qapi: Improve specificity of type/member descriptions
[qemu/armbru.git] / hw / arm / virt.c
bloba89d699f0b7636d02ba19315df245d01c7b0a4b9
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu/datadir.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/runstate.h"
48 #include "sysemu/tpm.h"
49 #include "sysemu/tcg.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hvf.h"
52 #include "sysemu/qtest.h"
53 #include "hw/loader.h"
54 #include "qapi/error.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/core/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
66 #include "hw/irq.h"
67 #include "kvm_arm.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/memory-device.h"
76 #include "hw/mem/pc-dimm.h"
77 #include "hw/mem/nvdimm.h"
78 #include "hw/acpi/generic_event_device.h"
79 #include "hw/virtio/virtio-mem-pci.h"
80 #include "hw/virtio/virtio-iommu.h"
81 #include "hw/char/pl011.h"
82 #include "qemu/guest-random.h"
84 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
85 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 void *data) \
87 { \
88 MachineClass *mc = MACHINE_CLASS(oc); \
89 virt_machine_##major##_##minor##_options(mc); \
90 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
91 if (latest) { \
92 mc->alias = "virt"; \
93 } \
94 } \
95 static const TypeInfo machvirt_##major##_##minor##_info = { \
96 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
97 .parent = TYPE_VIRT_MACHINE, \
98 .class_init = virt_##major##_##minor##_class_init, \
99 }; \
100 static void machvirt_machine_##major##_##minor##_init(void) \
102 type_register_static(&machvirt_##major##_##minor##_info); \
104 type_init(machvirt_machine_##major##_##minor##_init);
106 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
108 #define DEFINE_VIRT_MACHINE(major, minor) \
109 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
112 /* Number of external interrupt lines to configure the GIC with */
113 #define NUM_IRQS 256
115 #define PLATFORM_BUS_NUM_IRQS 64
117 /* Legacy RAM limit in GB (< version 4.0) */
118 #define LEGACY_RAMLIMIT_GB 255
119 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
121 /* Addresses and sizes of our components.
122 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
123 * 128MB..256MB is used for miscellaneous device I/O.
124 * 256MB..1GB is reserved for possible future PCI support (ie where the
125 * PCI memory window will go if we add a PCI host controller).
126 * 1GB and up is RAM (which may happily spill over into the
127 * high memory region beyond 4GB).
128 * This represents a compromise between how much RAM can be given to
129 * a 32 bit VM and leaving space for expansion and in particular for PCI.
130 * Note that devices should generally be placed at multiples of 0x10000,
131 * to accommodate guests using 64K pages.
133 static const MemMapEntry base_memmap[] = {
134 /* Space up to 0x8000000 is reserved for a boot ROM */
135 [VIRT_FLASH] = { 0, 0x08000000 },
136 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
137 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
138 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
139 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
140 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
141 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
142 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
143 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
144 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
145 /* This redistributor space allows up to 2*64kB*123 CPUs */
146 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
147 [VIRT_UART] = { 0x09000000, 0x00001000 },
148 [VIRT_RTC] = { 0x09010000, 0x00001000 },
149 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
150 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
151 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
152 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
153 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
154 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
155 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
156 [VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
157 [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
158 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
159 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
160 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
161 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
162 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
163 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
164 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
165 /* Actual RAM size depends on initial RAM and device memory settings */
166 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
170 * Highmem IO Regions: This memory map is floating, located after the RAM.
171 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
172 * top of the RAM, so that its base get the same alignment as the size,
173 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
174 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
175 * Note the extended_memmap is sized so that it eventually also includes the
176 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
177 * index of base_memmap).
179 * The memory map for these Highmem IO Regions can be in legacy or compact
180 * layout, depending on 'compact-highmem' property. With legacy layout, the
181 * PA space for one specific region is always reserved, even if the region
182 * has been disabled or doesn't fit into the PA space. However, the PA space
183 * for the region won't be reserved in these circumstances with compact layout.
185 static MemMapEntry extended_memmap[] = {
186 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
187 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
188 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
189 /* Second PCIe window */
190 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
193 static const int a15irqmap[] = {
194 [VIRT_UART] = 1,
195 [VIRT_RTC] = 2,
196 [VIRT_PCIE] = 3, /* ... to 6 */
197 [VIRT_GPIO] = 7,
198 [VIRT_SECURE_UART] = 8,
199 [VIRT_ACPI_GED] = 9,
200 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
201 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
202 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
203 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
206 static const char *valid_cpus[] = {
207 #ifdef CONFIG_TCG
208 ARM_CPU_TYPE_NAME("cortex-a7"),
209 #endif
210 ARM_CPU_TYPE_NAME("cortex-a15"),
211 ARM_CPU_TYPE_NAME("cortex-a35"),
212 ARM_CPU_TYPE_NAME("cortex-a53"),
213 ARM_CPU_TYPE_NAME("cortex-a55"),
214 ARM_CPU_TYPE_NAME("cortex-a57"),
215 ARM_CPU_TYPE_NAME("cortex-a72"),
216 ARM_CPU_TYPE_NAME("cortex-a76"),
217 ARM_CPU_TYPE_NAME("a64fx"),
218 ARM_CPU_TYPE_NAME("neoverse-n1"),
219 ARM_CPU_TYPE_NAME("host"),
220 ARM_CPU_TYPE_NAME("max"),
223 static bool cpu_type_valid(const char *cpu)
225 int i;
227 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
228 if (strcmp(cpu, valid_cpus[i]) == 0) {
229 return true;
232 return false;
235 static void create_randomness(MachineState *ms, const char *node)
237 struct {
238 uint64_t kaslr;
239 uint8_t rng[32];
240 } seed;
242 if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
243 return;
245 qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
246 qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
249 static void create_fdt(VirtMachineState *vms)
251 MachineState *ms = MACHINE(vms);
252 int nb_numa_nodes = ms->numa_state->num_nodes;
253 void *fdt = create_device_tree(&vms->fdt_size);
255 if (!fdt) {
256 error_report("create_device_tree() failed");
257 exit(1);
260 ms->fdt = fdt;
262 /* Header */
263 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
264 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
265 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
266 qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
268 /* /chosen must exist for load_dtb to fill in necessary properties later */
269 qemu_fdt_add_subnode(fdt, "/chosen");
270 if (vms->dtb_randomness) {
271 create_randomness(ms, "/chosen");
274 if (vms->secure) {
275 qemu_fdt_add_subnode(fdt, "/secure-chosen");
276 if (vms->dtb_randomness) {
277 create_randomness(ms, "/secure-chosen");
281 /* Clock node, for the benefit of the UART. The kernel device tree
282 * binding documentation claims the PL011 node clock properties are
283 * optional but in practice if you omit them the kernel refuses to
284 * probe for the device.
286 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
287 qemu_fdt_add_subnode(fdt, "/apb-pclk");
288 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
289 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
290 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
291 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
292 "clk24mhz");
293 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
295 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
296 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
297 uint32_t *matrix = g_malloc0(size);
298 int idx, i, j;
300 for (i = 0; i < nb_numa_nodes; i++) {
301 for (j = 0; j < nb_numa_nodes; j++) {
302 idx = (i * nb_numa_nodes + j) * 3;
303 matrix[idx + 0] = cpu_to_be32(i);
304 matrix[idx + 1] = cpu_to_be32(j);
305 matrix[idx + 2] =
306 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
310 qemu_fdt_add_subnode(fdt, "/distance-map");
311 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
312 "numa-distance-map-v1");
313 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
314 matrix, size);
315 g_free(matrix);
319 static void fdt_add_timer_nodes(const VirtMachineState *vms)
321 /* On real hardware these interrupts are level-triggered.
322 * On KVM they were edge-triggered before host kernel version 4.4,
323 * and level-triggered afterwards.
324 * On emulated QEMU they are level-triggered.
326 * Getting the DTB info about them wrong is awkward for some
327 * guest kernels:
328 * pre-4.8 ignore the DT and leave the interrupt configured
329 * with whatever the GIC reset value (or the bootloader) left it at
330 * 4.8 before rc6 honour the incorrect data by programming it back
331 * into the GIC, causing problems
332 * 4.8rc6 and later ignore the DT and always write "level triggered"
333 * into the GIC
335 * For backwards-compatibility, virt-2.8 and earlier will continue
336 * to say these are edge-triggered, but later machines will report
337 * the correct information.
339 ARMCPU *armcpu;
340 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
341 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
342 MachineState *ms = MACHINE(vms);
344 if (vmc->claim_edge_triggered_timers) {
345 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
348 if (vms->gic_version == VIRT_GIC_VERSION_2) {
349 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
350 GIC_FDT_IRQ_PPI_CPU_WIDTH,
351 (1 << MACHINE(vms)->smp.cpus) - 1);
354 qemu_fdt_add_subnode(ms->fdt, "/timer");
356 armcpu = ARM_CPU(qemu_get_cpu(0));
357 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
358 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
359 qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
360 compat, sizeof(compat));
361 } else {
362 qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
363 "arm,armv7-timer");
365 qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
366 qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
367 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
368 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
369 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
370 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
373 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
375 int cpu;
376 int addr_cells = 1;
377 const MachineState *ms = MACHINE(vms);
378 const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
379 int smp_cpus = ms->smp.cpus;
382 * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
383 * On ARM v8 64-bit systems value should be set to 2,
384 * that corresponds to the MPIDR_EL1 register size.
385 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
386 * in the system, #address-cells can be set to 1, since
387 * MPIDR_EL1[63:32] bits are not used for CPUs
388 * identification.
390 * Here we actually don't know whether our system is 32- or 64-bit one.
391 * The simplest way to go is to examine affinity IDs of all our CPUs. If
392 * at least one of them has Aff3 populated, we set #address-cells to 2.
394 for (cpu = 0; cpu < smp_cpus; cpu++) {
395 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
397 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
398 addr_cells = 2;
399 break;
403 qemu_fdt_add_subnode(ms->fdt, "/cpus");
404 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
405 qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
407 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
408 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
409 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
410 CPUState *cs = CPU(armcpu);
412 qemu_fdt_add_subnode(ms->fdt, nodename);
413 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
414 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
415 armcpu->dtb_compatible);
417 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
418 qemu_fdt_setprop_string(ms->fdt, nodename,
419 "enable-method", "psci");
422 if (addr_cells == 2) {
423 qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
424 armcpu->mp_affinity);
425 } else {
426 qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
427 armcpu->mp_affinity);
430 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
431 qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
432 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
435 if (!vmc->no_cpu_topology) {
436 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
437 qemu_fdt_alloc_phandle(ms->fdt));
440 g_free(nodename);
443 if (!vmc->no_cpu_topology) {
445 * Add vCPU topology description through fdt node cpu-map.
447 * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
448 * In a SMP system, the hierarchy of CPUs can be defined through
449 * four entities that are used to describe the layout of CPUs in
450 * the system: socket/cluster/core/thread.
452 * A socket node represents the boundary of system physical package
453 * and its child nodes must be one or more cluster nodes. A system
454 * can contain several layers of clustering within a single physical
455 * package and cluster nodes can be contained in parent cluster nodes.
457 * Note: currently we only support one layer of clustering within
458 * each physical package.
