
);
142 set_feature(env
, ARM_FEATURE_AUXCR
);
143 set_feature(env
, ARM_FEATURE_THUMB2
);
144 set_feature(env
, ARM_FEATURE_VFP
);
145 set_feature(env
, ARM_FEATURE_VFP3
);
146 set_feature(env
, ARM_FEATURE_NEON
);
147 set_feature(env
, ARM_FEATURE_THUMB2EE
);
148 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
149 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
150 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
151 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
152 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
153 env
->cp15
.c0_cachetype
= 0x82048004;
154 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
155 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
156 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
157 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
158 env
->cp15
.c1_sys
= 0x00c50078;
160 case ARM_CPUID_CORTEXA9
:
161 set_feature(env
, ARM_FEATURE_V4T
);
162 set_feature(env
, ARM_FEATURE_V5
);
163 set_feature(env
, ARM_FEATURE_V6
);
164 set_feature(env
, ARM_FEATURE_V6K
);
165 set_feature(env
, ARM_FEATURE_V7
);
166 set_feature(env
, ARM_FEATURE_AUXCR
);
167 set_feature(env
, ARM_FEATURE_THUMB2
);
168 set_feature(env
, ARM_FEATURE_VFP
);
169 set_feature(env
, ARM_FEATURE_VFP3
);
170 set_feature(env
, ARM_FEATURE_VFP_FP16
);
171 set_feature(env
, ARM_FEATURE_NEON
);
172 set_feature(env
, ARM_FEATURE_THUMB2EE
);
173 /* Note that A9 supports the MP extensions even for
174 * A9UP and single-core A9MP (which are both different
175 * and valid configurations; we don't model A9UP).
177 set_feature(env
, ARM_FEATURE_V7MP
);
178 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41034000; /* Guess */
179 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
180 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x01111111;
181 memcpy(env
->cp15
.c0_c1
, cortexa9_cp15_c0_c1
, 8 * sizeof(uint32_t));
182 memcpy(env
->cp15
.c0_c2
, cortexa9_cp15_c0_c2
, 8 * sizeof(uint32_t));
183 env
->cp15
.c0_cachetype
= 0x80038003;
184 env
->cp15
.c0_clid
= (1 << 27) | (1 << 24) | 3;
185 env
->cp15
.c0_ccsid
[0] = 0xe00fe015; /* 16k L1 dcache. */
186 env
->cp15
.c0_ccsid
[1] = 0x200fe015; /* 16k L1 icache. */
187 env
->cp15
.c1_sys
= 0x00c50078;
189 case ARM_CPUID_CORTEXM3
:
190 set_feature(env
, ARM_FEATURE_V4T
);
191 set_feature(env
, ARM_FEATURE_V5
);
192 set_feature(env
, ARM_FEATURE_V6
);
193 set_feature(env
, ARM_FEATURE_THUMB2
);
194 set_feature(env
, ARM_FEATURE_V7
);
195 set_feature(env
, ARM_FEATURE_M
);
196 set_feature(env
, ARM_FEATURE_DIV
);
198 case ARM_CPUID_ANY
: /* For userspace emulation. */
199 set_feature(env
, ARM_FEATURE_V4T
);
200 set_feature(env
, ARM_FEATURE_V5
);
201 set_feature(env
, ARM_FEATURE_V6
);
202 set_feature(env
, ARM_FEATURE_V6K
);
203 set_feature(env
, ARM_FEATURE_V7
);
204 set_feature(env
, ARM_FEATURE_THUMB2
);
205 set_feature(env
, ARM_FEATURE_VFP
);
206 set_feature(env
, ARM_FEATURE_VFP3
);
207 set_feature(env
, ARM_FEATURE_VFP_FP16
);
208 set_feature(env
, ARM_FEATURE_NEON
);
209 set_feature(env
, ARM_FEATURE_THUMB2EE
);
210 set_feature(env
, ARM_FEATURE_DIV
);
211 set_feature(env
, ARM_FEATURE_V7MP
);
213 case ARM_CPUID_TI915T
:
214 case ARM_CPUID_TI925T
:
215 set_feature(env
, ARM_FEATURE_V4T
);
216 set_feature(env
, ARM_FEATURE_OMAPCP
);
217 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
218 env
->cp15
.c0_cachetype
= 0x5109149;
219 env
->cp15
.c1_sys
= 0x00000070;
220 env
->cp15
.c15_i_max
= 0x000;
221 env
->cp15
.c15_i_min
= 0xff0;
223 case ARM_CPUID_PXA250
:
224 case ARM_CPUID_PXA255
:
225 case ARM_CPUID_PXA260
:
226 case ARM_CPUID_PXA261
:
227 case ARM_CPUID_PXA262
:
228 set_feature(env
, ARM_FEATURE_V4T
);
229 set_feature(env
, ARM_FEATURE_V5
);
230 set_feature(env
, ARM_FEATURE_XSCALE
);
231 /* JTAG_ID is ((id << 28) | 0x09265013) */
232 env
->cp15
.c0_cachetype
= 0xd172172;
233 env
->cp15
.c1_sys
= 0x00000078;
235 case ARM_CPUID_PXA270_A0
:
236 case ARM_CPUID_PXA270_A1
:
237 case ARM_CPUID_PXA270_B0
:
238 case ARM_CPUID_PXA270_B1
:
239 case ARM_CPUID_PXA270_C0
:
240 case ARM_CPUID_PXA270_C5
:
241 set_feature(env
, ARM_FEATURE_V4T
);
242 set_feature(env
, ARM_FEATURE_V5
);
243 set_feature(env
, ARM_FEATURE_XSCALE
);
244 /* JTAG_ID is ((id << 28) | 0x09265013) */
245 set_feature(env
, ARM_FEATURE_IWMMXT
);
246 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
247 env
->cp15
.c0_cachetype
= 0xd172172;
248 env
->cp15
.c1_sys
= 0x00000078;
250 case ARM_CPUID_SA1100
:
251 case ARM_CPUID_SA1110
:
252 set_feature(env
, ARM_FEATURE_STRONGARM
);
253 env
->cp15
.c1_sys
= 0x00000070;
256 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
260 /* Some features automatically imply others: */
261 if (arm_feature(env
, ARM_FEATURE_V7
)) {
262 set_feature(env
, ARM_FEATURE_VAPA
);
266 void cpu_reset(CPUARMState
*env
)
270 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
271 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
272 log_cpu_state(env
, 0);
275 id
= env
->cp15
.c0_cpuid
;
276 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
278 cpu_reset_model_id(env
, id
);
279 #if defined (CONFIG_USER_ONLY)
280 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
281 /* For user mode we must enable access to coprocessors */
282 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
283 if (arm_feature(env
, ARM_FEATURE_IWMMXT
)) {
284 env
->cp15
.c15_cpar
= 3;
285 } else if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
286 env
->cp15
.c15_cpar
= 1;
289 /* SVC mode with interrupts disabled. */
290 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
291 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
292 clear at reset. Initial SP and PC are loaded from ROM. */
296 env
->uncached_cpsr
&= ~CPSR_I
;
299 /* We should really use ldl_phys here, in case the guest
300 modified flash and reset itself. However images
301 loaded via -kenrel have not been copied yet, so load the
302 values directly from there. */
303 env
->regs
[13] = ldl_p(rom
);
306 env
->regs
[15] = pc
& ~1;
309 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
310 env
->cp15
.c2_base_mask
= 0xffffc000u
;
311 /* v7 performance monitor control register: same implementor
312 * field as main ID register, and we implement no event counters.
