2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "crypto/aes.h"
25 #include "fpu/softfloat.h"
27 #include "helper_regs.h"
28 /*****************************************************************************/
29 /* Fixed point operations helpers */
31 static inline void helper_update_ov_legacy(CPUPPCState
*env
, int ov
)
34 env
->so
= env
->ov
= 1;
40 target_ulong
helper_divweu(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
46 uint64_t dividend
= (uint64_t)ra
<< 32;
47 uint64_t divisor
= (uint32_t)rb
;
49 if (unlikely(divisor
== 0)) {
52 rt
= dividend
/ divisor
;
53 overflow
= rt
> UINT32_MAX
;
56 if (unlikely(overflow
)) {
57 rt
= 0; /* Undefined */
61 helper_update_ov_legacy(env
, overflow
);
64 return (target_ulong
)rt
;
67 target_ulong
helper_divwe(CPUPPCState
*env
, target_ulong ra
, target_ulong rb
,
73 int64_t dividend
= (int64_t)ra
<< 32;
74 int64_t divisor
= (int64_t)((int32_t)rb
);
76 if (unlikely((divisor
== 0) ||
77 ((divisor
== -1ull) && (dividend
== INT64_MIN
)))) {
80 rt
= dividend
/ divisor
;
81 overflow
= rt
!= (int32_t)rt
;
84 if (unlikely(overflow
)) {
85 rt
= 0; /* Undefined */
89 helper_update_ov_legacy(env
, overflow
);
92 return (target_ulong
)rt
;
95 #if defined(TARGET_PPC64)
97 uint64_t helper_divdeu(CPUPPCState
*env
, uint64_t ra
, uint64_t rb
, uint32_t oe
)
102 overflow
= divu128(&rt
, &ra
, rb
);
104 if (unlikely(overflow
)) {
105 rt
= 0; /* Undefined */
109 helper_update_ov_legacy(env
, overflow
);
115 uint64_t helper_divde(CPUPPCState
*env
, uint64_t rau
, uint64_t rbu
, uint32_t oe
)
118 int64_t ra
= (int64_t)rau
;
119 int64_t rb
= (int64_t)rbu
;
120 int overflow
= divs128(&rt
, &ra
, rb
);
122 if (unlikely(overflow
)) {
123 rt
= 0; /* Undefined */
127 helper_update_ov_legacy(env
, overflow
);
136 #if defined(TARGET_PPC64)
137 /* if x = 0xab, returns 0xababababababababa */
138 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
140 /* substract 1 from each byte, and with inverse, check if MSB is set at each
142 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
143 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
145 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
147 /* When you XOR the pattern and there is a match, that byte will be zero */
148 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
150 uint32_t helper_cmpeqb(target_ulong ra
, target_ulong rb
)
152 return hasvalue(rb
, ra
) ? CRF_GT
: 0;
159 /* Return invalid random number.
161 * FIXME: Add rng backend or other mechanism to get cryptographically suitable
164 target_ulong
helper_darn32(void)
169 target_ulong
helper_darn64(void)
176 #if defined(TARGET_PPC64)
178 uint64_t helper_bpermd(uint64_t rs
, uint64_t rb
)
183 for (i
= 0; i
< 8; i
++) {
184 int index
= (rs
>> (i
*8)) & 0xFF;
186 if (rb
& PPC_BIT(index
)) {
196 target_ulong
helper_cmpb(target_ulong rs
, target_ulong rb
)
198 target_ulong mask
= 0xff;
202 for (i
= 0; i
< sizeof(target_ulong
); i
++) {
203 if ((rs
& mask
) == (rb
& mask
)) {
211 /* shift right arithmetic helper */
212 target_ulong
helper_sraw(CPUPPCState
*env
, target_ulong value
,
217 if (likely(!(shift
& 0x20))) {
218 if (likely((uint32_t)shift
!= 0)) {
220 ret
= (int32_t)value
>> shift
;
221 if (likely(ret
>= 0 || (value
& ((1 << shift
) - 1)) == 0)) {
222 env
->ca32
= env
->ca
= 0;
224 env
->ca32
= env
->ca
= 1;
227 ret
= (int32_t)value
;
228 env
->ca32
= env
->ca
= 0;
231 ret
= (int32_t)value
>> 31;
232 env
->ca32
= env
->ca
= (ret
!= 0);
234 return (target_long
)ret
;
237 #if defined(TARGET_PPC64)
238 target_ulong
helper_srad(CPUPPCState
*env
, target_ulong value
,
243 if (likely(!(shift
& 0x40))) {
244 if (likely((uint64_t)shift
!= 0)) {
246 ret
= (int64_t)value
>> shift
;
247 if (likely(ret
>= 0 || (value
& ((1ULL << shift
) - 1)) == 0)) {
248 env
->ca32
= env
->ca
= 0;
250 env
->ca32
= env
->ca
= 1;
253 ret
= (int64_t)value
;
254 env
->ca32
= env
->ca
= 0;
257 ret
= (int64_t)value
>> 63;
258 env
->ca32
= env
->ca
= (ret
!= 0);
264 #if defined(TARGET_PPC64)
265 target_ulong
helper_popcntb(target_ulong val