460 qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
462 for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
463 char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
464 char *map_path;
466 if (ms->smp.threads > 1) {
467 map_path = g_strdup_printf(
468 "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
469 cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
470 (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
471 (cpu / ms->smp.threads) % ms->smp.cores,
472 cpu % ms->smp.threads);
473 } else {
474 map_path = g_strdup_printf(
475 "/cpus/cpu-map/socket%d/cluster%d/core%d",
476 cpu / (ms->smp.clusters * ms->smp.cores),
477 (cpu / ms->smp.cores) % ms->smp.clusters,
478 cpu % ms->smp.cores);
480 qemu_fdt_add_path(ms->fdt, map_path);
481 qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
483 g_free(map_path);
484 g_free(cpu_path);
489 static void fdt_add_its_gic_node(VirtMachineState *vms)
491 char *nodename;
492 MachineState *ms = MACHINE(vms);
494 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
495 nodename = g_strdup_printf("/intc/its@%" PRIx64,
496 vms->memmap[VIRT_GIC_ITS].base);
497 qemu_fdt_add_subnode(ms->fdt, nodename);
498 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
499 "arm,gic-v3-its");
500 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
501 qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
502 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
503 2, vms->memmap[VIRT_GIC_ITS].base,
504 2, vms->memmap[VIRT_GIC_ITS].size);
505 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
506 g_free(nodename);
509 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
511 MachineState *ms = MACHINE(vms);
512 char *nodename;
514 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
515 vms->memmap[VIRT_GIC_V2M].base);
516 vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
517 qemu_fdt_add_subnode(ms->fdt, nodename);
518 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
519 "arm,gic-v2m-frame");
520 qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
521 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
522 2, vms->memmap[VIRT_GIC_V2M].base,
523 2, vms->memmap[VIRT_GIC_V2M].size);
524 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
525 g_free(nodename);
528 static void fdt_add_gic_node(VirtMachineState *vms)
530 MachineState *ms = MACHINE(vms);
531 char *nodename;
533 vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
534 qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
536 nodename = g_strdup_printf("/intc@%" PRIx64,
537 vms->memmap[VIRT_GIC_DIST].base);
538 qemu_fdt_add_subnode(ms->fdt, nodename);
539 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
540 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
541 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
542 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
543 qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
544 if (vms->gic_version != VIRT_GIC_VERSION_2) {
545 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
547 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
548 "arm,gic-v3");
550 qemu_fdt_setprop_cell(ms->fdt, nodename,
551 "#redistributor-regions", nb_redist_regions);
553 if (nb_redist_regions == 1) {
554 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
555 2, vms->memmap[VIRT_GIC_DIST].base,
556 2, vms->memmap[VIRT_GIC_DIST].size,
557 2, vms->memmap[VIRT_GIC_REDIST].base,
558 2, vms->memmap[VIRT_GIC_REDIST].size);
559 } else {
560 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
561 2, vms->memmap[VIRT_GIC_DIST].base,
562 2, vms->memmap[VIRT_GIC_DIST].size,
563 2, vms->memmap[VIRT_GIC_REDIST].base,
564 2, vms->memmap[VIRT_GIC_REDIST].size,
565 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
566 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
569 if (vms->virt) {
570 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
571 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
572 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
574 } else {
575 /* 'cortex-a15-gic' means 'GIC v2' */
576 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
577 "arm,cortex-a15-gic");
578 if (!vms->virt) {
579 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
580 2, vms->memmap[VIRT_GIC_DIST].base,
581 2, vms->memmap[VIRT_GIC_DIST].size,
582 2, vms->memmap[VIRT_GIC_CPU].base,
583 2, vms->memmap[VIRT_GIC_CPU].size);
584 } else {
585 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
586 2, vms->memmap[VIRT_GIC_DIST].base,
587 2, vms->memmap[VIRT_GIC_DIST].size,
588 2, vms->memmap[VIRT_GIC_CPU].base,
589 2, vms->memmap[VIRT_GIC_CPU].size,
590 2, vms->memmap[VIRT_GIC_HYP].base,
591 2, vms->memmap[VIRT_GIC_HYP].size,
592 2, vms->memmap[VIRT_GIC_VCPU].base,
593 2, vms->memmap[VIRT_GIC_VCPU].size);
594 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
595 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
596 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
600 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
601 g_free(nodename);
604 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
606 ARMCPU *armcpu = ARM_CPU(first_cpu);
607 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
608 MachineState *ms = MACHINE(vms);
610 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
611 assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
612 return;
615 if (vms->gic_version == VIRT_GIC_VERSION_2) {
616 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
617 GIC_FDT_IRQ_PPI_CPU_WIDTH,
618 (1 << MACHINE(vms)->smp.cpus) - 1);
621 qemu_fdt_add_subnode(ms->fdt, "/pmu");
622 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
623 const char compat[] = "arm,armv8-pmuv3";
624 qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
625 compat, sizeof(compat));
626 qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
627 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
631 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
633 DeviceState *dev;
634 MachineState *ms = MACHINE(vms);
635 int irq = vms->irqmap[VIRT_ACPI_GED];
636 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
638 if (ms->ram_slots) {
639 event |= ACPI_GED_MEM_HOTPLUG_EVT;
642 if (ms->nvdimms_state->is_enabled) {
643 event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
646 dev = qdev_new(TYPE_ACPI_GED);
647 qdev_prop_set_uint32(dev, "ged-event", event);
649 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
650 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
651 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
653 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
655 return dev;
658 static void create_its(VirtMachineState *vms)
660 const char *itsclass = its_class_name();
661 DeviceState *dev;
663 if (!strcmp(itsclass, "arm-gicv3-its")) {
664 if (!vms->tcg_its) {
665 itsclass = NULL;
669 if (!itsclass) {
670 /* Do nothing if not supported */
671 return;
674 dev = qdev_new(itsclass);
676 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
677 &error_abort);
678 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
679 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
681 fdt_add_its_gic_node(vms);
682 vms->msi_controller = VIRT_MSI_CTRL_ITS;
685 static void create_v2m(VirtMachineState *vms)
687 int i;
688 int irq = vms->irqmap[VIRT_GIC_V2M];
689 DeviceState *dev;
691 dev = qdev_new("arm-gicv2m");
692 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
693 qdev_prop_set_uint32(dev, "base-spi", irq);
694 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
695 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
697 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
698 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
699 qdev_get_gpio_in(vms->gic, irq + i));
702 fdt_add_v2m_gic_node(vms);
703 vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
706 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
708 MachineState *ms = MACHINE(vms);
709 /* We create a standalone GIC */
710 SysBusDevice *gicbusdev;
711 const char *gictype;
712 int i;
713 unsigned int smp_cpus = ms->smp.cpus;
714 uint32_t nb_redist_regions = 0;
715 int revision;
717 if (vms->gic_version == VIRT_GIC_VERSION_2) {
718 gictype = gic_class_name();
719 } else {
720 gictype = gicv3_class_name();
723 switch (vms->gic_version) {
724 case VIRT_GIC_VERSION_2:
725 revision = 2;
726 break;
727 case VIRT_GIC_VERSION_3:
728 revision = 3;
729 break;
730 case VIRT_GIC_VERSION_4:
731 revision = 4;
732 break;
733 default:
734 g_assert_not_reached();
736 vms->gic = qdev_new(gictype);
737 qdev_prop_set_uint32(vms->gic, "revision", revision);
738 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
739 /* Note that the num-irq property counts both internal and external
740 * interrupts; there are always 32 of the former (mandated by GIC spec).
742 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
743 if (!kvm_irqchip_in_kernel()) {
744 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
747 if (vms->gic_version != VIRT_GIC_VERSION_2) {
748 uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
749 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
751 nb_redist_regions = virt_gicv3_redist_region_count(vms);
753 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
754 nb_redist_regions);
755 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
757 if (!kvm_irqchip_in_kernel()) {
758 if (vms->tcg_its) {
759 object_property_set_link(OBJECT(vms->gic), "sysmem",
760 OBJECT(mem), &error_fatal);
761 qdev_prop_set_bit(vms->gic, "has-lpi", true);
765 if (nb_redist_regions == 2) {
766 uint32_t redist1_capacity =
767 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
769 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
770 MIN(smp_cpus - redist0_count, redist1_capacity));
772 } else {
773 if (!kvm_irqchip_in_kernel()) {
774 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
775 vms->virt);
778 gicbusdev = SYS_BUS_DEVICE(vms->gic);
779 sysbus_realize_and_unref(gicbusdev, &error_fatal);
780 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
781 if (vms->gic_version != VIRT_GIC_VERSION_2) {
782 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
783 if (nb_redist_regions == 2) {
784 sysbus_mmio_map(gicbusdev, 2,
785 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
787 } else {
788 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
789 if (vms->virt) {
790 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
791 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
795 /* Wire the outputs from each CPU's generic timer and the GICv3
796 * maintenance interrupt signal to the appropriate GIC PPI inputs,
797 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
799 for (i = 0; i < smp_cpus; i++) {
800 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
801 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
802 int irq;
803 /* Mapping from the output timer irq lines from the CPU to the
804 * GIC PPI inputs we use for the virt board.