314 env
->cp15
.c9_pmcr
= (id
& 0xff000000);
316 set_flush_to_zero(1, &env
->vfp
.standard_fp_status
);
317 set_flush_inputs_to_zero(1, &env
->vfp
.standard_fp_status
);
318 set_default_nan_mode(1, &env
->vfp
.standard_fp_status
);
319 set_float_detect_tininess(float_tininess_before_rounding
,
320 &env
->vfp
.fp_status
);
321 set_float_detect_tininess(float_tininess_before_rounding
,
322 &env
->vfp
.standard_fp_status
);
326 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
330 /* VFP data registers are always little-endian. */
331 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
333 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
336 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
337 /* Aliases for Q regs. */
340 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
341 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
345 switch (reg
- nregs
) {
346 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
347 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
348 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
353 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
357 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
359 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
362 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
365 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
366 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
370 switch (reg
- nregs
) {
371 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
372 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
373 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
378 CPUARMState
*cpu_arm_init(const char *cpu_model
)
382 static int inited
= 0;
384 id
= cpu_arm_find_by_name(cpu_model
);
387 env
= qemu_mallocz(sizeof(CPUARMState
));
391 arm_translate_init();
394 env
->cpu_model_str
= cpu_model
;
395 env
->cp15
.c0_cpuid
= id
;
397 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
398 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
399 51, "arm-neon.xml", 0);
400 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
401 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
402 35, "arm-vfp3.xml", 0);
403 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
404 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
405 19, "arm-vfp.xml", 0);
416 static const struct arm_cpu_t arm_cpu_names
[] = {
417 { ARM_CPUID_ARM926
, "arm926"},
418 { ARM_CPUID_ARM946
, "arm946"},
419 { ARM_CPUID_ARM1026
, "arm1026"},
420 { ARM_CPUID_ARM1136
, "arm1136"},
421 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
422 { ARM_CPUID_ARM1176
, "arm1176"},
423 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
424 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
425 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
426 { ARM_CPUID_CORTEXA9
, "cortex-a9"},
427 { ARM_CPUID_TI925T
, "ti925t" },
428 { ARM_CPUID_PXA250
, "pxa250" },
429 { ARM_CPUID_SA1100
, "sa1100" },
430 { ARM_CPUID_SA1110
, "sa1110" },
431 { ARM_CPUID_PXA255
, "pxa255" },
432 { ARM_CPUID_PXA260
, "pxa260" },
433 { ARM_CPUID_PXA261
, "pxa261" },
434 { ARM_CPUID_PXA262
, "pxa262" },
435 { ARM_CPUID_PXA270
, "pxa270" },
436 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
437 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
438 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
439 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
440 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
441 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
442 { ARM_CPUID_ANY
, "any"},
446 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
450 (*cpu_fprintf
)(f
, "Available CPUs:\n");
451 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
452 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
456 /* return 0 if not found */
457 static uint32_t cpu_arm_find_by_name(const char *name
)
463 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
464 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
465 id
= arm_cpu_names
[i
].id
;
472 void cpu_arm_close(CPUARMState
*env
)
477 uint32_t cpsr_read(CPUARMState
*env
)
481 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
482 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
483 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
484 | ((env
->condexec_bits
& 0xfc) << 8)
488 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
490 if (mask
& CPSR_NZCV
) {
491 env
->ZF
= (~val
) & CPSR_Z
;
493 env
->CF
= (val
>> 29) & 1;
494 env
->VF
= (val
<< 3) & 0x80000000;
497 env
->QF
= ((val
& CPSR_Q
) != 0);
499 env
->thumb
= ((val
& CPSR_T
) != 0);
500 if (mask
& CPSR_IT_0_1
) {
501 env
->condexec_bits
&= ~3;
502 env
->condexec_bits
|= (val
>> 25) & 3;
504 if (mask
& CPSR_IT_2_7
) {
505 env
->condexec_bits
&= 3;
506 env
->condexec_bits
|= (val
>> 8) & 0xfc;
508 if (mask
& CPSR_GE
) {
509 env
->GE
= (val
>> 16) & 0xf;
512 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
513 switch_mode(env
, val
& CPSR_M
);
515 mask
&= ~CACHED_CPSR_BITS
;
516 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
519 /* Sign/zero extend */
520 uint32_t HELPER(sxtb16
)(uint32_t x
)
523 res
= (uint16_t)(int8_t)x
;
524 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
528 uint32_t HELPER(uxtb16
)(uint32_t x
)
531 res
= (uint16_t)(uint8_t)x
;
532 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
536 uint32_t HELPER(clz
)(uint32_t x
)
541 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
545 if (num
== INT_MIN
&& den
== -1)
550 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
557 uint32_t HELPER(rbit
)(uint32_t x
)
559 x
= ((x
& 0xff000000) >> 24)
560 | ((x
& 0x00ff0000) >> 8)
561 | ((x
& 0x0000ff00) << 8)
562 | ((x
& 0x000000ff) << 24);
563 x
= ((x
& 0xf0f0f0f0) >> 4)
564 | ((x
& 0x0f0f0f0f) << 4);
565 x
= ((x
& 0x88888888) >> 3)
566 | ((x
& 0x44444444) >> 1)
567 | ((x
& 0x22222222) << 1)
568 | ((x
& 0x11111111) << 3);
572 uint32_t HELPER(abs
)(uint32_t x
)
574 return ((int32_t)x
< 0) ? -x
: x
;
577 #if defined(CONFIG_USER_ONLY)
579 void do_interrupt (CPUState
*env
)
581 env
->exception_index
= -1;
584 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
588 env
->exception_index
= EXCP_PREFETCH_ABORT
;
589 env
->cp15
.c6_insn
= address
;
591 env
->exception_index
= EXCP_DATA_ABORT
;
592 env
->cp15
.c6_data
= address
;
597 /* These should probably raise undefined insn exceptions. */
598 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
600 int op1
= (insn
>> 8) & 0xf;
601 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
605 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
607 int op1
= (insn
>> 8) & 0xf;
608 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
612 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
614 cpu_abort(env
, "cp15 insn %08x\n", insn
);
617 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
619 cpu_abort(env
, "cp15 insn %08x\n", insn
);
622 /* These should probably raise undefined insn exceptions. */
623 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
625 cpu_abort(env
, "v7m_mrs %d\n", reg
);
628 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
630 cpu_abort(env
, "v7m_mrs %d\n", reg
);
634 void switch_mode(CPUState
*env
, int mode
)
636 if (mode
!= ARM_CPU_MODE_USR
)
637 cpu_abort(env
, "Tried to switch out of user mode\n");
640 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
642 cpu_abort(env
, "banked r13 write\n");
645 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
647 cpu_abort(env
, "banked r13 read\n");
653 extern int semihosting_enabled
;
655 /* Map CPU modes onto saved register banks. */
656 static inline int bank_number (int mode
)
659 case ARM_CPU_MODE_USR
:
660 case ARM_CPU_MODE_SYS
