qom: Make info qom-tree sort children more efficiently
[qemu/armbru.git] / block / block-copy.c
blobf7428a7c08d1e786c543c3a77176c463ead8cc0f
1 /*
2 * block_copy API
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
30 static coroutine_fn int block_copy_task_entry(AioTask *task);
32 typedef struct BlockCopyCallState {
33 bool failed;
34 bool error_is_read;
35 } BlockCopyCallState;
37 typedef struct BlockCopyTask {
38 AioTask task;
40 BlockCopyState *s;
41 BlockCopyCallState *call_state;
42 int64_t offset;
43 int64_t bytes;
44 bool zeroes;
45 QLIST_ENTRY(BlockCopyTask) list;
46 CoQueue wait_queue; /* coroutines blocked on this task */
47 } BlockCopyTask;
49 static int64_t task_end(BlockCopyTask *task)
51 return task->offset + task->bytes;
54 typedef struct BlockCopyState {
56 * BdrvChild objects are not owned or managed by block-copy. They are
57 * provided by block-copy user and user is responsible for appropriate
58 * permissions on these children.
60 BdrvChild *source;
61 BdrvChild *target;
62 BdrvDirtyBitmap *copy_bitmap;
63 int64_t in_flight_bytes;
64 int64_t cluster_size;
65 bool use_copy_range;
66 int64_t copy_size;
67 uint64_t len;
68 QLIST_HEAD(, BlockCopyTask) tasks;
70 BdrvRequestFlags write_flags;
73 * skip_unallocated:
75 * Used by sync=top jobs, which first scan the source node for unallocated
76 * areas and clear them in the copy_bitmap. During this process, the bitmap
77 * is thus not fully initialized: It may still have bits set for areas that
78 * are unallocated and should actually not be copied.
80 * This is indicated by skip_unallocated.
82 * In this case, block_copy() will query the source’s allocation status,
83 * skip unallocated regions, clear them in the copy_bitmap, and invoke
84 * block_copy_reset_unallocated() every time it does.
86 bool skip_unallocated;
88 ProgressMeter *progress;
89 /* progress_bytes_callback: called when some copying progress is done. */
90 ProgressBytesCallbackFunc progress_bytes_callback;
91 void *progress_opaque;
93 SharedResource *mem;
94 } BlockCopyState;
96 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
97 int64_t offset, int64_t bytes)
99 BlockCopyTask *t;
101 QLIST_FOREACH(t, &s->tasks, list) {
102 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
103 return t;
107 return NULL;
111 * If there are no intersecting tasks return false. Otherwise, wait for the
112 * first found intersecting tasks to finish and return true.
114 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
115 int64_t bytes)
117 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
119 if (!task) {
120 return false;
123 qemu_co_queue_wait(&task->wait_queue, NULL);
125 return true;
129 * Search for the first dirty area in offset/bytes range and create task at
130 * the beginning of it.
132 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
133 BlockCopyCallState *call_state,
134 int64_t offset, int64_t bytes)
136 BlockCopyTask *task;
138 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
139 offset, offset + bytes,
140 s->copy_size, &offset, &bytes))
142 return NULL;
145 /* region is dirty, so no existent tasks possible in it */
146 assert(!find_conflicting_task(s, offset, bytes));
148 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
149 s->in_flight_bytes += bytes;
151 task = g_new(BlockCopyTask, 1);
152 *task = (BlockCopyTask) {
153 .task.func = block_copy_task_entry,
154 .s = s,
155 .call_state = call_state,
156 .offset = offset,
157 .bytes = bytes,
159 qemu_co_queue_init(&task->wait_queue);
160 QLIST_INSERT_HEAD(&s->tasks, task, list);
162 return task;
166 * block_copy_task_shrink
168 * Drop the tail of the task to be handled later. Set dirty bits back and
169 * wake up all tasks waiting for us (may be some of them are not intersecting
170 * with shrunk task)
172 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
173 int64_t new_bytes)
175 if (new_bytes == task->bytes) {
176 return;
179 assert(new_bytes > 0 && new_bytes < task->bytes);
181 task->s->in_flight_bytes -= task->bytes - new_bytes;
182 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
183 task->offset + new_bytes, task->bytes - new_bytes);
185 task->bytes = new_bytes;
186 qemu_co_queue_restart_all(&task->wait_queue);
189 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
191 task->s->in_flight_bytes -= task->bytes;
192 if (ret < 0) {
193 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
195 QLIST_REMOVE(task, list);