806 const int timer_irq[] = {
807 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
808 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
809 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
810 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
813 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
814 qdev_connect_gpio_out(cpudev, irq,
815 qdev_get_gpio_in(vms->gic,
816 ppibase + timer_irq[irq]));
819 if (vms->gic_version != VIRT_GIC_VERSION_2) {
820 qemu_irq irq = qdev_get_gpio_in(vms->gic,
821 ppibase + ARCH_GIC_MAINT_IRQ);
822 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
823 0, irq);
824 } else if (vms->virt) {
825 qemu_irq irq = qdev_get_gpio_in(vms->gic,
826 ppibase + ARCH_GIC_MAINT_IRQ);
827 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
830 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
831 qdev_get_gpio_in(vms->gic, ppibase
832 + VIRTUAL_PMU_IRQ));
834 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
835 sysbus_connect_irq(gicbusdev, i + smp_cpus,
836 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
837 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
838 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
839 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
840 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
843 fdt_add_gic_node(vms);
845 if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
846 create_its(vms);
847 } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
848 create_v2m(vms);
852 static void create_uart(const VirtMachineState *vms, int uart,
853 MemoryRegion *mem, Chardev *chr)
855 char *nodename;
856 hwaddr base = vms->memmap[uart].base;
857 hwaddr size = vms->memmap[uart].size;
858 int irq = vms->irqmap[uart];
859 const char compat[] = "arm,pl011\0arm,primecell";
860 const char clocknames[] = "uartclk\0apb_pclk";
861 DeviceState *dev = qdev_new(TYPE_PL011);
862 SysBusDevice *s = SYS_BUS_DEVICE(dev);
863 MachineState *ms = MACHINE(vms);
865 qdev_prop_set_chr(dev, "chardev", chr);
866 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
867 memory_region_add_subregion(mem, base,
868 sysbus_mmio_get_region(s, 0));
869 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
871 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
872 qemu_fdt_add_subnode(ms->fdt, nodename);
873 /* Note that we can't use setprop_string because of the embedded NUL */
874 qemu_fdt_setprop(ms->fdt, nodename, "compatible",
875 compat, sizeof(compat));
876 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
877 2, base, 2, size);
878 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
879 GIC_FDT_IRQ_TYPE_SPI, irq,
880 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
881 qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
882 vms->clock_phandle, vms->clock_phandle);
883 qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
884 clocknames, sizeof(clocknames));
886 if (uart == VIRT_UART) {
887 qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
888 } else {
889 /* Mark as not usable by the normal world */
890 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
891 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
893 qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
894 nodename);
897 g_free(nodename);
900 static void create_rtc(const VirtMachineState *vms)
902 char *nodename;
903 hwaddr base = vms->memmap[VIRT_RTC].base;
904 hwaddr size = vms->memmap[VIRT_RTC].size;
905 int irq = vms->irqmap[VIRT_RTC];
906 const char compat[] = "arm,pl031\0arm,primecell";
907 MachineState *ms = MACHINE(vms);
909 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
911 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
912 qemu_fdt_add_subnode(ms->fdt, nodename);
913 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
914 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
915 2, base, 2, size);
916 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
917 GIC_FDT_IRQ_TYPE_SPI, irq,
918 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
919 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
920 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
921 g_free(nodename);
924 static DeviceState *gpio_key_dev;
925 static void virt_powerdown_req(Notifier *n, void *opaque)
927 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
929 if (s->acpi_dev) {
930 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
931 } else {
932 /* use gpio Pin 3 for power button event */
933 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
937 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
938 uint32_t phandle)
940 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
941 qdev_get_gpio_in(pl061_dev, 3));
943 qemu_fdt_add_subnode(fdt, "/gpio-keys");
944 qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
946 qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
947 qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
948 "label", "GPIO Key Poweroff");
949 qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
950 KEY_POWER);
951 qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
952 "gpios", phandle, 3, 0);
955 #define SECURE_GPIO_POWEROFF 0
956 #define SECURE_GPIO_RESET 1
958 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
959 uint32_t phandle)
961 DeviceState *gpio_pwr_dev;
963 /* gpio-pwr */
964 gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
966 /* connect secure pl061 to gpio-pwr */
967 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
968 qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
969 qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
970 qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
972 qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
973 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
974 "gpio-poweroff");
975 qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
976 "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
977 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
978 qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
979 "okay");
981 qemu_fdt_add_subnode(fdt, "/gpio-restart");
982 qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
983 "gpio-restart");
984 qemu_fdt_setprop_cells(fdt, "/gpio-restart",
985 "gpios", phandle, SECURE_GPIO_RESET, 0);
986 qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
987 qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
988 "okay");
991 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
992 MemoryRegion *mem)
994 char *nodename;
995 DeviceState *pl061_dev;
996 hwaddr base = vms->memmap[gpio].base;
997 hwaddr size = vms->memmap[gpio].size;
998 int irq = vms->irqmap[gpio];
999 const char compat[] = "arm,pl061\0arm,primecell";
1000 SysBusDevice *s;
1001 MachineState *ms = MACHINE(vms);
1003 pl061_dev = qdev_new("pl061");
1004 /* Pull lines down to 0 if not driven by the PL061 */
1005 qdev_prop_set_uint32(pl061_dev, "pullups", 0);
1006 qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
1007 s = SYS_BUS_DEVICE(pl061_dev);
1008 sysbus_realize_and_unref(s, &error_fatal);
1009 memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
1010 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
1012 uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
1013 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
1014 qemu_fdt_add_subnode(ms->fdt, nodename);
1015 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1016 2, base, 2, size);
1017 qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
1018 qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
1019 qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
1020 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1021 GIC_FDT_IRQ_TYPE_SPI, irq,
1022 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
1023 qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
1024 qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
1025 qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
1027 if (gpio != VIRT_GPIO) {
1028 /* Mark as not usable by the normal world */
1029 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1030 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1032 g_free(nodename);
1034 /* Child gpio devices */
1035 if (gpio == VIRT_GPIO) {
1036 create_gpio_keys(ms->fdt, pl061_dev, phandle);
1037 } else {
1038 create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
1042 static void create_virtio_devices(const VirtMachineState *vms)
1044 int i;
1045 hwaddr size = vms->memmap[VIRT_MMIO].size;
1046 MachineState *ms = MACHINE(vms);
1048 /* We create the transports in forwards order. Since qbus_realize()
1049 * prepends (not appends) new child buses, the incrementing loop below will
1050 * create a list of virtio-mmio buses with decreasing base addresses.
1052 * When a -device option is processed from the command line,
1053 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
1054 * order. The upshot is that -device options in increasing command line
1055 * order are mapped to virtio-mmio buses with decreasing base addresses.
1057 * When this code was originally written, that arrangement ensured that the
1058 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
1059 * the first -device on the command line. (The end-to-end order is a
1060 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
1061 * guest kernel's name-to-address assignment strategy.)
1063 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
1064 * the message, if not necessarily the code, of commit 70161ff336.
1065 * Therefore the loop now establishes the inverse of the original intent.
1067 * Unfortunately, we can't counteract the kernel change by reversing the
1068 * loop; it would break existing command lines.
1070 * In any case, the kernel makes no guarantee about the stability of
1071 * enumeration order of virtio devices (as demonstrated by it changing
1072 * between kernel versions). For reliable and stable identification
1073 * of disks users must use UUIDs or similar mechanisms.
1075 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
1076 int irq = vms->irqmap[VIRT_MMIO] + i;
1077 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1079 sysbus_create_simple("virtio-mmio", base,
1080 qdev_get_gpio_in(vms->gic, irq));
1083 /* We add dtb nodes in reverse order so that they appear in the finished
1084 * device tree lowest address first.
1086 * Note that this mapping is independent of the loop above. The previous
1087 * loop influences virtio device to virtio transport assignment, whereas
1088 * this loop controls how virtio transports are laid out in the dtb.
1090 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
1091 char *nodename;
1092 int irq = vms->irqmap[VIRT_MMIO] + i;
1093 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
1095 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
1096 qemu_fdt_add_subnode(ms->fdt, nodename);
1097 qemu_fdt_setprop_string(ms->fdt, nodename,
1098 "compatible", "virtio,mmio");
1099 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1100 2, base, 2, size);
1101 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
1102 GIC_FDT_IRQ_TYPE_SPI, irq,
1103 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1104 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1105 g_free(nodename);
1109 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
1111 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
1112 const char *name,
1113 const char *alias_prop_name)
1116 * Create a single flash device. We use the same parameters as
1117 * the flash devices on the Versatile Express board.
1119 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
1121 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
1122 qdev_prop_set_uint8(dev, "width", 4);
1123 qdev_prop_set_uint8(dev, "device-width", 2);
1124 qdev_prop_set_bit(dev, "big-endian", false);
1125 qdev_prop_set_uint16(dev, "id0", 0x89);
1126 qdev_prop_set_uint16(dev, "id1", 0x18);
1127 qdev_prop_set_uint16(dev, "id2", 0x00);
1128 qdev_prop_set_uint16(dev, "id3", 0x00);
1129 qdev_prop_set_string(dev, "name", name);
1130 object_property_add_child(OBJECT(vms), name, OBJECT(dev));
1131 object_property_add_alias(OBJECT(vms), alias_prop_name,
1132 OBJECT(dev), "drive");
1133 return PFLASH_CFI01(dev);
1136 static void virt_flash_create(VirtMachineState *vms)
1138 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
1139 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
1142 static void virt_flash_map1(PFlashCFI01 *flash,
1143 hwaddr base, hwaddr size,
1144 MemoryRegion *sysmem)
1146 DeviceState *dev = DEVICE(flash);
1148 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
1149 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
1150 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
1151 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1153 memory_region_add_subregion(sysmem, base,
1154 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1155 0));
1158 static void virt_flash_map(VirtMachineState *vms,
1159 MemoryRegion *sysmem,
1160 MemoryRegion *secure_sysmem)
1163 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
1164 * sysmem is the system memory space. secure_sysmem is the secure view
1165 * of the system, and the first flash device should be made visible only
1166 * there. The second flash device is visible to both secure and nonsecure.
1167 * If sysmem == secure_sysmem this means there is no separate Secure
1168 * address space and both flash devices are generally visible.
1170 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1171 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1173 virt_flash_map1(vms->flash[0], flashbase, flashsize,
1174 secure_sysmem);
1175 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
1176 sysmem);
1179 static void virt_flash_fdt(VirtMachineState *vms,
1180 MemoryRegion *sysmem,
1181 MemoryRegion *secure_sysmem)
1183 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
1184 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
1185 MachineState *ms = MACHINE(vms);
1186 char *nodename;
1188 if (sysmem == secure_sysmem) {
1189 /* Report both flash devices as a single node in the DT */
1190 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
1191 qemu_fdt_add_subnode(ms->fdt, nodename);
1192 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1193 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1194 2, flashbase, 2, flashsize,
1195 2, flashbase + flashsize, 2, flashsize);
1196 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1197 g_free(nodename);
1198 } else {
1200 * Report the devices as separate nodes so we can mark one as
1201 * only visible to the secure world.
1203 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
1204 qemu_fdt_add_subnode(ms->fdt, nodename);
1205 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1206 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1207 2, flashbase, 2, flashsize);
1208 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1209 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1210 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1211 g_free(nodename);
1213 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
1214 qemu_fdt_add_subnode(ms->fdt, nodename);
1215 qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
1216 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1217 2, flashbase + flashsize, 2, flashsize);
1218 qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
1219 g_free(nodename);
1223 static bool virt_firmware_init(VirtMachineState *vms,
1224 MemoryRegion *sysmem,
1225 MemoryRegion *secure_sysmem)
1227 int i;
1228 const char *bios_name;
1229 BlockBackend *pflash_blk0;
1231 /* Map legacy -drive if=pflash to machine properties */
1232 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1233 pflash_cfi01_legacy_drive(vms->flash[i],
1234 drive_get(IF_PFLASH, 0, i));
1237 virt_flash_map(vms, sysmem, secure_sysmem);
1239 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1241 bios_name = MACHINE(vms)->firmware;
1242 if (bios_name) {
1243 char *fname;
1244 MemoryRegion *mr;
1245 int image_size;
1247 if (pflash_blk0) {
1248 error_report("The contents of the first flash device may be "
1249 "specified with -bios or with -drive if=pflash... "
1250 "but you cannot use both options at once");
1251 exit(1);
1254 /* Fall back to -bios */
1256 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1257 if (!fname) {
1258 error_report("Could not find ROM image '%s'", bios_name);
1259 exit(1);
1261 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1262 image_size = load_image_mr(fname, mr);
1263 g_free(fname);
1264 if (image_size < 0) {
1265 error_report("Could not load ROM image '%s'", bios_name);
1266 exit(1);
1270 return pflash_blk0 || bios_name;
1273 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1275 MachineState *ms = MACHINE(vms);
1276 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1277 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1278 FWCfgState *fw_cfg;
1279 char *nodename;
1281 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1282 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
1284 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1285 qemu_fdt_add_subnode(ms->fdt, nodename);
1286 qemu_fdt_setprop_string(ms->fdt, nodename,
1287 "compatible", "qemu,fw-cfg-mmio");
1288 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1289 2, base, 2, size);
1290 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1291 g_free(nodename);
1292 return fw_cfg;
1295 static void create_pcie_irq_map(const MachineState *ms,
1296 uint32_t gic_phandle,
1297 int first_irq, const char *nodename)
1299 int devfn, pin;
1300 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1301 uint32_t *irq_map = full_irq_map;
1303 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1304 for (pin = 0; pin < 4; pin++) {
1305 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1306 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1307 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1308 int i;
1310 uint32_t map[] = {
1311 devfn << 8, 0, 0, /* devfn */
1312 pin + 1, /* PCI pin */
1313 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1315 /* Convert map to big endian */
1316 for (i = 0; i < 10; i++) {
1317 irq_map[i] = cpu_to_be32(map[i]);
1319 irq_map += 10;
1323 qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
1324 full_irq_map, sizeof(full_irq_map));
1326 qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
1327 cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
1328 0, 0,
1329 0x7 /* PCI irq */);
1332 static void create_smmu(const VirtMachineState *vms,
1333 PCIBus *bus)
1335 char *node;
1336 const char compat[] = "arm,smmu-v3";
1337 int irq = vms->irqmap[VIRT_SMMU];
1338 int i;
1339 hwaddr base = vms->memmap[VIRT_SMMU].base;
1340 hwaddr size = vms->memmap[VIRT_SMMU].size;
1341 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1342 DeviceState *dev;
1343 MachineState *ms = MACHINE(vms);
1345 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1346 return;
1349 dev = qdev_new(TYPE_ARM_SMMUV3);
1351 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
1352 &error_abort);
1353 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1354 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1355 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1356 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1357 qdev_get_gpio_in(vms->gic, irq + i));
1360 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1361 qemu_fdt_add_subnode(ms->fdt, node);
1362 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1363 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
1365 qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
1366 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1367 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1368 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1369 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1371 qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
1372 sizeof(irq_names));
1374 qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
1376 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1378 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1379 g_free(node);
1382 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
1384 const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
1385 uint16_t bdf = vms->virtio_iommu_bdf;
1386 MachineState *ms = MACHINE(vms);
1387 char *node;
1389 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1391 node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
1392 PCI_SLOT(bdf), PCI_FUNC(bdf));
1393 qemu_fdt_add_subnode(ms->fdt, node);
1394 qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
1395 qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1396 1, bdf << 8, 1, 0, 1, 0,
1397 1, 0, 1, 0);
1399 qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
1400 qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
1401 g_free(node);
1403 qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
1404 0x0, vms->iommu_phandle, 0x0, bdf,
1405 bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
1408 static void create_pcie(VirtMachineState *vms)
1410 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1411 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1412 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1413 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1414 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1415 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1416 hwaddr base_ecam, size_ecam;
1417 hwaddr base = base_mmio;
1418 int nr_pcie_buses;
1419 int irq = vms->irqmap[VIRT_PCIE];
1420 MemoryRegion *mmio_alias;
1421 MemoryRegion *mmio_reg;
1422 MemoryRegion *ecam_alias;
1423 MemoryRegion *ecam_reg;
1424 DeviceState *dev;
1425 char *nodename;
1426 int i, ecam_id;
1427 PCIHostState *pci;
1428 MachineState *ms = MACHINE(vms);
1430 dev = qdev_new(TYPE_GPEX_HOST);
1431 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1433 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1434 base_ecam = vms->memmap[ecam_id].base;
1435 size_ecam = vms->memmap[ecam_id].size;
1436 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1437 /* Map only the first size_ecam bytes of ECAM space */
1438 ecam_alias = g_new0(MemoryRegion, 1);
1439 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1440 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1441 ecam_reg, 0, size_ecam);
1442 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1444 /* Map the MMIO window into system address space so as to expose
1445 * the section of PCI MMIO space which starts at the same base address
1446 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1447 * the window).