:
662 case ARM_CPU_MODE_SVC
:
664 case ARM_CPU_MODE_ABT
:
666 case ARM_CPU_MODE_UND
:
668 case ARM_CPU_MODE_IRQ
:
670 case ARM_CPU_MODE_FIQ
:
673 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
677 void switch_mode(CPUState
*env
, int mode
)
682 old_mode
= env
->uncached_cpsr
& CPSR_M
;
683 if (mode
== old_mode
)
686 if (old_mode
== ARM_CPU_MODE_FIQ
) {
687 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
688 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
689 } else if (mode
== ARM_CPU_MODE_FIQ
) {
690 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
691 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
694 i
= bank_number(old_mode
);
695 env
->banked_r13
[i
] = env
->regs
[13];
696 env
->banked_r14
[i
] = env
->regs
[14];
697 env
->banked_spsr
[i
] = env
->spsr
;
699 i
= bank_number(mode
);
700 env
->regs
[13] = env
->banked_r13
[i
];
701 env
->regs
[14] = env
->banked_r14
[i
];
702 env
->spsr
= env
->banked_spsr
[i
];
705 static void v7m_push(CPUARMState
*env
, uint32_t val
)
708 stl_phys(env
->regs
[13], val
);
711 static uint32_t v7m_pop(CPUARMState
*env
)
714 val
= ldl_phys(env
->regs
[13]);
719 /* Switch to V7M main or process stack pointer. */
720 static void switch_v7m_sp(CPUARMState
*env
, int process
)
723 if (env
->v7m
.current_sp
!= process
) {
724 tmp
= env
->v7m
.other_sp
;
725 env
->v7m
.other_sp
= env
->regs
[13];
727 env
->v7m
.current_sp
= process
;
731 static void do_v7m_exception_exit(CPUARMState
*env
)
736 type
= env
->regs
[15];
737 if (env
->v7m
.exception
!= 0)
738 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
740 /* Switch to the target stack. */
741 switch_v7m_sp(env
, (type
& 4) != 0);
743 env
->regs
[0] = v7m_pop(env
);
744 env
->regs
[1] = v7m_pop(env
);
745 env
->regs
[2] = v7m_pop(env
);
746 env
->regs
[3] = v7m_pop(env
);
747 env
->regs
[12] = v7m_pop(env
);
748 env
->regs
[14] = v7m_pop(env
);
749 env
->regs
[15] = v7m_pop(env
);
751 xpsr_write(env
, xpsr
, 0xfffffdff);
752 /* Undo stack alignment. */
755 /* ??? The exception return type specifies Thread/Handler mode. However
756 this is also implied by the xPSR value. Not sure what to do
757 if there is a mismatch. */
758 /* ??? Likewise for mismatches between the CONTROL register and the stack
762 static void do_interrupt_v7m(CPUARMState
*env
)
764 uint32_t xpsr
= xpsr_read(env
);
769 if (env
->v7m
.current_sp
)
771 if (env
->v7m
.exception
== 0)
774 /* For exceptions we just mark as pending on the NVIC, and let that
776 /* TODO: Need to escalate if the current priority is higher than the
777 one we're raising. */
778 switch (env
->exception_index
) {
780 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
784 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
786 case EXCP_PREFETCH_ABORT
:
787 case EXCP_DATA_ABORT
:
788 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
791 if (semihosting_enabled
) {
793 nr
= lduw_code(env
->regs
[15]) & 0xff;
796 env
->regs
[0] = do_arm_semihosting(env
);
800 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
803 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
805 case EXCP_EXCEPTION_EXIT
:
806 do_v7m_exception_exit(env
);
809 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
810 return; /* Never happens. Keep compiler happy. */
813 /* Align stack pointer. */
814 /* ??? Should only do this if Configuration Control Register
815 STACKALIGN bit is set. */
816 if (env
->regs
[13] & 4) {
820 /* Switch to the handler mode. */
822 v7m_push(env
, env
->regs
[15]);
823 v7m_push(env
, env
->regs
[14]);
824 v7m_push(env
, env
->regs
[12]);
825 v7m_push(env
, env
->regs
[3]);
826 v7m_push(env
, env
->regs
[2]);
827 v7m_push(env
, env
->regs
[1]);
828 v7m_push(env
, env
->regs
[0]);
829 switch_v7m_sp(env
, 0);
830 env
->uncached_cpsr
&= ~CPSR_IT
;
832 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
833 env
->regs
[15] = addr
& 0xfffffffe;
834 env
->thumb
= addr
& 1;
837 /* Handle a CPU exception. */
838 void do_interrupt(CPUARMState
*env
)
846 do_interrupt_v7m(env
);
849 /* TODO: Vectored interrupt controller. */
850 switch (env
->exception_index
) {
852 new_mode
= ARM_CPU_MODE_UND
;
861 if (semihosting_enabled
) {
862 /* Check for semihosting interrupt. */
864 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
866 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
868 /* Only intercept calls from privileged modes, to provide some
869 semblance of security. */
870 if (((mask
== 0x123456 && !env
->thumb
)
871 || (mask
== 0xab && env
->thumb
))
872 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
873 env
->regs
[0] = do_arm_semihosting(env
);
877 new_mode
= ARM_CPU_MODE_SVC
;
880 /* The PC already points to the next instruction. */
884 /* See if this is a semihosting syscall. */
885 if (env
->thumb
&& semihosting_enabled
) {
886 mask
= lduw_code(env
->regs
[15]) & 0xff;
888 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
890 env
->regs
[0] = do_arm_semihosting(env
);
894 env
->cp15
.c5_insn
= 2;
895 /* Fall through to prefetch abort. */
896 case EXCP_PREFETCH_ABORT
:
897 new_mode
= ARM_CPU_MODE_ABT
;
899 mask
= CPSR_A
| CPSR_I
;
902 case EXCP_DATA_ABORT
:
903 new_mode
= ARM_CPU_MODE_ABT
;
905 mask
= CPSR_A
| CPSR_I
;
909 new_mode
= ARM_CPU_MODE_IRQ
;
911 /* Disable IRQ and imprecise data aborts. */
912 mask
= CPSR_A
| CPSR_I
;
916 new_mode
= ARM_CPU_MODE_FIQ
;
918 /* Disable FIQ, IRQ and imprecise data aborts. */
919 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
923 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
924 return; /* Never happens. Keep compiler happy. */
927 if (env
->cp15
.c1_sys
& (1 << 13)) {
930 switch_mode (env
, new_mode
);
931 env
->spsr
= cpsr_read(env
);
933 env
->condexec_bits
= 0;
934 /* Switch to the new mode, and to the correct instruction set. */
935 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
936 env
->uncached_cpsr
|= mask
;
937 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
938 * and we should just guard the thumb mode on V4 */
939 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
940 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
942 env
->regs
[14] = env
->regs
[15] + offset
;
943 env
->regs
[15] = addr
;
944 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
947 /* Check section/page access permissions.
948 Returns the page protection flags, or zero if the access is not
950 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
956 return PAGE_READ
| PAGE_WRITE
;
958 if (access_type
== 1)
965 if (access_type
== 1)
967 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
969 return is_user
? 0 : PAGE_READ
;
976 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
981 return PAGE_READ
| PAGE_WRITE
;
983 return PAGE_READ
| PAGE_WRITE
;
984 case 4: /* Reserved. */
987 return is_user
? 0 : prot_ro
;
991 if (!arm_feature (env
, ARM_FEATURE_V6K
))
999 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
1003 if (address
& env
->cp15
.c2_mask
)
1004 table
= env
->cp15
.c2_base1
& 0xffffc000;
1006 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
1008 table
|= (address
>> 18) & 0x3ffc;
1012 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
1013 int is_user
, uint32_t *phys_ptr
, int *prot
,
1014 target_ulong
*page_size
)
1024 /* Pagetable walk. */
1025 /* Lookup l1 descriptor. */
1026 table
= get_level1_table_address(env
, address
);
1027 desc
= ldl_phys(table
);
1029 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
1031 /* Section translation fault. */
1035 if (domain
== 0 || domain
== 2) {
1037 code
= 9; /* Section domain fault. */
1039 code
= 11; /* Page domain fault. */
1044 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1045 ap