196 qemu_co_queue_restart_all(&task->wait_queue);
199 void block_copy_state_free(BlockCopyState *s)
201 if (!s) {
202 return;
205 bdrv_release_dirty_bitmap(s->copy_bitmap);
206 shres_destroy(s->mem);
207 g_free(s);
210 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
212 return MIN_NON_ZERO(INT_MAX,
213 MIN_NON_ZERO(source->bs->bl.max_transfer,
214 target->bs->bl.max_transfer));
217 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
218 int64_t cluster_size,
219 BdrvRequestFlags write_flags, Error **errp)
221 BlockCopyState *s;
222 BdrvDirtyBitmap *copy_bitmap;
224 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
225 errp);
226 if (!copy_bitmap) {
227 return NULL;
229 bdrv_disable_dirty_bitmap(copy_bitmap);
231 s = g_new(BlockCopyState, 1);
232 *s = (BlockCopyState) {
233 .source = source,
234 .target = target,
235 .copy_bitmap = copy_bitmap,
236 .cluster_size = cluster_size,
237 .len = bdrv_dirty_bitmap_size(copy_bitmap),
238 .write_flags = write_flags,
239 .mem = shres_create(BLOCK_COPY_MAX_MEM),
242 if (block_copy_max_transfer(source, target) < cluster_size) {
244 * copy_range does not respect max_transfer. We don't want to bother
245 * with requests smaller than block-copy cluster size, so fallback to
246 * buffered copying (read and write respect max_transfer on their
247 * behalf).
249 s->use_copy_range = false;
250 s->copy_size = cluster_size;
251 } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
252 /* Compression supports only cluster-size writes and no copy-range. */
253 s->use_copy_range = false;
254 s->copy_size = cluster_size;
255 } else {
257 * We enable copy-range, but keep small copy_size, until first
258 * successful copy_range (look at block_copy_do_copy).
260 s->use_copy_range = true;
261 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
264 QLIST_INIT(&s->tasks);
266 return s;
269 void block_copy_set_progress_callback(
270 BlockCopyState *s,
271 ProgressBytesCallbackFunc progress_bytes_callback,
272 void *progress_opaque)
274 s->progress_bytes_callback = progress_bytes_callback;
275 s->progress_opaque = progress_opaque;
278 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
280 s->progress = pm;
284 * Takes ownership of @task
286 * If pool is NULL directly run the task, otherwise schedule it into the pool.
288 * Returns: task.func return code if pool is NULL
289 * otherwise -ECANCELED if pool status is bad
290 * otherwise 0 (successfully scheduled)
292 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
293 BlockCopyTask *task)
295 if (!pool) {
296 int ret = task->task.func(&task->task);
298 g_free(task);
299 return ret;
302 aio_task_pool_wait_slot(pool);
303 if (aio_task_pool_status(pool) < 0) {
304 co_put_to_shres(task->s->mem, task->bytes);
305 block_copy_task_end(task, -ECANCELED);
306 g_free(task);
307 return -ECANCELED;
310 aio_task_pool_start_task(pool, &task->task);
312 return 0;
316 * block_copy_do_copy
318 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
319 * s->len only to cover last cluster when s->len is not aligned to clusters.
321 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
323 * Returns 0 on success.
325 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
326 int64_t offset, int64_t bytes,
327 bool zeroes, bool *error_is_read)
329 int ret;
330 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
331 void *bounce_buffer = NULL;
333 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
334 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
335 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
336 assert(offset < s->len);
337 assert(offset + bytes <= s->len ||
338 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
339 assert(nbytes < INT_MAX);
341 if (zeroes) {
342 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
343 ~BDRV_REQ_WRITE_COMPRESSED);
344 if (ret < 0) {
345 trace_block_copy_write_zeroes_fail(s, offset, ret);
346 *error_is_read = false;
348 return ret;
351 if (s->use_copy_range) {
352 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
353 0, s->write_flags);
354 if (ret < 0) {
355 trace_block_copy_copy_range_fail(s, offset, ret);
356 s->use_copy_range = false;
357 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
358 /* Fallback to read+write with allocated buffer */
359 } else {
360 if (s->use_copy_range) {
362 * Successful copy-range. Now increase copy_size. copy_range
363 * does not respect max_transfer (it's a TODO), so we factor
364 * that in here.