1449 mmio_alias = g_new0(MemoryRegion, 1);
1450 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1451 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1452 mmio_reg, base_mmio, size_mmio);
1453 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1455 if (vms->highmem_mmio) {
1456 /* Map high MMIO space */
1457 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1459 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1460 mmio_reg, base_mmio_high, size_mmio_high);
1461 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1462 high_mmio_alias);
1465 /* Map IO port space */
1466 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1468 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1469 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1470 qdev_get_gpio_in(vms->gic, irq + i));
1471 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1474 pci = PCI_HOST_BRIDGE(dev);
1475 pci->bypass_iommu = vms->default_bus_bypass_iommu;
1476 vms->bus = pci->bus;
1477 if (vms->bus) {
1478 for (i = 0; i < nb_nics; i++) {
1479 NICInfo *nd = &nd_table[i];
1481 if (!nd->model) {
1482 nd->model = g_strdup("virtio");
1485 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1489 nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1490 qemu_fdt_add_subnode(ms->fdt, nodename);
1491 qemu_fdt_setprop_string(ms->fdt, nodename,
1492 "compatible", "pci-host-ecam-generic");
1493 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
1494 qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
1495 qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
1496 qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
1497 qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
1498 nr_pcie_buses - 1);
1499 qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
1501 if (vms->msi_phandle) {
1502 qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
1503 0, vms->msi_phandle, 0, 0x10000);
1506 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
1507 2, base_ecam, 2, size_ecam);
1509 if (vms->highmem_mmio) {
1510 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1511 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1512 2, base_pio, 2, size_pio,
1513 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1514 2, base_mmio, 2, size_mmio,
1515 1, FDT_PCI_RANGE_MMIO_64BIT,
1516 2, base_mmio_high,
1517 2, base_mmio_high, 2, size_mmio_high);
1518 } else {
1519 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1520 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1521 2, base_pio, 2, size_pio,
1522 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1523 2, base_mmio, 2, size_mmio);
1526 qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
1527 create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
1529 if (vms->iommu) {
1530 vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
1532 switch (vms->iommu) {
1533 case VIRT_IOMMU_SMMUV3:
1534 create_smmu(vms, vms->bus);
1535 qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
1536 0x0, vms->iommu_phandle, 0x0, 0x10000);
1537 break;
1538 default:
1539 g_assert_not_reached();
1544 static void create_platform_bus(VirtMachineState *vms)
1546 DeviceState *dev;
1547 SysBusDevice *s;
1548 int i;
1549 MemoryRegion *sysmem = get_system_memory();
1551 dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1552 dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1553 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1554 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1555 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1556 vms->platform_bus_dev = dev;
1558 s = SYS_BUS_DEVICE(dev);
1559 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1560 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1561 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
1564 memory_region_add_subregion(sysmem,
1565 vms->memmap[VIRT_PLATFORM_BUS].base,
1566 sysbus_mmio_get_region(s, 0));
1569 static void create_tag_ram(MemoryRegion *tag_sysmem,
1570 hwaddr base, hwaddr size,
1571 const char *name)
1573 MemoryRegion *tagram = g_new(MemoryRegion, 1);
1575 memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
1576 memory_region_add_subregion(tag_sysmem, base / 32, tagram);
1579 static void create_secure_ram(VirtMachineState *vms,
1580 MemoryRegion *secure_sysmem,
1581 MemoryRegion *secure_tag_sysmem)
1583 MemoryRegion *secram = g_new(MemoryRegion, 1);
1584 char *nodename;
1585 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1586 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1587 MachineState *ms = MACHINE(vms);
1589 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1590 &error_fatal);
1591 memory_region_add_subregion(secure_sysmem, base, secram);
1593 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1594 qemu_fdt_add_subnode(ms->fdt, nodename);
1595 qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
1596 qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
1597 qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
1598 qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
1600 if (secure_tag_sysmem) {
1601 create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
1604 g_free(nodename);
1607 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1609 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1610 bootinfo);
1611 MachineState *ms = MACHINE(board);
1614 *fdt_size = board->fdt_size;
1615 return ms->fdt;
1618 static void virt_build_smbios(VirtMachineState *vms)
1620 MachineClass *mc = MACHINE_GET_CLASS(vms);
1621 MachineState *ms = MACHINE(vms);
1622 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1623 uint8_t *smbios_tables, *smbios_anchor;
1624 size_t smbios_tables_len, smbios_anchor_len;
1625 struct smbios_phys_mem_area mem_array;
1626 const char *product = "QEMU Virtual Machine";
1628 if (kvm_enabled()) {
1629 product = "KVM Virtual Machine";
1632 smbios_set_defaults("QEMU", product,
1633 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1634 true, SMBIOS_ENTRY_POINT_TYPE_64);
1636 /* build the array of physical mem area from base_memmap */
1637 mem_array.address = vms->memmap[VIRT_MEM].base;
1638 mem_array.length = ms->ram_size;
1640 smbios_get_tables(ms, &mem_array, 1,
1641 &smbios_tables, &smbios_tables_len,
1642 &smbios_anchor, &smbios_anchor_len,
1643 &error_fatal);
1645 if (smbios_anchor) {
1646 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1647 smbios_tables, smbios_tables_len);
1648 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1649 smbios_anchor, smbios_anchor_len);
1653 static
1654 void virt_machine_done(Notifier *notifier, void *data)
1656 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1657 machine_done);
1658 MachineState *ms = MACHINE(vms);
1659 ARMCPU *cpu = ARM_CPU(first_cpu);
1660 struct arm_boot_info *info = &vms->bootinfo;
1661 AddressSpace *as = arm_boot_address_space(cpu, info);
1664 * If the user provided a dtb, we assume the dynamic sysbus nodes
1665 * already are integrated there. This corresponds to a use case where
1666 * the dynamic sysbus nodes are complex and their generation is not yet
1667 * supported. In that case the user can take charge of the guest dt
1668 * while qemu takes charge of the qom stuff.
1670 if (info->dtb_filename == NULL) {
1671 platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
1672 vms->memmap[VIRT_PLATFORM_BUS].base,
1673 vms->memmap[VIRT_PLATFORM_BUS].size,
1674 vms->irqmap[VIRT_PLATFORM_BUS]);
1676 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1677 exit(1);
1680 fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
1682 virt_acpi_setup(vms);
1683 virt_build_smbios(vms);
1686 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1688 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1689 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1691 if (!vmc->disallow_affinity_adjustment) {
1692 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1693 * GIC's target-list limitations. 32-bit KVM hosts currently
1694 * always create clusters of 4 CPUs, but that is expected to
1695 * change when they gain support for gicv3. When KVM is enabled
1696 * it will override the changes we make here, therefore our
1697 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1698 * and to improve SGI efficiency.
1700 if (vms->gic_version == VIRT_GIC_VERSION_2) {
1701 clustersz = GIC_TARGETLIST_BITS;
1702 } else {
1703 clustersz = GICV3_TARGETLIST_BITS;
1706 return arm_cpu_mp_affinity(idx, clustersz);
1709 static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
1710 int index)
1712 bool *enabled_array[] = {
1713 &vms->highmem_redists,
1714 &vms->highmem_ecam,
1715 &vms->highmem_mmio,
1718 assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
1719 ARRAY_SIZE(enabled_array));
1720 assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
1722 return enabled_array[index - VIRT_LOWMEMMAP_LAST];
1725 static void virt_set_high_memmap(VirtMachineState *vms,
1726 hwaddr base, int pa_bits)
1728 hwaddr region_base, region_size;
1729 bool *region_enabled, fits;
1730 int i;
1732 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1733 region_enabled = virt_get_high_memmap_enabled(vms, i);
1734 region_base = ROUND_UP(base, extended_memmap[i].size);
1735 region_size = extended_memmap[i].size;
1737 vms->memmap[i].base = region_base;
1738 vms->memmap[i].size = region_size;
1741 * Check each device to see if it fits in the PA space,
1742 * moving highest_gpa as we go. For compatibility, move
1743 * highest_gpa for disabled fitting devices as well, if
1744 * the compact layout has been disabled.
1746 * For each device that doesn't fit, disable it.
1748 fits = (region_base + region_size) <= BIT_ULL(pa_bits);
1749 *region_enabled &= fits;
1750 if (vms->highmem_compact && !*region_enabled) {
1751 continue;
1754 base = region_base + region_size;
1755 if (fits) {
1756 vms->highest_gpa = base - 1;
1761 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
1763 MachineState *ms = MACHINE(vms);
1764 hwaddr base, device_memory_base, device_memory_size, memtop;
1765 int i;
1767 vms->memmap = extended_memmap;
1769 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1770 vms->memmap[i] = base_memmap[i];
1773 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1774 error_report("unsupported number of memory slots: %"PRIu64,
1775 ms->ram_slots);
1776 exit(EXIT_FAILURE);
1780 * !highmem is exactly the same as limiting the PA space to 32bit,
1781 * irrespective of the underlying capabilities of the HW.
1783 if (!vms->highmem) {
1784 pa_bits = 32;
1788 * We compute the base of the high IO region depending on the
1789 * amount of initial and device memory. The device memory start/size
1790 * is aligned on 1GiB. We never put the high IO region below 256GiB
1791 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1792 * The device region size assumes 1GiB page max alignment per slot.