= (desc
>> 10) & 3;
1047 *page_size
= 1024 * 1024;
1049 /* Lookup l2 entry. */
1051 /* Coarse pagetable. */
1052 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1054 /* Fine pagetable. */
1055 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
1057 desc
= ldl_phys(table
);
1059 case 0: /* Page translation fault. */
1062 case 1: /* 64k page. */
1063 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1064 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1065 *page_size
= 0x10000;
1067 case 2: /* 4k page. */
1068 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1069 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1070 *page_size
= 0x1000;
1072 case 3: /* 1k page. */
1074 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1075 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1077 /* Page translation fault. */
1082 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1084 ap
= (desc
>> 4) & 3;
1088 /* Never happens, but compiler isn't smart enough to tell. */
1093 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1095 /* Access permission fault. */
1099 *phys_ptr
= phys_addr
;
1102 return code
| (domain
<< 4);
1105 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1106 int is_user
, uint32_t *phys_ptr
, int *prot
,
1107 target_ulong
*page_size
)
1118 /* Pagetable walk. */
1119 /* Lookup l1 descriptor. */
1120 table
= get_level1_table_address(env
, address
);
1121 desc
= ldl_phys(table
);
1124 /* Section translation fault. */
1128 } else if (type
== 2 && (desc
& (1 << 18))) {
1132 /* Section or page. */
1133 domain
= (desc
>> 4) & 0x1e;
1135 domain
= (env
->cp15
.c3
>> domain
) & 3;
1136 if (domain
== 0 || domain
== 2) {
1138 code
= 9; /* Section domain fault. */
1140 code
= 11; /* Page domain fault. */
1144 if (desc
& (1 << 18)) {
1146 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1147 *page_size
= 0x1000000;
1150 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1151 *page_size
= 0x100000;
1153 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1154 xn
= desc
& (1 << 4);
1157 /* Lookup l2 entry. */
1158 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1159 desc
= ldl_phys(table
);
1160 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1162 case 0: /* Page translation fault. */
1165 case 1: /* 64k page. */
1166 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1167 xn
= desc
& (1 << 15);
1168 *page_size
= 0x10000;
1170 case 2: case 3: /* 4k page. */
1171 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1173 *page_size
= 0x1000;
1176 /* Never happens, but compiler isn't smart enough to tell. */
1182 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1184 if (xn
&& access_type
== 2)
1187 /* The simplified model uses AP[0] as an access control bit. */
1188 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1189 /* Access flag fault. */
1190 code
= (code
== 15) ? 6 : 3;
1193 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1195 /* Access permission fault. */
1202 *phys_ptr
= phys_addr
;
1205 return code
| (domain
<< 4);
1208 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1209 int is_user
, uint32_t *phys_ptr
, int *prot
)
1215 *phys_ptr
= address
;
1216 for (n
= 7; n
>= 0; n
--) {
1217 base
= env
->cp15
.c6_region
[n
];
1218 if ((base
& 1) == 0)
1220 mask
= 1 << ((base
>> 1) & 0x1f);
1221 /* Keep this shift separate from the above to avoid an
1222 (undefined) << 32. */
1223 mask
= (mask
<< 1) - 1;
1224 if (((base
^ address
) & ~mask
) == 0)
1230 if (access_type
== 2) {
1231 mask
= env
->cp15
.c5_insn
;
1233 mask
= env
->cp15
.c5_data
;
1235 mask
= (mask
>> (n
* 4)) & 0xf;
1242 *prot
= PAGE_READ
| PAGE_WRITE
;
1247 *prot
|= PAGE_WRITE
;
1250 *prot
= PAGE_READ
| PAGE_WRITE
;
1261 /* Bad permission. */
1268 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1269 int access_type
, int is_user
,
1270 uint32_t *phys_ptr
, int *prot
,
1271 target_ulong
*page_size
)
1273 /* Fast Context Switch Extension. */
1274 if (address
< 0x02000000)
1275 address
+= env
->cp15
.c13_fcse
;
1277 if ((env
->cp15
.c1_sys
& 1) == 0) {
1278 /* MMU/MPU disabled. */
1279 *phys_ptr
= address
;
1280 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
1281 *page_size
= TARGET_PAGE_SIZE
;
1283 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1284 *page_size
= TARGET_PAGE_SIZE
;
1285 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1287 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1288 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1291 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1296 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1297 int access_type
, int mmu_idx
)
1300 target_ulong page_size
;
1304 is_user
= mmu_idx
== MMU_USER_IDX
;
1305 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
1308 /* Map a single [sub]page. */
1309 phys_addr
&= ~(uint32_t)0x3ff;
1310 address
&= ~(uint32_t)0x3ff;
1311 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
1315 if (access_type
== 2) {
1316 env
->cp15
.c5_insn
= ret
;
1317 env
->cp15
.c6_insn
= address
;
1318 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1320 env
->cp15
.c5_data
= ret
;
1321 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1322 env
->cp15
.c5_data
|= (1 << 11);
1323 env
->cp15
.c6_data
= address
;
1324 env
->exception_index
= EXCP_DATA_ABORT
;
1329 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1332 target_ulong page_size
;
1336 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
1344 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1346 int cp_num
= (insn
>> 8) & 0xf;
1347 int cp_info
= (insn
>> 5) & 7;
1348 int src
= (insn
>> 16) & 0xf;
1349 int operand
= insn
& 0xf;
1351 if (env
->cp
[cp_num
].cp_write
)
1352 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1353 cp_info
, src
, operand
, val
);
1356 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1358 int cp_num
= (insn
>> 8) & 0xf;
1359 int cp_info
= (insn
>> 5) & 7;
1360 int dest
= (insn
>> 16) & 0xf;
1361 int operand
= insn
& 0xf;
1363 if (env
->cp
[cp_num
].cp_read
)
1364 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1365 cp_info
, dest
, operand
);
1369 /* Return basic MPU access permission bits. */
1370 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1377 for (i
= 0; i
< 16; i
+= 2) {
1378 ret
|= (val
>> i
) & mask
;
1384 /* Pad basic MPU access permission bits to extended format. */
1385 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1392 for (i
= 0; i
< 16; i
+= 2) {
1393 ret
|= (val
& mask
) << i
;
1399 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1405 op1
= (insn
>> 21) & 7;
1406 op2
= (insn
>> 5) & 7;
1408 switch ((insn
>> 16) & 0xf) {
1411 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1413 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1415 if (arm_feature(env
, ARM_FEATURE_V7
)
1416 && op1
== 2 && crm
== 0 && op2
== 0) {
1417 env
->cp15
.c0_cssel
= val
& 0xf;
1421 case 1: /* System configuration. */
1422 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1426 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1427 env
->cp15
.c1_sys
= val
;
1428 /* ??? Lots of these bits are not implemented. */
1429 /* This may enable/disable the MMU, so do a TLB flush. */
1432 case 1: /* Auxiliary control register. */
1433 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1434 env
->cp15
.c1_xscaleauxcr
= val
;
1437 /* Not implemented. */
1440 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1442 if (env
->cp15
.c1_coproc
!= val
) {
1443 env
->cp15
.c1_coproc
= val
;
1444 /* ??? Is this safe when called from within a TB? */
1452 case 2: /* MMU Page table control / MPU cache control. */