)
267 /* Note that we don't fold past bytes */
268 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
269 0x5555555555555555ULL
);
270 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
271 0x3333333333333333ULL
);
272 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
273 0x0f0f0f0f0f0f0f0fULL
);
277 target_ulong
helper_popcntw(target_ulong val
)
279 /* Note that we don't fold past words. */
280 val
= (val
& 0x5555555555555555ULL
) + ((val
>> 1) &
281 0x5555555555555555ULL
);
282 val
= (val
& 0x3333333333333333ULL
) + ((val
>> 2) &
283 0x3333333333333333ULL
);
284 val
= (val
& 0x0f0f0f0f0f0f0f0fULL
) + ((val
>> 4) &
285 0x0f0f0f0f0f0f0f0fULL
);
286 val
= (val
& 0x00ff00ff00ff00ffULL
) + ((val
>> 8) &
287 0x00ff00ff00ff00ffULL
);
288 val
= (val
& 0x0000ffff0000ffffULL
) + ((val
>> 16) &
289 0x0000ffff0000ffffULL
);
293 target_ulong
helper_popcntb(target_ulong val
)
295 /* Note that we don't fold past bytes */
296 val
= (val
& 0x55555555) + ((val
>> 1) & 0x55555555);
297 val
= (val
& 0x33333333) + ((val
>> 2) & 0x33333333);
298 val
= (val
& 0x0f0f0f0f) + ((val
>> 4) & 0x0f0f0f0f);
303 /*****************************************************************************/
304 /* PowerPC 601 specific instructions (POWER bridge) */
305 target_ulong
helper_div(CPUPPCState
*env
, target_ulong arg1
, target_ulong arg2
)
307 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
309 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
310 (int32_t)arg2
== 0) {
311 env
->spr
[SPR_MQ
] = 0;
314 env
->spr
[SPR_MQ
] = tmp
% arg2
;
315 return tmp
/ (int32_t)arg2
;
319 target_ulong
helper_divo(CPUPPCState
*env
, target_ulong arg1
,
322 uint64_t tmp
= (uint64_t)arg1
<< 32 | env
->spr
[SPR_MQ
];
324 if (((int32_t)tmp
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
325 (int32_t)arg2
== 0) {
326 env
->so
= env
->ov
= 1;
327 env
->spr
[SPR_MQ
] = 0;
330 env
->spr
[SPR_MQ
] = tmp
% arg2
;
331 tmp
/= (int32_t)arg2
;
332 if ((int32_t)tmp
!= tmp
) {
333 env
->so
= env
->ov
= 1;
341 target_ulong
helper_divs(CPUPPCState
*env
, target_ulong arg1
,
344 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
345 (int32_t)arg2
== 0) {
346 env
->spr
[SPR_MQ
] = 0;
349 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
350 return (int32_t)arg1
/ (int32_t)arg2
;
354 target_ulong
helper_divso(CPUPPCState
*env
, target_ulong arg1
,
357 if (((int32_t)arg1
== INT32_MIN
&& (int32_t)arg2
== (int32_t)-1) ||
358 (int32_t)arg2
== 0) {
359 env
->so
= env
->ov
= 1;
360 env
->spr
[SPR_MQ
] = 0;
364 env
->spr
[SPR_MQ
] = (int32_t)arg1
% (int32_t)arg2
;
365 return (int32_t)arg1
/ (int32_t)arg2
;
369 /*****************************************************************************/
370 /* 602 specific instructions */
371 /* mfrom is the most crazy instruction ever seen, imho ! */
372 /* Real implementation uses a ROM table. Do the same */
373 /* Extremely decomposed:
375 * return 256 * log10(10 + 1.0) + 0.5
377 #if !defined(CONFIG_USER_ONLY)
378 target_ulong
helper_602_mfrom(target_ulong arg
)
380 if (likely(arg
< 602)) {
381 #include "mfrom_table.inc.c"
382 return mfrom_ROM_table
[arg
];
389 /*****************************************************************************/
390 /* Altivec extension helpers */
391 #if defined(HOST_WORDS_BIGENDIAN)
394 #define AVRB(i) u8[i]
395 #define AVRW(i) u32[i]
399 #define AVRB(i) u8[15-(i)]
400 #define AVRW(i) u32[3-(i)]
403 #if defined(HOST_WORDS_BIGENDIAN)
404 #define VECTOR_FOR_INORDER_I(index, element) \
405 for (index = 0; index < ARRAY_SIZE(r->element); index++)
407 #define VECTOR_FOR_INORDER_I(index, element) \
408 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
411 /* Saturating arithmetic helpers. */
412 #define SATCVT(from, to, from_type, to_type, min, max) \
413 static inline to_type cvt##from##to(from_type x, int *sat) \
417 if (x < (from_type)min) { \
420 } else if (x > (from_type)max) { \
428 #define SATCVTU(from, to, from_type, to_type, min, max) \
429 static inline to_type cvt##from##to(from_type x, int *sat) \