1794 device_memory_base =
1795 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1796 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1798 /* Base address of the high IO region */
1799 memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1800 if (memtop > BIT_ULL(pa_bits)) {
1801 error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
1802 pa_bits, memtop - BIT_ULL(pa_bits));
1803 exit(EXIT_FAILURE);
1805 if (base < device_memory_base) {
1806 error_report("maxmem/slots too huge");
1807 exit(EXIT_FAILURE);
1809 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1810 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1813 /* We know for sure that at least the memory fits in the PA space */
1814 vms->highest_gpa = memtop - 1;
1816 virt_set_high_memmap(vms, base, pa_bits);
1818 if (device_memory_size > 0) {
1819 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1820 ms->device_memory->base = device_memory_base;
1821 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1822 "device-memory", device_memory_size);
1826 static VirtGICType finalize_gic_version_do(const char *accel_name,
1827 VirtGICType gic_version,
1828 int gics_supported,
1829 unsigned int max_cpus)
1831 /* Convert host/max/nosel to GIC version number */
1832 switch (gic_version) {
1833 case VIRT_GIC_VERSION_HOST:
1834 if (!kvm_enabled()) {
1835 error_report("gic-version=host requires KVM");
1836 exit(1);
1839 /* For KVM, gic-version=host means gic-version=max */
1840 return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
1841 gics_supported, max_cpus);
1842 case VIRT_GIC_VERSION_MAX:
1843 if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
1844 gic_version = VIRT_GIC_VERSION_4;
1845 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1846 gic_version = VIRT_GIC_VERSION_3;
1847 } else {
1848 gic_version = VIRT_GIC_VERSION_2;
1850 break;
1851 case VIRT_GIC_VERSION_NOSEL:
1852 if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
1853 max_cpus <= GIC_NCPU) {
1854 gic_version = VIRT_GIC_VERSION_2;
1855 } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
1857 * in case the host does not support v2 emulation or
1858 * the end-user requested more than 8 VCPUs we now default
1859 * to v3. In any case defaulting to v2 would be broken.
1861 gic_version = VIRT_GIC_VERSION_3;
1862 } else if (max_cpus > GIC_NCPU) {
1863 error_report("%s only supports GICv2 emulation but more than 8 "
1864 "vcpus are requested", accel_name);
1865 exit(1);
1867 break;
1868 case VIRT_GIC_VERSION_2:
1869 case VIRT_GIC_VERSION_3:
1870 case VIRT_GIC_VERSION_4:
1871 break;
1874 /* Check chosen version is effectively supported */
1875 switch (gic_version) {
1876 case VIRT_GIC_VERSION_2:
1877 if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
1878 error_report("%s does not support GICv2 emulation", accel_name);
1879 exit(1);
1881 break;
1882 case VIRT_GIC_VERSION_3:
1883 if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
1884 error_report("%s does not support GICv3 emulation", accel_name);
1885 exit(1);
1887 break;
1888 case VIRT_GIC_VERSION_4:
1889 if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
1890 error_report("%s does not support GICv4 emulation, is virtualization=on?",
1891 accel_name);
1892 exit(1);
1894 break;
1895 default:
1896 error_report("logic error in finalize_gic_version");
1897 exit(1);
1898 break;
1901 return gic_version;
1905 * finalize_gic_version - Determines the final gic_version
1906 * according to the gic-version property
1908 * Default GIC type is v2
1910 static void finalize_gic_version(VirtMachineState *vms)
1912 const char *accel_name = current_accel_name();
1913 unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
1914 int gics_supported = 0;
1916 /* Determine which GIC versions the current environment supports */
1917 if (kvm_enabled() && kvm_irqchip_in_kernel()) {
1918 int probe_bitmap = kvm_arm_vgic_probe();
1920 if (!probe_bitmap) {
1921 error_report("Unable to determine GIC version supported by host");
1922 exit(1);
1925 if (probe_bitmap & KVM_ARM_VGIC_V2) {
1926 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1928 if (probe_bitmap & KVM_ARM_VGIC_V3) {
1929 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1931 } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
1932 /* KVM w/o kernel irqchip can only deal with GICv2 */
1933 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1934 accel_name = "KVM with kernel-irqchip=off";
1935 } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
1936 gics_supported |= VIRT_GIC_VERSION_2_MASK;
1937 if (module_object_class_by_name("arm-gicv3")) {
1938 gics_supported |= VIRT_GIC_VERSION_3_MASK;
1939 if (vms->virt) {
1940 /* GICv4 only makes sense if CPU has EL2 */
1941 gics_supported |= VIRT_GIC_VERSION_4_MASK;
1944 } else {
1945 error_report("Unsupported accelerator, can not determine GIC support");
1946 exit(1);
1950 * Then convert helpers like host/max to concrete GIC versions and ensure
1951 * the desired version is supported
1953 vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
1954 gics_supported, max_cpus);
1958 * virt_cpu_post_init() must be called after the CPUs have
1959 * been realized and the GIC has been created.
1961 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
1963 int max_cpus = MACHINE(vms)->smp.max_cpus;
1964 bool aarch64, pmu, steal_time;
1965 CPUState *cpu;
1967 aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
1968 pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
1969 steal_time = object_property_get_bool(OBJECT(first_cpu),
1970 "kvm-steal-time", NULL);
1972 if (kvm_enabled()) {
1973 hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
1974 hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
1976 if (steal_time) {
1977 MemoryRegion *pvtime = g_new(MemoryRegion, 1);
1978 hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
1980 /* The memory region size must be a multiple of host page size. */
1981 pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
1983 if (pvtime_size > pvtime_reg_size) {
1984 error_report("pvtime requires a %" HWADDR_PRId
1985 " byte memory region for %d CPUs,"
1986 " but only %" HWADDR_PRId " has been reserved",
1987 pvtime_size, max_cpus, pvtime_reg_size);
1988 exit(1);
1991 memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
1992 memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
1995 CPU_FOREACH(cpu) {
1996 if (pmu) {
1997 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
1998 if (kvm_irqchip_in_kernel()) {
1999 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
2001 kvm_arm_pmu_init(cpu);
2003 if (steal_time) {
2004 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
2005 cpu->cpu_index * PVTIME_SIZE_PER_CPU);
2008 } else {
2009 if (aarch64 && vms->highmem) {
2010 int requested_pa_size = 64 - clz64(vms->highest_gpa);
2011 int pamax = arm_pamax(ARM_CPU(first_cpu));
2013 if (pamax < requested_pa_size) {
2014 error_report("VCPU supports less PA bits (%d) than "
2015 "requested by the memory map (%d)",
2016 pamax, requested_pa_size);
2017 exit(1);
2023 static void machvirt_init(MachineState *machine)
2025 VirtMachineState *vms = VIRT_MACHINE(machine);
2026 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
2027 MachineClass *mc = MACHINE_GET_CLASS(machine);
2028 const CPUArchIdList *possible_cpus;
2029 MemoryRegion *sysmem = get_system_memory();
2030 MemoryRegion *secure_sysmem = NULL;
2031 MemoryRegion *tag_sysmem = NULL;
2032 MemoryRegion *secure_tag_sysmem = NULL;
2033 int n, virt_max_cpus;
2034 bool firmware_loaded;
2035 bool aarch64 = true;
2036 bool has_ged = !vmc->no_ged;
2037 unsigned int smp_cpus = machine->smp.cpus;
2038 unsigned int max_cpus = machine->smp.max_cpus;
2040 if (!cpu_type_valid(machine->cpu_type)) {
2041 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
2042 exit(1);
2045 possible_cpus = mc->possible_cpu_arch_ids(machine);
2048 * In accelerated mode, the memory map is computed earlier in kvm_type()
2049 * to create a VM with the right number of IPA bits.
2051 if (!vms->memmap) {
2052 Object *cpuobj;
2053 ARMCPU *armcpu;
2054 int pa_bits;
2057 * Instantiate a temporary CPU object to find out about what
2058 * we are about to deal with. Once this is done, get rid of
2059 * the object.
2061 cpuobj = object_new(possible_cpus->cpus[0].type);
2062 armcpu = ARM_CPU(cpuobj);
2064 pa_bits = arm_pamax(armcpu);
2066 object_unref(cpuobj);
2068 virt_set_memmap(vms, pa_bits);
2071 /* We can probe only here because during property set
2072 * KVM is not available yet
2074 finalize_gic_version(vms);
2076 if (vms->secure) {
2078 * The Secure view of the world is the same as the NonSecure,
2079 * but with a few extra devices. Create it as a container region
2080 * containing the system memory at low priority; any secure-only
2081 * devices go in at higher priority and take precedence.
2083 secure_sysmem = g_new(MemoryRegion, 1);
2084 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
2085 UINT64_MAX);
2086 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
2089 firmware_loaded = virt_firmware_init(vms, sysmem,
2090 secure_sysmem ?: sysmem);
2092 /* If we have an EL3 boot ROM then the assumption is that it will
2093 * implement PSCI itself, so disable QEMU's internal implementation
2094 * so it doesn't get in the way. Instead of starting secondary
2095 * CPUs in PSCI powerdown state we will start them all running and
2096 * let the boot ROM sort them out.
2097 * The usual case is that we do use QEMU's PSCI implementation;
2098 * if the guest has EL2 then we will use SMC as the conduit,
2099 * and otherwise we will use HVC (for backwards compatibility and
2100 * because if we're using KVM then we must use HVC).
2102 if (vms->secure && firmware_loaded) {
2103 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
2104 } else if (vms->virt) {
2105 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2106 } else {
2107 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
2111 * The maximum number of CPUs depends on the GIC version, or on how
2112 * many redistributors we can fit into the memory map (which in turn
2113 * depends on whether this is a GICv3 or v4).
2115 if (vms->gic_version == VIRT_GIC_VERSION_2) {
2116 virt_max_cpus = GIC_NCPU;
2117 } else {
2118 virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
2119 if (vms->highmem_redists) {
2120 virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
2124 if (max_cpus > virt_max_cpus) {
2125 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
2126 "supported by machine 'mach-virt' (%d)",
2127 max_cpus, virt_max_cpus);
2128 if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
2129 error_printf("Try 'highmem-redists=on' for more CPUs\n");
2132 exit(1);
2135 if (vms->secure && (kvm_enabled() || hvf_enabled())) {
2136 error_report("mach-virt: %s does not support providing "
2137 "Security extensions (TrustZone) to the guest CPU",
2138 current_accel_name());
2139 exit(1);
2142 if (vms->virt && (kvm_enabled() || hvf_enabled())) {
2143 error_report("mach-virt: %s does not support providing "
2144 "Virtualization extensions to the guest CPU",
2145 current_accel_name());
2146 exit(1);
2149 if (vms->mte && (kvm_enabled() || hvf_enabled())) {
2150 error_report("mach-virt: %s does not support providing "
2151 "MTE to the guest CPU",
2152 current_accel_name());
2153 exit(1);
2156 create_fdt(vms);
2158 assert(possible_cpus->len == max_cpus);
2159 for (n = 0; n < possible_cpus->len; n++) {
2160 Object *cpuobj;
2161 CPUState *cs;
2163 if (n >= smp_cpus) {
2164 break;
2167 cpuobj = object_new(possible_cpus->cpus[n].type);
2168 object_property_set_int(cpuobj, "mp-affinity",
2169 possible_cpus->cpus[n].arch_id, NULL);
2171 cs = CPU(cpuobj);
2172 cs->cpu_index = n;
2174 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
2175 &error_fatal);
2177 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
2179 if (!vms->secure) {
2180 object_property_set_bool(cpuobj, "has_el3", false, NULL);
2183 if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
2184 object_property_set_bool(cpuobj, "has_el2", false, NULL);
2187 if (vmc->kvm_no_adjvtime &&
2188 object_property_find(cpuobj, "kvm-no-adjvtime")) {
2189 object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
2192 if (vmc->no_kvm_steal_time &&
2193 object_property_find(cpuobj, "kvm-steal-time")) {
2194 object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
2197 if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
2198 object_property_set_bool(cpuobj, "pmu", false, NULL);
2201 if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
2202 object_property_set_bool(cpuobj, "lpa2", false, NULL);
2205 if (object_property_find(cpuobj, "reset-cbar")) {
2206 object_property_set_int(cpuobj, "reset-cbar",
2207 vms->memmap[VIRT_CPUPERIPHS].base,
2208 &error_abort);
2211 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
2212 &error_abort);
2213 if (vms->secure) {
2214 object_property_set_link(cpuobj, "secure-memory",
2215 OBJECT(secure_sysmem), &error_abort);
2218 if (vms->mte) {
2219 /* Create the memory region only once, but link to all cpus. */
2220 if (!tag_sysmem) {
2222 * The property exists only if MemTag is supported.