1453 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1456 env
->cp15
.c2_data
= val
;
1459 env
->cp15
.c2_insn
= val
;
1467 env
->cp15
.c2_base0
= val
;
1470 env
->cp15
.c2_base1
= val
;
1474 env
->cp15
.c2_control
= val
;
1475 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1476 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1483 case 3: /* MMU Domain access control / MPU write buffer control. */
1485 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1487 case 4: /* Reserved. */
1489 case 5: /* MMU Fault status / MPU access permission. */
1490 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1494 if (arm_feature(env
, ARM_FEATURE_MPU
))
1495 val
= extended_mpu_ap_bits(val
);
1496 env
->cp15
.c5_data
= val
;
1499 if (arm_feature(env
, ARM_FEATURE_MPU
))
1500 val
= extended_mpu_ap_bits(val
);
1501 env
->cp15
.c5_insn
= val
;
1504 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1506 env
->cp15
.c5_data
= val
;
1509 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1511 env
->cp15
.c5_insn
= val
;
1517 case 6: /* MMU Fault address / MPU base/size. */
1518 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1521 env
->cp15
.c6_region
[crm
] = val
;
1523 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1527 env
->cp15
.c6_data
= val
;
1529 case 1: /* ??? This is WFAR on armv6 */
1531 env
->cp15
.c6_insn
= val
;
1538 case 7: /* Cache control. */
1539 env
->cp15
.c15_i_max
= 0x000;
1540 env
->cp15
.c15_i_min
= 0xff0;
1544 /* No cache, so nothing to do except VA->PA translations. */
1545 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1548 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1549 env
->cp15
.c7_par
= val
& 0xfffff6ff;
1551 env
->cp15
.c7_par
= val
& 0xfffff1ff;
1556 target_ulong page_size
;
1558 int ret
, is_user
= op2
& 2;
1559 int access_type
= op2
& 1;
1562 /* Other states are only available with TrustZone */
1565 ret
= get_phys_addr(env
, val
, access_type
, is_user
,
1566 &phys_addr
, &prot
, &page_size
);
1568 /* We do not set any attribute bits in the PAR */
1569 if (page_size
== (1 << 24)
1570 && arm_feature(env
, ARM_FEATURE_V7
)) {
1571 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1573 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1576 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1577 ((ret
& (12 << 1)) >> 6) |
1578 ((ret
& 0xf) << 1) | 1;
1585 case 8: /* MMU TLB control. */
1587 case 0: /* Invalidate all. */
1590 case 1: /* Invalidate single TLB entry. */
1591 tlb_flush_page(env
, val
& TARGET_PAGE_MASK
);
1593 case 2: /* Invalidate on ASID. */
1594 tlb_flush(env
, val
== 0);
1596 case 3: /* Invalidate single entry on MVA. */
1597 /* ??? This is like case 1, but ignores ASID. */
1605 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1607 if (arm_feature(env
, ARM_FEATURE_STRONGARM
))
1608 break; /* Ignore ReadBuffer access */
1610 case 0: /* Cache lockdown. */
1612 case 0: /* L1 cache. */
1615 env
->cp15
.c9_data
= val
;
1618 env
->cp15
.c9_insn
= val
;
1624 case 1: /* L2 cache. */
1625 /* Ignore writes to L2 lockdown/auxiliary registers. */
1631 case 1: /* TCM memory region registers. */
1632 /* Not implemented. */
1634 case 12: /* Performance monitor control */
1635 /* Performance monitors are implementation defined in v7,
1636 * but with an ARM recommended set of registers, which we
1637 * follow (although we don't actually implement any counters)
1639 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1643 case 0: /* performance monitor control register */
1644 /* only the DP, X, D and E bits are writable */
1645 env
->cp15
.c9_pmcr
&= ~0x39;
1646 env
->cp15
.c9_pmcr
|= (val
& 0x39);
1648 case 1: /* Count enable set register */
1650 env
->cp15
.c9_pmcnten
|= val
;
1652 case 2: /* Count enable clear */
1654 env
->cp15
.c9_pmcnten
&= ~val
;
1656 case 3: /* Overflow flag status */
1657 env
->cp15
.c9_pmovsr
&= ~val
;
1659 case 4: /* Software increment */
1660 /* RAZ/WI since we don't implement the software-count event */
1662 case 5: /* Event counter selection register */
1663 /* Since we don't implement any events, writing to this register
1664 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1671 case 13: /* Performance counters */
1672 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1676 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1678 case 1: /* Event type select */
1679 env
->cp15
.c9_pmxevtyper
= val
& 0xff;
1681 case 2: /* Event count register */
1682 /* Unimplemented (we have no events), RAZ/WI */
1688 case 14: /* Performance monitor control */
1689 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
1693 case 0: /* user enable */
1694 env
->cp15
.c9_pmuserenr
= val
& 1;
1695 /* changes access rights for cp registers, so flush tbs */
1698 case 1: /* interrupt enable set */
1699 /* We have no event counters so only the C bit can be changed */
1701 env
->cp15
.c9_pminten
|= val
;
1703 case 2: /* interrupt enable clear */
1705 env
->cp15
.c9_pminten
&= ~val
;
1713 case 10: /* MMU TLB lockdown. */
1714 /* ??? TLB lockdown not implemented. */
1716 case 12: /* Reserved. */
1718 case 13: /* Process ID. */
1721 /* Unlike real hardware the qemu TLB uses virtual addresses,
1722 not modified virtual addresses, so this causes a TLB flush.
1724 if (env
->cp15
.c13_fcse
!= val
)
1726 env
->cp15
.c13_fcse
= val
;
1729 /* This changes the ASID, so do a TLB flush. */
1730 if (env
->cp15
.c13_context
!= val
1731 && !arm_feature(env
, ARM_FEATURE_MPU
))
1733 env
->cp15
.c13_context
= val
;
1739 case 14: /* Reserved. */
1741 case 15: /* Implementation specific. */
1742 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1743 if (op2
== 0 && crm
== 1) {
1744 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1745 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1747 env
->cp15
.c15_cpar
= val
& 0x3fff;
1753 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1757 case 1: /* Set TI925T configuration. */
1758 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1759 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1760 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1762 case 2: /* Set I_max. */
1763 env
->cp15
.c15_i_max
= val
;
1765 case 3: /* Set I_min. */
1766 env
->cp15
.c15_i_min
= val
;
1768 case 4: /* Set thread-ID. */
1769 env
->cp15
.c15_threadid
= val
& 0xffff;
1771 case 8: /* Wait-for-interrupt (deprecated). */
1772 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1782 /* ??? For debugging only. Should raise illegal instruction exception. */
1783 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1784 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1787 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1793 op1
= (insn
>> 21) & 7;
1794 op2
= (insn
>> 5) & 7;
1796 switch ((insn
>> 16) & 0xf) {
1797 case 0: /* ID codes. */
1803 case 0: /* Device ID. */
1804 return env
->cp15
.c0_cpuid
;
1805 case 1: /* Cache Type. */
1806 return env
->cp15
.c0_cachetype
;
1807 case 2: /* TCM status. */
1809 case 3: /* TLB type register. */
1810 return 0; /* No lockable TLB entries. */
1812 /* The MPIDR was standardised in v7; prior to
1813 * this it was implemented only in the 11MPCore.
1814 * For all other pre-v7 cores it does not exist.
1816 if (arm_feature(env
, ARM_FEATURE_V7
) ||
1817 ARM_CPUID(env
) == ARM_CPUID_ARM11MPCORE
) {
1818 int mpidr
= env
->cpu_index
;
1819 /* We don't support setting cluster ID ([8..11])
1820 * so these bits always RAZ.
1822 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1824 /* Cores which are uniprocessor (non-coherent)
1825 * but still implement the MP extensions set
1826 * bit 30. (For instance, A9UP.) However we do
1827 * not currently model any of those cores.