433 if (x > (from_type)max) { \
441 SATCVT(sh
, sb
, int16_t, int8_t, INT8_MIN
, INT8_MAX
)
442 SATCVT(sw
, sh
, int32_t, int16_t, INT16_MIN
, INT16_MAX
)
443 SATCVT(sd
, sw
, int64_t, int32_t, INT32_MIN
, INT32_MAX
)
445 SATCVTU(uh
, ub
, uint16_t, uint8_t, 0, UINT8_MAX
)
446 SATCVTU(uw
, uh
, uint32_t, uint16_t, 0, UINT16_MAX
)
447 SATCVTU(ud
, uw
, uint64_t, uint32_t, 0, UINT32_MAX
)
448 SATCVT(sh
, ub
, int16_t, uint8_t, 0, UINT8_MAX
)
449 SATCVT(sw
, uh
, int32_t, uint16_t, 0, UINT16_MAX
)
450 SATCVT(sd
, uw
, int64_t, uint32_t, 0, UINT32_MAX
)
454 void helper_lvsl(ppc_avr_t
*r
, target_ulong sh
)
456 int i
, j
= (sh
& 0xf);
458 VECTOR_FOR_INORDER_I(i
, u8
) {
463 void helper_lvsr(ppc_avr_t
*r
, target_ulong sh
)
465 int i
, j
= 0x10 - (sh
& 0xf);
467 VECTOR_FOR_INORDER_I(i
, u8
) {
472 void helper_mtvscr(CPUPPCState
*env
, ppc_avr_t
*r
)
474 #if defined(HOST_WORDS_BIGENDIAN)
475 env
->vscr
= r
->u32
[3];
477 env
->vscr
= r
->u32
[0];
479 set_flush_to_zero(vscr_nj
, &env
->vec_status
);
482 void helper_vaddcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
486 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
487 r
->u32
[i
] = ~a
->u32
[i
] < b
->u32
[i
];
492 void helper_vprtybw(ppc_avr_t
*r
, ppc_avr_t
*b
)
495 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
496 uint64_t res
= b
->u32
[i
] ^ (b
->u32
[i
] >> 16);
503 void helper_vprtybd(ppc_avr_t
*r
, ppc_avr_t
*b
)
506 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
507 uint64_t res
= b
->u64
[i
] ^ (b
->u64
[i
] >> 32);
515 void helper_vprtybq(ppc_avr_t
*r
, ppc_avr_t
*b
)
517 uint64_t res
= b
->u64
[0] ^ b
->u64
[1];
521 r
->u64
[LO_IDX
] = res
& 1;
525 #define VARITH_DO(name, op, element) \
526 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
530 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
531 r->element[i] = a->element[i] op b->element[i]; \
534 #define VARITH(suffix, element) \
535 VARITH_DO(add##suffix, +, element) \
536 VARITH_DO(sub##suffix, -, element)
541 VARITH_DO(muluwm
, *, u32
)
545 #define VARITHFP(suffix, func) \
546 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
551 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
552 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
555 VARITHFP(addfp
, float32_add
)
556 VARITHFP(subfp
, float32_sub
)
557 VARITHFP(minfp
, float32_min
)
558 VARITHFP(maxfp
, float32_max
)
561 #define VARITHFPFMA(suffix, type) \
562 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
563 ppc_avr_t *b, ppc_avr_t *c) \
566 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
567 r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
568 type, &env->vec_status); \
571 VARITHFPFMA(maddfp
, 0);
572 VARITHFPFMA(nmsubfp
, float_muladd_negate_result
| float_muladd_negate_c
);
575 #define VARITHSAT_CASE(type, op, cvt, element) \
577 type result = (type)a->element[i] op (type)b->element[i]; \
578 r->element[i] = cvt(result, &sat); \
581 #define VARITHSAT_DO(name, op, optype, cvt, element) \
582 void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
588 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
589 switch (sizeof(r->element[0])) { \
591 VARITHSAT_CASE(optype, op, cvt, element); \
594 VARITHSAT_CASE(optype, op, cvt, element); \
597 VARITHSAT_CASE(optype, op, cvt, element); \
602 env->vscr |= (1 << VSCR_SAT); \
605 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
606 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
607 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
608 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
609 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
610 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
611 VARITHSAT_SIGNED(b
, s8
, int16_t, cvtshsb
)
612 VARITHSAT_SIGNED(h
, s16
, int32_t, cvtswsh
)
613 VARITHSAT_SIGNED(w
, s32
, int64_t, cvtsdsw
)
614 VARITHSAT_UNSIGNED(b
, u8
, uint16_t, cvtshub
)
615 VARITHSAT_UNSIGNED(h
, u16
, uint32_t, cvtswuh
)
616 VARITHSAT_UNSIGNED(w
, u32
, uint64_t, cvtsduw
)
617 #undef VARITHSAT_CASE
619 #undef VARITHSAT_SIGNED