2223 * If it is, we must allocate the ram to back that up.
2225 if (!object_property_find(cpuobj, "tag-memory")) {
2226 error_report("MTE requested, but not supported "
2227 "by the guest CPU");
2228 exit(1);
2231 tag_sysmem = g_new(MemoryRegion, 1);
2232 memory_region_init(tag_sysmem, OBJECT(machine),
2233 "tag-memory", UINT64_MAX / 32);
2235 if (vms->secure) {
2236 secure_tag_sysmem = g_new(MemoryRegion, 1);
2237 memory_region_init(secure_tag_sysmem, OBJECT(machine),
2238 "secure-tag-memory", UINT64_MAX / 32);
2240 /* As with ram, secure-tag takes precedence over tag. */
2241 memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
2242 tag_sysmem, -1);
2246 object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
2247 &error_abort);
2248 if (vms->secure) {
2249 object_property_set_link(cpuobj, "secure-tag-memory",
2250 OBJECT(secure_tag_sysmem),
2251 &error_abort);
2255 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
2256 object_unref(cpuobj);
2258 fdt_add_timer_nodes(vms);
2259 fdt_add_cpu_nodes(vms);
2261 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
2262 machine->ram);
2263 if (machine->device_memory) {
2264 memory_region_add_subregion(sysmem, machine->device_memory->base,
2265 &machine->device_memory->mr);
2268 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
2270 create_gic(vms, sysmem);
2272 virt_cpu_post_init(vms, sysmem);
2274 fdt_add_pmu_nodes(vms);
2276 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
2278 if (vms->secure) {
2279 create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
2280 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
2283 if (tag_sysmem) {
2284 create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
2285 machine->ram_size, "mach-virt.tag");
2288 vms->highmem_ecam &= (!firmware_loaded || aarch64);
2290 create_rtc(vms);
2292 create_pcie(vms);
2294 if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
2295 vms->acpi_dev = create_acpi_ged(vms);
2296 } else {
2297 create_gpio_devices(vms, VIRT_GPIO, sysmem);
2300 if (vms->secure && !vmc->no_secure_gpio) {
2301 create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
2304 /* connect powerdown request */
2305 vms->powerdown_notifier.notify = virt_powerdown_req;
2306 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
2308 /* Create mmio transports, so the user can create virtio backends
2309 * (which will be automatically plugged in to the transports). If
2310 * no backend is created the transport will just sit harmlessly idle.
2312 create_virtio_devices(vms);
2314 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
2315 rom_set_fw(vms->fw_cfg);
2317 create_platform_bus(vms);
2319 if (machine->nvdimms_state->is_enabled) {
2320 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
2321 .space_id = AML_AS_SYSTEM_MEMORY,
2322 .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
2323 .bit_width = NVDIMM_ACPI_IO_LEN << 3
2326 nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
2327 arm_virt_nvdimm_acpi_dsmio,
2328 vms->fw_cfg, OBJECT(vms));
2331 vms->bootinfo.ram_size = machine->ram_size;
2332 vms->bootinfo.board_id = -1;
2333 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
2334 vms->bootinfo.get_dtb = machvirt_dtb;
2335 vms->bootinfo.skip_dtb_autoload = true;
2336 vms->bootinfo.firmware_loaded = firmware_loaded;
2337 vms->bootinfo.psci_conduit = vms->psci_conduit;
2338 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
2340 vms->machine_done.notify = virt_machine_done;
2341 qemu_add_machine_init_done_notifier(&vms->machine_done);
2344 static bool virt_get_secure(Object *obj, Error **errp)
2346 VirtMachineState *vms = VIRT_MACHINE(obj);
2348 return vms->secure;
2351 static void virt_set_secure(Object *obj, bool value, Error **errp)
2353 VirtMachineState *vms = VIRT_MACHINE(obj);
2355 vms->secure = value;
2358 static bool virt_get_virt(Object *obj, Error **errp)
2360 VirtMachineState *vms = VIRT_MACHINE(obj);
2362 return vms->virt;
2365 static void virt_set_virt(Object *obj, bool value, Error **errp)
2367 VirtMachineState *vms = VIRT_MACHINE(obj);
2369 vms->virt = value;
2372 static bool virt_get_highmem(Object *obj, Error **errp)
2374 VirtMachineState *vms = VIRT_MACHINE(obj);
2376 return vms->highmem;
2379 static void virt_set_highmem(Object *obj, bool value, Error **errp)
2381 VirtMachineState *vms = VIRT_MACHINE(obj);
2383 vms->highmem = value;
2386 static bool virt_get_compact_highmem(Object *obj, Error **errp)
2388 VirtMachineState *vms = VIRT_MACHINE(obj);
2390 return vms->highmem_compact;
2393 static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
2395 VirtMachineState *vms = VIRT_MACHINE(obj);
2397 vms->highmem_compact = value;
2400 static bool virt_get_highmem_redists(Object *obj, Error **errp)
2402 VirtMachineState *vms = VIRT_MACHINE(obj);
2404 return vms->highmem_redists;
2407 static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
2409 VirtMachineState *vms = VIRT_MACHINE(obj);
2411 vms->highmem_redists = value;
2414 static bool virt_get_highmem_ecam(Object *obj, Error **errp)
2416 VirtMachineState *vms = VIRT_MACHINE(obj);
2418 return vms->highmem_ecam;
2421 static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
2423 VirtMachineState *vms = VIRT_MACHINE(obj);
2425 vms->highmem_ecam = value;
2428 static bool virt_get_highmem_mmio(Object *obj, Error **errp)
2430 VirtMachineState *vms = VIRT_MACHINE(obj);
2432 return vms->highmem_mmio;
2435 static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
2437 VirtMachineState *vms = VIRT_MACHINE(obj);
2439 vms->highmem_mmio = value;
2443 static bool virt_get_its(Object *obj, Error **errp)
2445 VirtMachineState *vms = VIRT_MACHINE(obj);
2447 return vms->its;
2450 static void virt_set_its(Object *obj, bool value, Error **errp)
2452 VirtMachineState *vms = VIRT_MACHINE(obj);
2454 vms->its = value;
2457 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
2459 VirtMachineState *vms = VIRT_MACHINE(obj);
2461 return vms->dtb_randomness;
2464 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
2466 VirtMachineState *vms = VIRT_MACHINE(obj);
2468 vms->dtb_randomness = value;
2471 static char *virt_get_oem_id(Object *obj, Error **errp)
2473 VirtMachineState *vms = VIRT_MACHINE(obj);
2475 return g_strdup(vms->oem_id);
2478 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
2480 VirtMachineState *vms = VIRT_MACHINE(obj);
2481 size_t len = strlen(value);
2483 if (len > 6) {
2484 error_setg(errp,
2485 "User specified oem-id value is bigger than 6 bytes in size");
2486 return;
2489 strncpy(vms->oem_id, value, 6);
2492 static char *virt_get_oem_table_id(Object *obj, Error **errp)
2494 VirtMachineState *vms = VIRT_MACHINE(obj);
2496 return g_strdup(vms->oem_table_id);
2499 static void virt_set_oem_table_id(Object *obj, const char *value,
2500 Error **errp)
2502 VirtMachineState *vms = VIRT_MACHINE(obj);
2503 size_t len = strlen(value);
2505 if (len > 8) {
2506 error_setg(errp,
2507 "User specified oem-table-id value is bigger than 8 bytes in size");
2508 return;
2510 strncpy(vms->oem_table_id, value, 8);
2514 bool virt_is_acpi_enabled(VirtMachineState *vms)
2516 if (vms->acpi == ON_OFF_AUTO_OFF) {
2517 return false;
2519 return true;
2522 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
2523 void *opaque, Error **errp)
2525 VirtMachineState *vms = VIRT_MACHINE(obj);
2526 OnOffAuto acpi = vms->acpi;
2528 visit_type_OnOffAuto(v, name, &acpi, errp);
2531 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
2532 void *opaque, Error **errp)
2534 VirtMachineState *vms = VIRT_MACHINE(obj);
2536 visit_type_OnOffAuto(v, name, &vms->acpi, errp);
2539 static bool virt_get_ras(Object *obj, Error **errp)
2541 VirtMachineState *vms = VIRT_MACHINE(obj);
2543 return vms->ras;
2546 static void virt_set_ras(Object *obj, bool value, Error **errp)
2548 VirtMachineState *vms = VIRT_MACHINE(obj);
2550 vms->ras = value;
2553 static bool virt_get_mte(Object *obj, Error **errp)
2555 VirtMachineState *vms = VIRT_MACHINE(obj);
2557 return vms->mte;
2560 static void virt_set_mte(Object *obj, bool value, Error **errp)
2562 VirtMachineState *vms = VIRT_MACHINE(obj);
2564 vms->mte = value;
2567 static char *virt_get_gic_version(Object *obj, Error **errp)
2569 VirtMachineState *vms = VIRT_MACHINE(obj);
2570 const char *val;
2572 switch (vms->gic_version) {
2573 case VIRT_GIC_VERSION_4:
2574 val = "4";
2575 break;
2576 case VIRT_GIC_VERSION_3:
2577 val = "3";
2578 break;
2579 default:
2580 val = "2";
2581 break;
2583 return g_strdup(val);
2586 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
2588 VirtMachineState *vms = VIRT_MACHINE(obj);
2590 if (!strcmp(value, "4")) {
2591 vms->gic_version = VIRT_GIC_VERSION_4;
2592 } else if (!strcmp(value, "3")) {
2593 vms->gic_version = VIRT_GIC_VERSION_3;
2594 } else if (!strcmp(value, "2")) {
2595 vms->gic_version = VIRT_GIC_VERSION_2;
2596 } else if (!strcmp(value, "host")) {
2597 vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
2598 } else if (!strcmp(value, "max")) {
2599 vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
2600 } else {
2601 error_setg(errp, "Invalid gic-version value");
2602 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
2606 static char *virt_get_iommu(Object *obj, Error **errp)
2608 VirtMachineState *vms = VIRT_MACHINE(obj);
2610 switch (vms->iommu) {
2611 case VIRT_IOMMU_NONE:
2612 return g_strdup("none");
2613 case VIRT_IOMMU_SMMUV3:
2614 return g_strdup("smmuv3");
2615 default:
2616 g_assert_not_reached();
2620 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
2622 VirtMachineState *vms = VIRT_MACHINE(obj);
2624 if (!strcmp(value, "smmuv3")) {
2625 vms->iommu = VIRT_IOMMU_SMMUV3;
2626 } else if (!strcmp(value, "none")) {
2627 vms->iommu = VIRT_IOMMU_NONE;
2628 } else {
2629 error_setg(errp, "Invalid iommu value");
2630 error_append_hint(errp, "Valid values are none, smmuv3.\n");
2634 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
2636 VirtMachineState *vms = VIRT_MACHINE(obj);
2638 return vms->default_bus_bypass_iommu;
2641 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
2642 Error **errp)
2644 VirtMachineState *vms = VIRT_MACHINE(obj);
2646 vms->default_bus_bypass_iommu = value;
2649 static CpuInstanceProperties
2650 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2652 MachineClass *mc = MACHINE_GET_CLASS(ms);
2653 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2655 assert(cpu_index < possible_cpus->len);
2656 return possible_cpus->cpus[cpu_index].props;
2659 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
2661 int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
2663 return socket_id % ms->numa_state->num_nodes;
2666 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
2668 int n;
2669 unsigned int max_cpus = ms->smp.max_cpus;
2670 VirtMachineState *vms = VIRT_MACHINE(ms);
2671 MachineClass *mc = MACHINE_GET_CLASS(vms);
2673 if (ms->possible_cpus) {
2674 assert(ms->possible_cpus->len == max_cpus);
2675 return ms->possible_cpus;
2678 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2679 sizeof(CPUArchId) * max_cpus);
2680 ms->possible_cpus->len = max_cpus;
2681 for (n = 0; n < ms->possible_cpus->len; n++) {
2682 ms->possible_cpus->cpus[n].type = ms->cpu_type;
2683 ms->possible_cpus->cpus[n].arch_id =
2684 virt_cpu_mp_affinity(vms, n);
2686 assert(!mc->smp_props.dies_supported);
2687 ms->possible_cpus->cpus[n].props.has_socket_id = true;
2688 ms->possible_cpus->cpus[n].props.socket_id =
2689 n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
2690 ms->possible_cpus->cpus[n].props.has_cluster_id = true;
2691 ms->possible_cpus->cpus[n].props.cluster_id =
2692 (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
2693 ms->possible_cpus->cpus[n].props.has_core_id = true;
2694 ms->possible_cpus->cpus[n].props.core_id =
2695 (n / ms->smp.threads) % ms->smp.cores;
2696 ms->possible_cpus->cpus[n].props.has_thread_id = true;
2697 ms->possible_cpus->cpus[n].props.thread_id =
2698 n % ms->smp.threads;
2700 return ms->possible_cpus;
2703 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2704 Error **errp)
2706 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2707 const MachineState *ms = MACHINE(hotplug_dev);
2708 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2710 if (!vms->acpi_dev) {
2711 error_setg(errp,
2712 "memory hotplug is not enabled: missing acpi-ged device");
2713 return;
2716 if (vms->mte) {
2717 error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
2718 return;
2721 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2722 error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2723 return;
2726 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
2729 static void virt_memory_plug(HotplugHandler *hotplug_dev,
2730 DeviceState *dev, Error **errp)
2732 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2733 MachineState *ms = MACHINE(hotplug_dev);
2734 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2736 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
2738 if (is_nvdimm) {
2739 nvdimm_plug(ms->nvdimms_state);
2742 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
2743 dev, &error_abort);
2746 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
2747 DeviceState *dev, Error **errp)
2749 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2750 Error *local_err = NULL;
2752 if (!hotplug_dev2 && dev->hotplugged) {
2754 * Without a bus hotplug handler, we cannot control the plug/unplug
2755 * order. We should never reach this point when hotplugging on ARM.