1832 /* otherwise fall through to the unimplemented-reg case */
1837 if (!arm_feature(env
, ARM_FEATURE_V6
))
1839 return env
->cp15
.c0_c1
[op2
];
1841 if (!arm_feature(env
, ARM_FEATURE_V6
))
1843 return env
->cp15
.c0_c2
[op2
];
1844 case 3: case 4: case 5: case 6: case 7:
1850 /* These registers aren't documented on arm11 cores. However
1851 Linux looks at them anyway. */
1852 if (!arm_feature(env
, ARM_FEATURE_V6
))
1856 if (!arm_feature(env
, ARM_FEATURE_V7
))
1861 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1863 return env
->cp15
.c0_clid
;
1869 if (op2
!= 0 || crm
!= 0)
1871 return env
->cp15
.c0_cssel
;
1875 case 1: /* System configuration. */
1876 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1879 case 0: /* Control register. */
1880 return env
->cp15
.c1_sys
;
1881 case 1: /* Auxiliary control register. */
1882 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1883 return env
->cp15
.c1_xscaleauxcr
;
1884 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1886 switch (ARM_CPUID(env
)) {
1887 case ARM_CPUID_ARM1026
:
1889 case ARM_CPUID_ARM1136
:
1890 case ARM_CPUID_ARM1136_R2
:
1891 case ARM_CPUID_ARM1176
:
1893 case ARM_CPUID_ARM11MPCORE
:
1895 case ARM_CPUID_CORTEXA8
:
1897 case ARM_CPUID_CORTEXA9
:
1902 case 2: /* Coprocessor access register. */
1903 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1905 return env
->cp15
.c1_coproc
;
1909 case 2: /* MMU Page table control / MPU cache control. */
1910 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1913 return env
->cp15
.c2_data
;
1916 return env
->cp15
.c2_insn
;
1924 return env
->cp15
.c2_base0
;
1926 return env
->cp15
.c2_base1
;
1928 return env
->cp15
.c2_control
;
1933 case 3: /* MMU Domain access control / MPU write buffer control. */
1934 return env
->cp15
.c3
;
1935 case 4: /* Reserved. */
1937 case 5: /* MMU Fault status / MPU access permission. */
1938 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1942 if (arm_feature(env
, ARM_FEATURE_MPU
))
1943 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1944 return env
->cp15
.c5_data
;
1946 if (arm_feature(env
, ARM_FEATURE_MPU
))
1947 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1948 return env
->cp15
.c5_insn
;
1950 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1952 return env
->cp15
.c5_data
;
1954 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1956 return env
->cp15
.c5_insn
;
1960 case 6: /* MMU Fault address. */
1961 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1964 return env
->cp15
.c6_region
[crm
];
1966 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1970 return env
->cp15
.c6_data
;
1972 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1973 /* Watchpoint Fault Adrress. */
1974 return 0; /* Not implemented. */
1976 /* Instruction Fault Adrress. */
1977 /* Arm9 doesn't have an IFAR, but implementing it anyway
1978 shouldn't do any harm. */
1979 return env
->cp15
.c6_insn
;
1982 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1983 /* Instruction Fault Adrress. */
1984 return env
->cp15
.c6_insn
;
1992 case 7: /* Cache control. */
1993 if (crm
== 4 && op1
== 0 && op2
== 0) {
1994 return env
->cp15
.c7_par
;
1996 /* FIXME: Should only clear Z flag if destination is r15. */
1999 case 8: /* MMU TLB control. */
2003 case 0: /* Cache lockdown */
2005 case 0: /* L1 cache. */
2006 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2011 return env
->cp15
.c9_data
;
2013 return env
->cp15
.c9_insn
;
2017 case 1: /* L2 cache */
2021 /* L2 Lockdown and Auxiliary control. */
2027 case 12: /* Performance monitor control */
2028 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2032 case 0: /* performance monitor control register */
2033 return env
->cp15
.c9_pmcr
;
2034 case 1: /* count enable set */
2035 case 2: /* count enable clear */
2036 return env
->cp15
.c9_pmcnten
;
2037 case 3: /* overflow flag status */
2038 return env
->cp15
.c9_pmovsr
;
2039 case 4: /* software increment */
2040 case 5: /* event counter selection register */
2041 return 0; /* Unimplemented, RAZ/WI */
2045 case 13: /* Performance counters */
2046 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2050 case 1: /* Event type select */
2051 return env
->cp15
.c9_pmxevtyper
;
2052 case 0: /* Cycle count register */
2053 case 2: /* Event count register */
2054 /* Unimplemented, so RAZ/WI */
2059 case 14: /* Performance monitor control */
2060 if (!arm_feature(env
, ARM_FEATURE_V7
)) {
2064 case 0: /* user enable */
2065 return env
->cp15
.c9_pmuserenr
;
2066 case 1: /* interrupt enable set */
2067 case 2: /* interrupt enable clear */
2068 return env
->cp15
.c9_pminten
;
2076 case 10: /* MMU TLB lockdown. */
2077 /* ??? TLB lockdown not implemented. */
2079 case 11: /* TCM DMA control. */
2080 case 12: /* Reserved. */
2082 case 13: /* Process ID. */
2085 return env
->cp15
.c13_fcse
;
2087 return env
->cp15
.c13_context
;
2091 case 14: /* Reserved. */
2093 case 15: /* Implementation specific. */
2094 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2095 if (op2
== 0 && crm
== 1)
2096 return env
->cp15
.c15_cpar
;
2100 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
2104 case 1: /* Read TI925T configuration. */
2105 return env
->cp15
.c15_ticonfig
;
2106 case 2: /* Read I_max. */
2107 return env
->cp15
.c15_i_max
;
2108 case 3: /* Read I_min. */
2109 return env
->cp15
.c15_i_min
;
2110 case 4: /* Read thread-ID. */
2111 return env
->cp15
.c15_threadid
;
2112 case 8: /* TI925T_status */
2115 /* TODO: Peripheral port remap register:
2116 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2117 * controller base address at $rn & ~0xfff and map size of
2118 * 0x200 << ($rn & 0xfff), when MMU is off. */
2124 /* ??? For debugging only. Should raise illegal instruction exception. */
2125 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2126 (insn
>> 16) & 0xf, crm
, op1
, op2
);
2130 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
2132 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2133 env
->regs
[13] = val
;
2135 env
->banked_r13
[bank_number(mode
)] = val
;
2139 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
2141 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
2142 return env
->regs
[13];
2144 return env
->banked_r13
[bank_number(mode
)];
2148 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
2152 return xpsr_read(env
) & 0xf8000000;
2154 return xpsr_read(env
) & 0xf80001ff;
2156 return xpsr_read(env
) & 0xff00fc00;
2158 return xpsr_read(env
) & 0xff00fdff;
2160 return xpsr_read(env
) & 0x000001ff;
2162 return xpsr_read(env
) & 0x0700fc00;
2164 return xpsr_read(env
) & 0x0700edff;
2166 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
2168 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
2169 case 16: /* PRIMASK */
2170 return (env
->uncached_cpsr
& CPSR_I
) != 0;
2171 case 17: /* BASEPRI */
2172 case 18: /* BASEPRI_MAX */
2173 return env
->v7m
.basepri
;
2174 case 19: /* FAULTMASK */
2175 return (env
->uncached_cpsr
& CPSR_F
) != 0;
2176 case 20: /* CONTROL */
2177 return env
->v7m
.control
;
2179 /* ??? For debugging only. */
2180 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
2185 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
2189 xpsr_write(env
, val
, 0xf8000000);
2192 xpsr_write(env
, val
, 0xf8000000);
2195 xpsr_write(env
, val
, 0xfe00fc00);
2198 xpsr_write(env
, val
, 0xfe00fc00);
2201 /* IPSR bits are readonly. */
2204 xpsr_write(env
, val
, 0x0600fc00);
2207 xpsr_write(env
, val
, 0x0600fc00);
2210 if (env
->v7m
.current_sp
)
2211 env
->v7m
.other_sp
= val
;
2213 env
->regs
[13] = val
;
2216 if (env
->v7m
.current_sp
)
2217 env
->regs
[13] = val
;
2219 env
->v7m
.other_sp
= val
;
2221 case 16: /* PRIMASK */
2223 env
->uncached_cpsr
|= CPSR_I
;
2225 env
->uncached_cpsr
&= ~CPSR_I
;
2227 case 17: /* BASEPRI */
2228 env
->v7m
.basepri
= val
& 0xff;
2230 case 18: /* BASEPRI_MAX */
2232 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
2233 env
->v7m
.basepri
= val
;
2235 case 19: /* FAULTMASK */
2237 env
->uncached_cpsr
|= CPSR_F
;
2239 env
->uncached_cpsr
&= ~CPSR_F
;
2241 case 20: /* CONTROL */
2242 env
->v7m
.control
= val
& 3;
2243 switch_v7m_sp(env
, (val
& 2) != 0);
2246 /* ??? For debugging only. */
2247 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2252 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2253 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2256 if (cpnum
< 0 || cpnum
> 14) {
2257 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2261 env
->cp
[cpnum
].cp_read
= cp_read
;
2262 env
->cp
[cpnum
].cp_write
= cp_write
;
2263 env
->cp
[cpnum
].opaque
= opaque
;
2268 /* Note that signed overflow is undefined in C. The following routines are
2269 careful to use unsigned types where modulo arithmetic is required.