366 * Note: we double-check s->use_copy_range for the case when
367 * parallel block-copy request unsets it during previous
368 * bdrv_co_copy_range call.
370 s->copy_size =
371 MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
372 QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
373 s->target),
374 s->cluster_size));
376 goto out;
381 * In case of failed copy_range request above, we may proceed with buffered
382 * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
383 * be properly limited, so don't care too much. Moreover the most likely
384 * case (copy_range is unsupported for the configuration, so the very first
385 * copy_range request fails) is handled by setting large copy_size only
386 * after first successful copy_range.
389 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
391 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
392 if (ret < 0) {
393 trace_block_copy_read_fail(s, offset, ret);
394 *error_is_read = true;
395 goto out;
398 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
399 s->write_flags);
400 if (ret < 0) {
401 trace_block_copy_write_fail(s, offset, ret);
402 *error_is_read = false;
403 goto out;
406 out:
407 qemu_vfree(bounce_buffer);
409 return ret;
412 static coroutine_fn int block_copy_task_entry(AioTask *task)
414 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
415 bool error_is_read = false;
416 int ret;
418 ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
419 &error_is_read);
420 if (ret < 0 && !t->call_state->failed) {
421 t->call_state->failed = true;
422 t->call_state->error_is_read = error_is_read;
423 } else {
424 progress_work_done(t->s->progress, t->bytes);
425 t->s->progress_bytes_callback(t->bytes, t->s->progress_opaque);
427 co_put_to_shres(t->s->mem, t->bytes);
428 block_copy_task_end(t, ret);
430 return ret;
433 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
434 int64_t bytes, int64_t *pnum)
436 int64_t num;
437 BlockDriverState *base;
438 int ret;
440 if (s->skip_unallocated && s->source->bs->backing) {
441 base = s->source->bs->backing->bs;
442 } else {
443 base = NULL;
446 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
447 NULL, NULL);
448 if (ret < 0 || num < s->cluster_size) {
450 * On error or if failed to obtain large enough chunk just fallback to
451 * copy one cluster.
453 num = s->cluster_size;
454 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
455 } else if (offset + num == s->len) {
456 num = QEMU_ALIGN_UP(num, s->cluster_size);
457 } else {
458 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
461 *pnum = num;
462 return ret;
466 * Check if the cluster starting at offset is allocated or not.
467 * return via pnum the number of contiguous clusters sharing this allocation.
469 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
470 int64_t *pnum)
472 BlockDriverState *bs = s->source->bs;
473 int64_t count, total_count = 0;
474 int64_t bytes = s->len - offset;
475 int ret;
477 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
479 while (true) {
480 ret = bdrv_is_allocated(bs, offset, bytes, &count);
481 if (ret < 0) {
482 return ret;
485 total_count += count;
487 if (ret || count == 0) {
489 * ret: partial segment(s) are considered allocated.
490 * otherwise: unallocated tail is treated as an entire segment.
492 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
493 return ret;
496 /* Unallocated segment(s) with uncertain following segment(s) */
497 if (total_count >= s->cluster_size) {
498 *pnum = total_count / s->cluster_size;
499 return 0;
502 offset += count;
503 bytes -= count;
508 * Reset bits in copy_bitmap starting at offset if they represent unallocated
509 * data in the image. May reset subsequent contiguous bits.
510 * @return 0 when the cluster at @offset was unallocated,
511 * 1 otherwise, and -ret on error.