2756 * However, it's nice to add a safety net, similar to what we have
2757 * on x86.
2759 error_setg(errp, "hotplug of virtio based memory devices not supported"
2760 " on this bus.");
2761 return;
2764 * First, see if we can plug this memory device at all. If that
2765 * succeeds, branch of to the actual hotplug handler.
2767 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2768 &local_err);
2769 if (!local_err && hotplug_dev2) {
2770 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2772 error_propagate(errp, local_err);
2775 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
2776 DeviceState *dev, Error **errp)
2778 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2779 Error *local_err = NULL;
2782 * Plug the memory device first and then branch off to the actual
2783 * hotplug handler. If that one fails, we can easily undo the memory
2784 * device bits.
2786 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2787 if (hotplug_dev2) {
2788 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2789 if (local_err) {
2790 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2793 error_propagate(errp, local_err);
2796 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
2797 DeviceState *dev, Error **errp)
2799 /* We don't support hot unplug of virtio based memory devices */
2800 error_setg(errp, "virtio based memory devices cannot be unplugged.");
2804 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2805 DeviceState *dev, Error **errp)
2807 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2809 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2810 virt_memory_pre_plug(hotplug_dev, dev, errp);
2811 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2812 virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
2813 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2814 hwaddr db_start = 0, db_end = 0;
2815 char *resv_prop_str;
2817 if (vms->iommu != VIRT_IOMMU_NONE) {
2818 error_setg(errp, "virt machine does not support multiple IOMMUs");
2819 return;
2822 switch (vms->msi_controller) {
2823 case VIRT_MSI_CTRL_NONE:
2824 return;
2825 case VIRT_MSI_CTRL_ITS:
2826 /* GITS_TRANSLATER page */
2827 db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
2828 db_end = base_memmap[VIRT_GIC_ITS].base +
2829 base_memmap[VIRT_GIC_ITS].size - 1;
2830 break;
2831 case VIRT_MSI_CTRL_GICV2M:
2832 /* MSI_SETSPI_NS page */
2833 db_start = base_memmap[VIRT_GIC_V2M].base;
2834 db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
2835 break;
2837 resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
2838 db_start, db_end,
2839 VIRTIO_IOMMU_RESV_MEM_T_MSI);
2841 object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
2842 object_property_set_str(OBJECT(dev), "reserved-regions[0]",
2843 resv_prop_str, errp);
2844 g_free(resv_prop_str);
2848 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2849 DeviceState *dev, Error **errp)
2851 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2853 if (vms->platform_bus_dev) {
2854 MachineClass *mc = MACHINE_GET_CLASS(vms);
2856 if (device_is_dynamic_sysbus(mc, dev)) {
2857 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
2858 SYS_BUS_DEVICE(dev));
2861 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2862 virt_memory_plug(hotplug_dev, dev, errp);
2865 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2866 virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
2869 if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2870 PCIDevice *pdev = PCI_DEVICE(dev);
2872 vms->iommu = VIRT_IOMMU_VIRTIO;
2873 vms->virtio_iommu_bdf = pci_get_bdf(pdev);
2874 create_virtio_iommu_dt_bindings(vms);
2878 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
2879 DeviceState *dev, Error **errp)
2881 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2883 if (!vms->acpi_dev) {
2884 error_setg(errp,
2885 "memory hotplug is not enabled: missing acpi-ged device");
2886 return;
2889 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2890 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
2891 return;
2894 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
2895 errp);
2898 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
2899 DeviceState *dev, Error **errp)
2901 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
2902 Error *local_err = NULL;
2904 hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
2905 if (local_err) {
2906 goto out;
2909 pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
2910 qdev_unrealize(dev);
2912 out:
2913 error_propagate(errp, local_err);
2916 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2917 DeviceState *dev, Error **errp)
2919 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2920 virt_dimm_unplug_request(hotplug_dev, dev, errp);
2921 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
2922 virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
2923 } else {
2924 error_setg(errp, "device unplug request for unsupported device"
2925 " type: %s", object_get_typename(OBJECT(dev)));
2929 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2930 DeviceState *dev, Error **errp)
2932 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2933 virt_dimm_unplug(hotplug_dev, dev, errp);
2934 } else {
2935 error_setg(errp, "virt: device unplug for unsupported device"
2936 " type: %s", object_get_typename(OBJECT(dev)));
2940 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
2941 DeviceState *dev)
2943 MachineClass *mc = MACHINE_GET_CLASS(machine);
2945 if (device_is_dynamic_sysbus(mc, dev) ||
2946 object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2947 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
2948 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
2949 return HOTPLUG_HANDLER(machine);
2951 return NULL;
2955 * for arm64 kvm_type [7-0] encodes the requested number of bits
2956 * in the IPA address space
2958 static int virt_kvm_type(MachineState *ms, const char *type_str)
2960 VirtMachineState *vms = VIRT_MACHINE(ms);
2961 int max_vm_pa_size, requested_pa_size;
2962 bool fixed_ipa;
2964 max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
2966 /* we freeze the memory map to compute the highest gpa */
2967 virt_set_memmap(vms, max_vm_pa_size);
2969 requested_pa_size = 64 - clz64(vms->highest_gpa);
2972 * KVM requires the IPA size to be at least 32 bits.
2974 if (requested_pa_size < 32) {
2975 requested_pa_size = 32;
2978 if (requested_pa_size > max_vm_pa_size) {
2979 error_report("-m and ,maxmem option values "
2980 "require an IPA range (%d bits) larger than "
2981 "the one supported by the host (%d bits)",
2982 requested_pa_size, max_vm_pa_size);
2983 exit(1);
2986 * We return the requested PA log size, unless KVM only supports
2987 * the implicit legacy 40b IPA setting, in which case the kvm_type
2988 * must be 0.
2990 return fixed_ipa ? 0 : requested_pa_size;
2993 static void virt_machine_class_init(ObjectClass *oc, void *data)
2995 MachineClass *mc = MACHINE_CLASS(oc);
2996 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2998 mc->init = machvirt_init;
2999 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
3000 * The value may be reduced later when we have more information about the
3001 * configuration of the particular instance.