2270 Failure to do so _will_ break on newer gcc. */
2272 /* Signed saturating arithmetic. */
2274 /* Perform 16-bit signed saturating addition. */
2275 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2280 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2289 /* Perform 8-bit signed saturating addition. */
2290 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2295 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2304 /* Perform 16-bit signed saturating subtraction. */
2305 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2310 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2319 /* Perform 8-bit signed saturating subtraction. */
2320 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2325 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2334 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2335 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2336 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2337 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2340 #include "op_addsub.h"
2342 /* Unsigned saturating arithmetic. */
2343 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2352 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2360 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2369 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2377 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2378 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2379 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2380 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2383 #include "op_addsub.h"
2385 /* Signed modulo arithmetic. */
2386 #define SARITH16(a, b, n, op) do { \
2388 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2389 RESULT(sum, n, 16); \
2391 ge |= 3 << (n * 2); \
2394 #define SARITH8(a, b, n, op) do { \
2396 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2397 RESULT(sum, n, 8); \
2403 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2404 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2405 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2406 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2410 #include "op_addsub.h"
2412 /* Unsigned modulo arithmetic. */
2413 #define ADD16(a, b, n) do { \
2415 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2416 RESULT(sum, n, 16); \
2417 if ((sum >> 16) == 1) \
2418 ge |= 3 << (n * 2); \
2421 #define ADD8(a, b, n) do { \
2423 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2424 RESULT(sum, n, 8); \
2425 if ((sum >> 8) == 1) \
2429 #define SUB16(a, b, n) do { \
2431 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2432 RESULT(sum, n, 16); \
2433 if ((sum >> 16) == 0) \
2434 ge |= 3 << (n * 2); \
2437 #define SUB8(a, b, n) do { \
2439 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2440 RESULT(sum, n, 8); \
2441 if ((sum >> 8) == 0) \
2448 #include "op_addsub.h"
2450 /* Halved signed arithmetic. */
2451 #define ADD16(a, b, n) \
2452 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2453 #define SUB16(a, b, n) \
2454 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2455 #define ADD8(a, b, n) \
2456 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2457 #define SUB8(a, b, n) \
2458 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2461 #include "op_addsub.h"
2463 /* Halved unsigned arithmetic. */
2464 #define ADD16(a, b, n) \
2465 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2466 #define SUB16(a, b, n) \
2467 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2468 #define ADD8(a, b, n) \
2469 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2470 #define SUB8(a, b, n) \
2471 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2474 #include "op_addsub.h"
2476 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2484 /* Unsigned sum of absolute byte differences. */
2485 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2488 sum
= do_usad(a
, b
);
2489 sum
+= do_usad(a
>> 8, b
>> 8);
2490 sum
+= do_usad(a
>> 16, b
>>16);
2491 sum
+= do_usad(a
>> 24, b
>> 24);
2495 /* For ARMv6 SEL instruction. */
2496 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2509 return (a
& mask
) | (b
& ~mask
);
2512 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2514 return (val
>> 32) | (val
!= 0);
2517 /* VFP support. We follow the convention used for VFP instrunctions:
2518 Single precition routines have a "s" suffix, double precision a
2521 /* Convert host exception flags to vfp form. */
2522 static inline int vfp_exceptbits_from_host(int host_bits
)
2524 int target_bits
= 0;
2526 if (host_bits
& float_flag_invalid
)
2528 if (host_bits
& float_flag_divbyzero
)
2530 if (host_bits
& float_flag_overflow
)
2532 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
2534 if (host_bits
& float_flag_inexact
)
2535 target_bits
|= 0x10;
2536 if (host_bits
& float_flag_input_denormal
)
2537 target_bits
|= 0x80;
2541 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2546 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2547 | (env
->vfp
.vec_len
<< 16)
2548 | (env
->vfp
.vec_stride
<< 20);
2549 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2550 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
2551 fpscr
|= vfp_exceptbits_from_host(i
);
2555 uint32_t vfp_get_fpscr(CPUState
*env
)
2557 return HELPER(vfp_get_fpscr
)(env
);
2560 /* Convert vfp exception flags to target form. */
2561 static inline int vfp_exceptbits_to_host(int target_bits
)
2565 if (target_bits
& 1)
2566 host_bits
|= float_flag_invalid
;
2567 if (target_bits
& 2)
2568 host_bits
|= float_flag_divbyzero
;
2569 if (target_bits
& 4)
2570 host_bits
|= float_flag_overflow
;
2571 if (target_bits
& 8)
2572 host_bits
|= float_flag_underflow
;
2573 if (target_bits
& 0x10)
2574 host_bits
|= float_flag_inexact
;
2575 if (target_bits
& 0x80)
2576 host_bits
|= float_flag_input_denormal
;
2580 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2585 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2586 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2587 env
->vfp
.vec_len
= (val
>> 16) & 7;
2588 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2591 if (changed
& (3 << 22)) {
2592 i
= (val
>> 22) & 3;
2595 i
= float_round_nearest_even
;
2601 i
= float_round_down
;
2604 i
= float_round_to_zero
;
2607 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2609 if (changed
& (1 << 24)) {
2610 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2611 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2613 if (changed
& (1 << 25))
2614 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2616 i
= vfp_exceptbits_to_host(val
);
2617 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2618 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
2621 void vfp_set_fpscr(CPUState
*env
, uint32_t val
)
2623 HELPER(vfp_set_fpscr
)(env
, val
);
2626 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2628 #define VFP_BINOP(name) \
2629 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2631 float_status *fpst = fpstp; \
2632 return float32_ ## name(a, b, fpst); \
2634 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2636 float_status *fpst = fpstp; \
2637 return float64_ ## name(a, b, fpst); \
2645 float32
VFP_HELPER(neg
, s
)(float32 a
)
2647 return float32_chs(a
);
2650 float64
VFP_HELPER(neg
, d
)(float64 a
)
2652 return float64_chs(a
);
2655 float32
VFP_HELPER(abs
, s
)(float32 a
)
2657 return float32_abs(a
);
2660 float64
VFP_HELPER(abs
, d
)(float64 a
)
2662 return float64_abs(a
);
2665 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2667 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2670 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2672 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2675 /* XXX: check quiet/signaling case */
2676 #define DO_VFP_cmp(p, type) \
2677 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2680 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2681 case 0: flags = 0x6; break; \
2682 case -1: flags = 0x8; break; \
2683 case 1: flags = 0x2; break; \
2684 default: case 2: flags = 0x3; break; \
2686 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2687 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2689 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2692 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2693 case 0: flags = 0x6; break; \
2694 case -1: flags = 0x8; break; \
2695 case 1: flags = 0x2; break; \
2696 default: case 2: flags = 0x3; break; \
2698 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2699 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2701 DO_VFP_cmp(s
, float32
)
2702 DO_VFP_cmp(d
, float64
)
2705 /* Integer to float and float to integer conversions */
2707 #define CONV_ITOF(name, fsz, sign) \
2708 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2710 float_status *fpst = fpstp; \
2711 return sign##int32_to_##float##fsz(x, fpst); \
2714 #define CONV_FTOI(name, fsz, sign, round) \
2715 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2717 float_status *fpst = fpstp; \
2718 if (float##fsz##_is_any_nan(x)) { \
2719 float_raise(float_flag_invalid, fpst); \
2722 return float##fsz##_to_##sign##int32##round(x, fpst); \
2725 #define FLOAT_CONVS(name, p, fsz, sign) \
2726 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2727 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2728 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2730 FLOAT_CONVS(si
, s
, 32, )
2731 FLOAT_CONVS(si
, d
, 64, )
2732 FLOAT_CONVS(ui
, s
, 32, u
)
2733 FLOAT_CONVS(ui
, d
, 64, u
)
2739 /* floating point conversion */
2740 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2742 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
2743 /* ARM requires that S<->D conversion of any kind of NaN generates
2744 * a quiet NaN by forcing the most significant frac bit to 1.
2746 return float64_maybe_silence_nan(r
);
2749 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2751 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
2752 /* ARM requires that S<->D conversion of any kind of NaN generates
2753 * a quiet NaN by forcing the most significant frac bit to 1.