513 int64_t block_copy_reset_unallocated(BlockCopyState *s,
514 int64_t offset, int64_t *count)
516 int ret;
517 int64_t clusters, bytes;
519 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
520 if (ret < 0) {
521 return ret;
524 bytes = clusters * s->cluster_size;
526 if (!ret) {
527 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
528 progress_set_remaining(s->progress,
529 bdrv_get_dirty_count(s->copy_bitmap) +
530 s->in_flight_bytes);
533 *count = bytes;
534 return ret;
538 * block_copy_dirty_clusters
540 * Copy dirty clusters in @offset/@bytes range.
541 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
542 * clusters found and -errno on failure.
544 static int coroutine_fn block_copy_dirty_clusters(BlockCopyState *s,
545 int64_t offset, int64_t bytes,
546 bool *error_is_read)
548 int ret = 0;
549 bool found_dirty = false;
550 int64_t end = offset + bytes;
551 AioTaskPool *aio = NULL;
552 BlockCopyCallState call_state = {false, false};
555 * block_copy() user is responsible for keeping source and target in same
556 * aio context
558 assert(bdrv_get_aio_context(s->source->bs) ==
559 bdrv_get_aio_context(s->target->bs));
561 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
562 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
564 while (bytes && aio_task_pool_status(aio) == 0) {
565 BlockCopyTask *task;
566 int64_t status_bytes;
568 task = block_copy_task_create(s, &call_state, offset, bytes);
569 if (!task) {
570 /* No more dirty bits in the bitmap */
571 trace_block_copy_skip_range(s, offset, bytes);
572 break;
574 if (task->offset > offset) {
575 trace_block_copy_skip_range(s, offset, task->offset - offset);
578 found_dirty = true;
580 ret = block_copy_block_status(s, task->offset, task->bytes,
581 &status_bytes);
582 assert(ret >= 0); /* never fail */
583 if (status_bytes < task->bytes) {
584 block_copy_task_shrink(task, status_bytes);
586 if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
587 block_copy_task_end(task, 0);
588 progress_set_remaining(s->progress,
589 bdrv_get_dirty_count(s->copy_bitmap) +
590 s->in_flight_bytes);
591 trace_block_copy_skip_range(s, task->offset, task->bytes);
592 offset = task_end(task);
593 bytes = end - offset;
594 g_free(task);
595 continue;
597 task->zeroes = ret & BDRV_BLOCK_ZERO;
599 trace_block_copy_process(s, task->offset);
601 co_get_from_shres(s->mem, task->bytes);
603 offset = task_end(task);
604 bytes = end - offset;
606 if (!aio && bytes) {
607 aio = aio_task_pool_new(BLOCK_COPY_MAX_WORKERS);
610 ret = block_copy_task_run(aio, task);
611 if (ret < 0) {
612 goto out;
616 out:
617 if (aio) {
618 aio_task_pool_wait_all(aio);
621 * We are not really interested in -ECANCELED returned from
622 * block_copy_task_run. If it fails, it means some task already failed
623 * for real reason, let's return first failure.
624 * Still, assert that we don't rewrite failure by success.
626 * Note: ret may be positive here because of block-status result.
628 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
629 ret = aio_task_pool_status(aio);
631 aio_task_pool_free(aio);
633 if (error_is_read && ret < 0) {
634 *error_is_read = call_state.error_is_read;
637 return ret < 0 ? ret : found_dirty;
641 * block_copy
643 * Copy requested region, accordingly to dirty bitmap.
644 * Collaborate with parallel block_copy requests: if they succeed it will help
645 * us. If they fail, we will retry not-copied regions. So, if we return error,
646 * it means that some I/O operation failed in context of _this_ block_copy call,
647 * not some parallel operation.
649 int coroutine_fn block_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
650 bool *error_is_read)
652 int ret;
654 do {
655 ret = block_copy_dirty_clusters(s, offset, bytes, error_is_read);
657 if (ret == 0) {
658 ret = block_copy_wait_one(s, offset, bytes);
662 * We retry in two cases:
663 * 1. Some progress done
664 * Something was copied, which means that there were yield points
665 * and some new dirty bits may have appeared (due to failed parallel
666 * block-copy requests).
667 * 2. We have waited for some intersecting block-copy request
668 * It may have failed and produced new dirty bits.
670 } while (ret > 0);
672 return ret;
675 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
677 return s->copy_bitmap;
680 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
682 s->skip_unallocated = skip;