qapi: Improve specificity of type/member descriptions
[qemu/armbru.git] / target / i386 / tcg / sysemu / smm_helper.c
bloba45b5651c3675aaa39a0ec008bbd2b884ffde426
1 /*
2 * x86 SMM helpers (sysemu-only)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "exec/log.h"
24 #include "tcg/helper-tcg.h"
27 /* SMM support */
29 #ifdef TARGET_X86_64
30 #define SMM_REVISION_ID 0x00020064
31 #else
32 #define SMM_REVISION_ID 0x00020000
33 #endif
35 void do_smm_enter(X86CPU *cpu)
37 CPUX86State *env = &cpu->env;
38 CPUState *cs = CPU(cpu);
39 target_ulong sm_state;
40 SegmentCache *dt;
41 int i, offset;
43 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
44 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
46 env->msr_smi_count++;
47 env->hflags |= HF_SMM_MASK;
48 if (env->hflags2 & HF2_NMI_MASK) {
49 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
50 } else {
51 env->hflags2 |= HF2_NMI_MASK;
54 sm_state = env->smbase + 0x8000;
56 #ifdef TARGET_X86_64
57 for (i = 0; i < 6; i++) {
58 dt = &env->segs[i];
59 offset = 0x7e00 + i * 16;
60 x86_stw_phys(cs, sm_state + offset, dt->selector);
61 x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
62 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
63 x86_stq_phys(cs, sm_state + offset + 8, dt->base);
66 x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
67 x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
69 x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
70 x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
71 x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
72 x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
74 x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
75 x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
77 x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
78 x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
79 x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
80 x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
82 /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
83 is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has
84 7EA0-7ED7 as "reserved". What's this, and what's really
85 supposed to happen? */
86 x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
88 x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
89 x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
90 x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
91 x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
92 x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
93 x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
94 x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
95 x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
96 for (i = 8; i < 16; i++) {
97 x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
99 x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
100 x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
101 x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
102 x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
104 x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
105 x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
106 x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
108 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
109 x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
110 #else
111 x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
112 x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
113 x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
114 x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
115 x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
116 x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
117 x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
118 x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
119 x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
120 x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
121 x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
122 x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
123 x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
124 x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
126 x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
127 x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
128 x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
129 x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
131 x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
132 x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
133 x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
134 x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
136 x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
137 x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
139 x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
140 x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
142 for (i = 0; i < 6; i++) {
143 dt = &env->segs[i];
144 if (i < 3) {
145 offset = 0x7f84 + i * 12;
146 } else {
147 offset = 0x7f2c + (i - 3) * 12;
149 x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
150 x86_stl_phys(cs, sm_state + offset + 8, dt->base);
151 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
152 x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
154 x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
156 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
157 x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
158 #endif
159 /* init SMM cpu state */
161 #ifdef TARGET_X86_64
162 cpu_load_efer(env, 0);
163 #endif
164 cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
165 DF_MASK));
166 env->eip = 0x00008000;
167 cpu_x86_update_cr0(env,
168 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
169 CR0_PG_MASK));
170 cpu_x86_update_cr4(env, 0);
171 env->dr[7] = 0x00000400;
173 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
174 0xffffffff,
175 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
176 DESC_G_MASK | DESC_A_MASK);
177 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
178 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
179 DESC_G_MASK | DESC_A_MASK);
180 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
181 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
182 DESC_G_MASK | DESC_A_MASK);
183 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
184 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
185 DESC_G_MASK | DESC_A_MASK);
186 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
187 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
188 DESC_G_MASK | DESC_A_MASK);
189 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
190 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
191 DESC_G_MASK | DESC_A_MASK);
194 void helper_rsm(CPUX86State *env)
196 X86CPU *cpu = env_archcpu(env);
197 CPUState *cs = env_cpu(env);
198 target_ulong sm_state;
199 int i, offset;
200 uint32_t val;
202 sm_state = env->smbase + 0x8000;
203 #ifdef TARGET_X86_64
204 cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
206 env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
207 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
209 env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
210 env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
211 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
212 env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
214 env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
215 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
217 env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
218 env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
219 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
220 env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
222 env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
223 env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
224 env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
225 env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
226 env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
227 env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
228 env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
229 env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
230 for (i = 8; i < 16; i++) {
231 env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
233 env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
234 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
235 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
236 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
237 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
239 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
240 cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
241 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
243 for (i = 0; i < 6; i++) {
244 offset = 0x7e00 + i * 16;
245 cpu_x86_load_seg_cache(env, i,
246 x86_lduw_phys(cs, sm_state + offset),
247 x86_ldq_phys(cs, sm_state + offset + 8),
248 x86_ldl_phys(cs, sm_state + offset + 4),
249 (x86_lduw_phys(cs, sm_state + offset + 2) &
250 0xf0ff) << 8);
253 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
254 if (val & 0x20000) {
255 env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
257 #else
258 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
259 cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
260 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
261 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
262 env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
263 env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
264 env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
265 env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
266 env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
267 env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
268 env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
269 env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
270 env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
271 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
272 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
274 env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
275 env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
276 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
277 env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
279 env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
280 env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
281 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
282 env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
284 env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
285 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
287 env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
288 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
290 for (i = 0; i < 6; i++) {
291 if (i < 3) {
292 offset = 0x7f84 + i * 12;
293 } else {
294 offset = 0x7f2c + (i - 3) * 12;
296 cpu_x86_load_seg_cache(env, i,
297 x86_ldl_phys(cs,
298 sm_state + 0x7fa8 + i * 4) & 0xffff,
299 x86_ldl_phys(cs, sm_state + offset + 8),
300 x86_ldl_phys(cs, sm_state + offset + 4),
301 (x86_ldl_phys(cs,
302 sm_state + offset) & 0xf0ff) << 8);
304 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
306 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
307 if (val & 0x20000) {
308 env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
310 #endif
311 if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
312 env->hflags2 &= ~HF2_NMI_MASK;
314 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
315 env->hflags &= ~HF_SMM_MASK;
317 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
318 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);