2755 return float32_maybe_silence_nan(r
);
2758 /* VFP3 fixed point conversion. */
2759 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2760 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2763 float_status *fpst = fpstp; \
2765 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2766 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2768 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2771 float_status *fpst = fpstp; \
2773 if (float##fsz##_is_any_nan(x)) { \
2774 float_raise(float_flag_invalid, fpst); \
2777 tmp = float##fsz##_scalbn(x, shift, fpst); \
2778 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2781 VFP_CONV_FIX(sh
, d
, 64, int16
, )
2782 VFP_CONV_FIX(sl
, d
, 64, int32
, )
2783 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
2784 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
2785 VFP_CONV_FIX(sh
, s
, 32, int16
, )
2786 VFP_CONV_FIX(sl
, s
, 32, int32
, )
2787 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
2788 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
2791 /* Half precision conversions. */
2792 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUState
*env
, float_status
*s
)
2794 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2795 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
2797 return float32_maybe_silence_nan(r
);
2802 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUState
*env
, float_status
*s
)
2804 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
2805 float16 r
= float32_to_float16(a
, ieee
, s
);
2807 r
= float16_maybe_silence_nan(r
);
2809 return float16_val(r
);
2812 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2814 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
2817 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2819 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
2822 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUState
*env
)
2824 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
2827 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUState
*env
)
2829 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
2832 #define float32_two make_float32(0x40000000)
2833 #define float32_three make_float32(0x40400000)
2834 #define float32_one_point_five make_float32(0x3fc00000)
2836 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2838 float_status
*s
= &env
->vfp
.standard_fp_status
;
2839 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2840 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2841 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2842 float_raise(float_flag_input_denormal
, s
);
2846 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
2849 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2851 float_status
*s
= &env
->vfp
.standard_fp_status
;
2853 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
2854 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
2855 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
2856 float_raise(float_flag_input_denormal
, s
);
2858 return float32_one_point_five
;
2860 product
= float32_mul(a
, b
, s
);
2861 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
2866 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2867 * int->float conversions at run-time. */
2868 #define float64_256 make_float64(0x4070000000000000LL)
2869 #define float64_512 make_float64(0x4080000000000000LL)
2871 /* The algorithm that must be used to calculate the estimate
2872 * is specified by the ARM ARM.
2874 static float64
recip_estimate(float64 a
, CPUState
*env
)
2876 /* These calculations mustn't set any fp exception flags,
2877 * so we use a local copy of the fp_status.
2879 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2880 float_status
*s
= &dummy_status
;
2881 /* q = (int)(a * 512.0) */
2882 float64 q
= float64_mul(float64_512
, a
, s
);
2883 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2885 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2886 q
= int64_to_float64(q_int
, s
);
2887 q
= float64_add(q
, float64_half
, s
);
2888 q
= float64_div(q
, float64_512
, s
);
2889 q
= float64_div(float64_one
, q
, s
);
2891 /* s = (int)(256.0 * r + 0.5) */
2892 q
= float64_mul(q
, float64_256
, s
);
2893 q
= float64_add(q
, float64_half
, s
);
2894 q_int
= float64_to_int64_round_to_zero(q
, s
);
2896 /* return (double)s / 256.0 */
2897 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2900 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2902 float_status
*s
= &env
->vfp
.standard_fp_status
;
2904 uint32_t val32
= float32_val(a
);
2907 int a_exp
= (val32
& 0x7f800000) >> 23;
2908 int sign
= val32
& 0x80000000;
2910 if (float32_is_any_nan(a
)) {
2911 if (float32_is_signaling_nan(a
)) {
2912 float_raise(float_flag_invalid
, s
);
2914 return float32_default_nan
;
2915 } else if (float32_is_infinity(a
)) {
2916 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2917 } else if (float32_is_zero_or_denormal(a
)) {
2918 if (!float32_is_zero(a
)) {
2919 float_raise(float_flag_input_denormal
, s
);
2921 float_raise(float_flag_divbyzero
, s
);
2922 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
2923 } else if (a_exp
>= 253) {
2924 float_raise(float_flag_underflow
, s
);
2925 return float32_set_sign(float32_zero
, float32_is_neg(a
));
2928 f64
= make_float64((0x3feULL
<< 52)
2929 | ((int64_t)(val32
& 0x7fffff) << 29));
2931 result_exp
= 253 - a_exp
;
2933 f64
= recip_estimate(f64
, env
);
2936 | ((result_exp
& 0xff) << 23)
2937 | ((float64_val(f64
) >> 29) & 0x7fffff);
2938 return make_float32(val32
);
2941 /* The algorithm that must be used to calculate the estimate
2942 * is specified by the ARM ARM.
2944 static float64
recip_sqrt_estimate(float64 a
, CPUState
*env
)
2946 /* These calculations mustn't set any fp exception flags,
2947 * so we use a local copy of the fp_status.
2949 float_status dummy_status
= env
->vfp
.standard_fp_status
;
2950 float_status
*s
= &dummy_status
;
2954 if (float64_lt(a
, float64_half
, s
)) {
2955 /* range 0.25 <= a < 0.5 */
2957 /* a in units of 1/512 rounded down */
2958 /* q0 = (int)(a * 512.0); */
2959 q
= float64_mul(float64_512
, a
, s
);
2960 q_int
= float64_to_int64_round_to_zero(q
, s
);
2962 /* reciprocal root r */
2963 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2964 q
= int64_to_float64(q_int
, s
);
2965 q
= float64_add(q
, float64_half
, s
);
2966 q
= float64_div(q
, float64_512
, s
);
2967 q
= float64_sqrt(q
, s
);
2968 q
= float64_div(float64_one
, q
, s
);
2970 /* range 0.5 <= a < 1.0 */
2972 /* a in units of 1/256 rounded down */
2973 /* q1 = (int)(a * 256.0); */
2974 q
= float64_mul(float64_256
, a
, s
);
2975 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
2977 /* reciprocal root r */
2978 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2979 q
= int64_to_float64(q_int
, s
);
2980 q
= float64_add(q
, float64_half
, s
);
2981 q
= float64_div(q
, float64_256
, s
);
2982 q
= float64_sqrt(q
, s
);
2983 q
= float64_div(float64_one
, q
, s
);
2985 /* r in units of 1/256 rounded to nearest */
2986 /* s = (int)(256.0 * r + 0.5); */
2988 q
= float64_mul(q
, float64_256
,s
);
2989 q
= float64_add(q
, float64_half
, s
);
2990 q_int
= float64_to_int64_round_to_zero(q
, s
);
2992 /* return (double)s / 256.0;*/
2993 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
2996 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2998 float_status
*s
= &env
->vfp
.standard_fp_status
;
3004 val
= float32_val(a
);
3006 if (float32_is_any_nan(a
)) {
3007 if (float32_is_signaling_nan(a
)) {
3008 float_raise(float_flag_invalid
, s
);
3010 return float32_default_nan
;
3011 } else if (float32_is_zero_or_denormal(a
)) {
3012 if (!float32_is_zero(a
)) {
3013 float_raise(float_flag_input_denormal
, s
);
3015 float_raise(float_flag_divbyzero
, s
);
3016 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
3017 } else if (float32_is_neg(a
)) {
3018 float_raise(float_flag_invalid
, s
);
3019 return float32_default_nan
;
3020 } else if (float32_is_infinity(a
)) {
3021 return float32_zero
;
3024 /* Normalize to a double-precision value between 0.25 and 1.0,
3025 * preserving the parity of the exponent. */
3026 if ((val
& 0x800000) == 0) {
3027 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3029 | ((uint64_t)(val
& 0x7fffff) << 29));
3031 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
3033 | ((uint64_t)(val
& 0x7fffff) << 29));
3036 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
3038 f64
= recip_sqrt_estimate(f64
, env
);
3040 val64
= float64_val(f64
);
3042 val
= ((val64
>> 63) & 0x80000000)
3043 | ((result_exp
& 0xff) << 23)
3044 | ((val64
>> 29) & 0x7fffff);
3045 return make_float32(val
);
3048 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
3052 if ((a
& 0x80000000) == 0) {
3056 f64
= make_float64((0x3feULL
<< 52)
3057 | ((int64_t)(a
& 0x7fffffff) << 21));
3059 f64
= recip_estimate (f64
, env
);
3061 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3064 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
3068 if ((a
& 0xc0000000) == 0) {
3072 if (a
& 0x80000000) {
3073 f64
= make_float64((0x3feULL
<< 52)
3074 | ((uint64_t)(a
& 0x7fffffff) << 21));
3075 } else { /* bits 31-30 == '01' */
3076 f64
= make_float64((0x3fdULL
<< 52)
3077 | ((uint64_t)(a
& 0x3fffffff) << 22));
3080 f64
= recip_sqrt_estimate(f64
, env
);
3082 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
3085 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
3088 if (env
->teecr
!= val
) {