3003 mc->max_cpus = 512;
3004 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
3005 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
3006 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
3007 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
3008 #ifdef CONFIG_TPM
3009 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
3010 #endif
3011 mc->block_default_type = IF_VIRTIO;
3012 mc->no_cdrom = 1;
3013 mc->pci_allow_0_address = true;
3014 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
3015 mc->minimum_page_bits = 12;
3016 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
3017 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
3018 #ifdef CONFIG_TCG
3019 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
3020 #else
3021 mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
3022 #endif
3023 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
3024 mc->kvm_type = virt_kvm_type;
3025 assert(!mc->get_hotplug_handler);
3026 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
3027 hc->pre_plug = virt_machine_device_pre_plug_cb;
3028 hc->plug = virt_machine_device_plug_cb;
3029 hc->unplug_request = virt_machine_device_unplug_request_cb;
3030 hc->unplug = virt_machine_device_unplug_cb;
3031 mc->nvdimm_supported = true;
3032 mc->smp_props.clusters_supported = true;
3033 mc->auto_enable_numa_with_memhp = true;
3034 mc->auto_enable_numa_with_memdev = true;
3035 mc->default_ram_id = "mach-virt.ram";
3037 object_class_property_add(oc, "acpi", "OnOffAuto",
3038 virt_get_acpi, virt_set_acpi,
3039 NULL, NULL);
3040 object_class_property_set_description(oc, "acpi",
3041 "Enable ACPI");
3042 object_class_property_add_bool(oc, "secure", virt_get_secure,
3043 virt_set_secure);
3044 object_class_property_set_description(oc, "secure",
3045 "Set on/off to enable/disable the ARM "
3046 "Security Extensions (TrustZone)");
3048 object_class_property_add_bool(oc, "virtualization", virt_get_virt,
3049 virt_set_virt);
3050 object_class_property_set_description(oc, "virtualization",
3051 "Set on/off to enable/disable emulating a "
3052 "guest CPU which implements the ARM "
3053 "Virtualization Extensions");
3055 object_class_property_add_bool(oc, "highmem", virt_get_highmem,
3056 virt_set_highmem);
3057 object_class_property_set_description(oc, "highmem",
3058 "Set on/off to enable/disable using "
3059 "physical address space above 32 bits");
3061 object_class_property_add_bool(oc, "compact-highmem",
3062 virt_get_compact_highmem,
3063 virt_set_compact_highmem);
3064 object_class_property_set_description(oc, "compact-highmem",
3065 "Set on/off to enable/disable compact "
3066 "layout for high memory regions");
3068 object_class_property_add_bool(oc, "highmem-redists",
3069 virt_get_highmem_redists,
3070 virt_set_highmem_redists);
3071 object_class_property_set_description(oc, "highmem-redists",
3072 "Set on/off to enable/disable high "
3073 "memory region for GICv3 or GICv4 "
3074 "redistributor");
3076 object_class_property_add_bool(oc, "highmem-ecam",
3077 virt_get_highmem_ecam,
3078 virt_set_highmem_ecam);
3079 object_class_property_set_description(oc, "highmem-ecam",
3080 "Set on/off to enable/disable high "
3081 "memory region for PCI ECAM");
3083 object_class_property_add_bool(oc, "highmem-mmio",
3084 virt_get_highmem_mmio,
3085 virt_set_highmem_mmio);
3086 object_class_property_set_description(oc, "highmem-mmio",
3087 "Set on/off to enable/disable high "
3088 "memory region for PCI MMIO");
3090 object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
3091 virt_set_gic_version);
3092 object_class_property_set_description(oc, "gic-version",
3093 "Set GIC version. "
3094 "Valid values are 2, 3, 4, host and max");
3096 object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
3097 object_class_property_set_description(oc, "iommu",
3098 "Set the IOMMU type. "
3099 "Valid values are none and smmuv3");
3101 object_class_property_add_bool(oc, "default-bus-bypass-iommu",
3102 virt_get_default_bus_bypass_iommu,
3103 virt_set_default_bus_bypass_iommu);
3104 object_class_property_set_description(oc, "default-bus-bypass-iommu",
3105 "Set on/off to enable/disable "
3106 "bypass_iommu for default root bus");
3108 object_class_property_add_bool(oc, "ras", virt_get_ras,
3109 virt_set_ras);
3110 object_class_property_set_description(oc, "ras",
3111 "Set on/off to enable/disable reporting host memory errors "
3112 "to a KVM guest using ACPI and guest external abort exceptions");
3114 object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
3115 object_class_property_set_description(oc, "mte",
3116 "Set on/off to enable/disable emulating a "
3117 "guest CPU which implements the ARM "
3118 "Memory Tagging Extension");
3120 object_class_property_add_bool(oc, "its", virt_get_its,
3121 virt_set_its);
3122 object_class_property_set_description(oc, "its",
3123 "Set on/off to enable/disable "
3124 "ITS instantiation");
3126 object_class_property_add_bool(oc, "dtb-randomness",
3127 virt_get_dtb_randomness,
3128 virt_set_dtb_randomness);
3129 object_class_property_set_description(oc, "dtb-randomness",
3130 "Set off to disable passing random or "
3131 "non-deterministic dtb nodes to guest");
3133 object_class_property_add_bool(oc, "dtb-kaslr-seed",
3134 virt_get_dtb_randomness,
3135 virt_set_dtb_randomness);
3136 object_class_property_set_description(oc, "dtb-kaslr-seed",
3137 "Deprecated synonym of dtb-randomness");
3139 object_class_property_add_str(oc, "x-oem-id",
3140 virt_get_oem_id,
3141 virt_set_oem_id);
3142 object_class_property_set_description(oc, "x-oem-id",
3143 "Override the default value of field OEMID "
3144 "in ACPI table header."
3145 "The string may be up to 6 bytes in size");
3148 object_class_property_add_str(oc, "x-oem-table-id",
3149 virt_get_oem_table_id,
3150 virt_set_oem_table_id);
3151 object_class_property_set_description(oc, "x-oem-table-id",
3152 "Override the default value of field OEM Table ID "
3153 "in ACPI table header."
3154 "The string may be up to 8 bytes in size");
3158 static void virt_instance_init(Object *obj)
3160 VirtMachineState *vms = VIRT_MACHINE(obj);
3161 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
3163 /* EL3 is disabled by default on virt: this makes us consistent
3164 * between KVM and TCG for this board, and it also allows us to
3165 * boot UEFI blobs which assume no TrustZone support.
3167 vms->secure = false;
3169 /* EL2 is also disabled by default, for similar reasons */
3170 vms->virt = false;
3172 /* High memory is enabled by default */
3173 vms->highmem = true;
3174 vms->highmem_compact = !vmc->no_highmem_compact;
3175 vms->gic_version = VIRT_GIC_VERSION_NOSEL;
3177 vms->highmem_ecam = !vmc->no_highmem_ecam;
3178 vms->highmem_mmio = true;
3179 vms->highmem_redists = true;
3181 if (vmc->no_its) {
3182 vms->its = false;
3183 } else {
3184 /* Default allows ITS instantiation */
3185 vms->its = true;
3187 if (vmc->no_tcg_its) {
3188 vms->tcg_its = false;
3189 } else {
3190 vms->tcg_its = true;
3194 /* Default disallows iommu instantiation */
3195 vms->iommu = VIRT_IOMMU_NONE;
3197 /* The default root bus is attached to iommu by default */
3198 vms->default_bus_bypass_iommu = false;
3200 /* Default disallows RAS instantiation */
3201 vms->ras = false;
3203 /* MTE is disabled by default. */
3204 vms->mte = false;
3206 /* Supply kaslr-seed and rng-seed by default */
3207 vms->dtb_randomness = true;
3209 vms->irqmap = a15irqmap;
3211 virt_flash_create(vms);
3213 vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
3214 vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
3217 static const TypeInfo virt_machine_info = {
3218 .name = TYPE_VIRT_MACHINE,
3219 .parent = TYPE_MACHINE,
3220 .abstract = true,
3221 .instance_size = sizeof(VirtMachineState),
3222 .class_size = sizeof(VirtMachineClass),
3223 .class_init = virt_machine_class_init,
3224 .instance_init = virt_instance_init,
3225 .interfaces = (InterfaceInfo[]) {
3226 { TYPE_HOTPLUG_HANDLER },
3231 static void machvirt_machine_init(void)
3233 type_register_static(&virt_machine_info);
3235 type_init(machvirt_machine_init);
3237 static void virt_machine_8_1_options(MachineClass *mc)
3240 DEFINE_VIRT_MACHINE_AS_LATEST(8, 1)
3242 static void virt_machine_8_0_options(MachineClass *mc)
3244 virt_machine_8_1_options(mc);
3245 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
3247 DEFINE_VIRT_MACHINE(8, 0)
3249 static void virt_machine_7_2_options(MachineClass *mc)
3251 virt_machine_8_0_options(mc);
3252 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
3254 DEFINE_VIRT_MACHINE(7, 2)
3256 static void virt_machine_7_1_options(MachineClass *mc)
3258 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3260 virt_machine_7_2_options(mc);
3261 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
3262 /* Compact layout for high memory regions was introduced with 7.2 */
3263 vmc->no_highmem_compact = true;
3265 DEFINE_VIRT_MACHINE(7, 1)
3267 static void virt_machine_7_0_options(MachineClass *mc)
3269 virt_machine_7_1_options(mc);
3270 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
3272 DEFINE_VIRT_MACHINE(7, 0)
3274 static void virt_machine_6_2_options(MachineClass *mc)
3276 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3278 virt_machine_7_0_options(mc);
3279 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
3280 vmc->no_tcg_lpa2 = true;
3282 DEFINE_VIRT_MACHINE(6, 2)
3284 static void virt_machine_6_1_options(MachineClass *mc)
3286 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3288 virt_machine_6_2_options(mc);
3289 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
3290 mc->smp_props.prefer_sockets = true;
3291 vmc->no_cpu_topology = true;
3293 /* qemu ITS was introduced with 6.2 */
3294 vmc->no_tcg_its = true;
3296 DEFINE_VIRT_MACHINE(6, 1)
3298 static void virt_machine_6_0_options(MachineClass *mc)
3300 virt_machine_6_1_options(mc);
3301 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
3303 DEFINE_VIRT_MACHINE(6, 0)
3305 static void virt_machine_5_2_options(MachineClass *mc)
3307 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3309 virt_machine_6_0_options(mc);
3310 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
3311 vmc->no_secure_gpio = true;
3313 DEFINE_VIRT_MACHINE(5, 2)
3315 static void virt_machine_5_1_options(MachineClass *mc)
3317 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3319 virt_machine_5_2_options(mc);
3320 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
3321 vmc->no_kvm_steal_time = true;
3323 DEFINE_VIRT_MACHINE(5, 1)
3325 static void virt_machine_5_0_options(MachineClass *mc)
3327 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3329 virt_machine_5_1_options(mc);
3330 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
3331 mc->numa_mem_supported = true;
3332 vmc->acpi_expose_flash = true;
3333 mc->auto_enable_numa_with_memdev = false;
3335 DEFINE_VIRT_MACHINE(5, 0)
3337 static void virt_machine_4_2_options(MachineClass *mc)
3339 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3341 virt_machine_5_0_options(mc);
3342 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
3343 vmc->kvm_no_adjvtime = true;
3345 DEFINE_VIRT_MACHINE(4, 2)
3347 static void virt_machine_4_1_options(MachineClass *mc)
3349 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3351 virt_machine_4_2_options(mc);
3352 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
3353 vmc->no_ged = true;
3354 mc->auto_enable_numa_with_memhp = false;
3356 DEFINE_VIRT_MACHINE(4, 1)
3358 static void virt_machine_4_0_options(MachineClass *mc)
3360 virt_machine_4_1_options(mc);
3361 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
3363 DEFINE_VIRT_MACHINE(4, 0)
3365 static void virt_machine_3_1_options(MachineClass *mc)
3367 virt_machine_4_0_options(mc);
3368 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
3370 DEFINE_VIRT_MACHINE(3, 1)
3372 static void virt_machine_3_0_options(MachineClass *mc)
3374 virt_machine_3_1_options(mc);
3375 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
3377 DEFINE_VIRT_MACHINE(3, 0)
3379 static void virt_machine_2_12_options(MachineClass *mc)
3381 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3383 virt_machine_3_0_options(mc);
3384 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
3385 vmc->no_highmem_ecam = true;
3386 mc->max_cpus = 255;
3388 DEFINE_VIRT_MACHINE(2, 12)
3390 static void virt_machine_2_11_options(MachineClass *mc)
3392 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3394 virt_machine_2_12_options(mc);
3395 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
3396 vmc->smbios_old_sys_ver = true;
3398 DEFINE_VIRT_MACHINE(2, 11)
3400 static void virt_machine_2_10_options(MachineClass *mc)
3402 virt_machine_2_11_options(mc);
3403 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
3404 /* before 2.11 we never faulted accesses to bad addresses */
3405 mc->ignore_memory_transaction_failures = true;
3407 DEFINE_VIRT_MACHINE(2, 10)
3409 static void virt_machine_2_9_options(MachineClass *mc)
3411 virt_machine_2_10_options(mc);
3412 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
3414 DEFINE_VIRT_MACHINE(2, 9)
3416 static void virt_machine_2_8_options(MachineClass *mc)
3418 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3420 virt_machine_2_9_options(mc);
3421 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
3422 /* For 2.8 and earlier we falsely claimed in the DT that
3423 * our timers were edge-triggered, not level-triggered.
3425 vmc->claim_edge_triggered_timers = true;
3427 DEFINE_VIRT_MACHINE(2, 8)
3429 static void virt_machine_2_7_options(MachineClass *mc)
3431 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3433 virt_machine_2_8_options(mc);
3434 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
3435 /* ITS was introduced with 2.8 */
3436 vmc->no_its = true;
3437 /* Stick with 1K pages for migration compatibility */
3438 mc->minimum_page_bits = 0;
3440 DEFINE_VIRT_MACHINE(2, 7)
3442 static void virt_machine_2_6_options(MachineClass *mc)
3444 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
3446 virt_machine_2_7_options(mc);
3447 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
3448 vmc->disallow_affinity_adjustment = true;
3449 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
3450 vmc->no_pmu = true;
3452 DEFINE_VIRT_MACHINE(2, 6)