620 #undef VARITHSAT_UNSIGNED
622 #define VAVG_DO(name, element, etype) \
623 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
627 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
628 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
629 r->element[i] = x >> 1; \
633 #define VAVG(type, signed_element, signed_type, unsigned_element, \
635 VAVG_DO(avgs##type, signed_element, signed_type) \
636 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
637 VAVG(b
, s8
, int16_t, u8
, uint16_t)
638 VAVG(h
, s16
, int32_t, u16
, uint32_t)
639 VAVG(w
, s32
, int64_t, u32
, uint64_t)
643 #define VABSDU_DO(name, element) \
644 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
648 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
649 r->element[i] = (a->element[i] > b->element[i]) ? \
650 (a->element[i] - b->element[i]) : \
651 (b->element[i] - a->element[i]); \
655 /* VABSDU - Vector absolute difference unsigned
656 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
657 * element - element type to access from vector
659 #define VABSDU(type, element) \
660 VABSDU_DO(absdu##type, element)
667 #define VCF(suffix, cvt, element) \
668 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
669 ppc_avr_t *b, uint32_t uim) \
673 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
674 float32 t = cvt(b->element[i], &env->vec_status); \
675 r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
678 VCF(ux
, uint32_to_float32
, u32
)
679 VCF(sx
, int32_to_float32
, s32
)
682 #define VCMP_DO(suffix, compare, element, record) \
683 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
684 ppc_avr_t *a, ppc_avr_t *b) \
686 uint64_t ones = (uint64_t)-1; \
687 uint64_t all = ones; \
691 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
692 uint64_t result = (a->element[i] compare b->element[i] ? \
694 switch (sizeof(a->element[0])) { \
696 r->u64[i] = result; \
699 r->u32[i] = result; \
702 r->u16[i] = result; \
712 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
715 #define VCMP(suffix, compare, element) \
716 VCMP_DO(suffix, compare, element, 0) \
717 VCMP_DO(suffix##_dot, compare, element, 1)
733 #define VCMPNE_DO(suffix, element, etype, cmpzero, record) \
734 void helper_vcmpne##suffix(CPUPPCState *env, ppc_avr_t *r, \
735 ppc_avr_t *a, ppc_avr_t *b) \
737 etype ones = (etype)-1; \
739 etype result, none = 0; \
742 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
744 result = ((a->element[i] == 0) \
745 || (b->element[i] == 0) \
746 || (a->element[i] != b->element[i]) ? \
749 result = (a->element[i] != b->element[i]) ? ones : 0x0; \
751 r->element[i] = result; \
756 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
760 /* VCMPNEZ - Vector compare not equal to zero
761 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
762 * element - element type to access from vector
764 #define VCMPNE(suffix, element, etype, cmpzero) \
765 VCMPNE_DO(suffix, element, etype, cmpzero, 0) \
766 VCMPNE_DO(suffix##_dot, element, etype, cmpzero, 1)
767 VCMPNE(zb
, u8
, uint8_t, 1)
768 VCMPNE(zh
, u16
, uint16_t, 1)
769 VCMPNE(zw
, u32
, uint32_t, 1)
770 VCMPNE(b
, u8
, uint8_t, 0)
771 VCMPNE(h
, u16
, uint16_t, 0)
772 VCMPNE(w
, u32
, uint32_t, 0)
776 #define VCMPFP_DO(suffix, compare, order, record) \
777 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
778 ppc_avr_t *a, ppc_avr_t *b) \
780 uint32_t ones = (uint32_t)-1; \
781 uint32_t all = ones; \
785 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
787 int rel = float32_compare_quiet(a->f[i], b->f[i], \
789 if (rel == float_relation_unordered) { \
791 } else if (rel compare order) { \
796 r->u32[i] = result; \
801 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
804 #define VCMPFP(suffix, compare, order) \
805 VCMPFP_DO(suffix, compare, order, 0) \
806 VCMPFP_DO(suffix##_dot, compare, order, 1)
807 VCMPFP(eqfp
, ==, float_relation_equal
)
808 VCMPFP(gefp
, !=, float_relation_less
)
809 VCMPFP(gtfp
, ==, float_relation_greater
)
813 static inline void vcmpbfp_internal(CPUPPCState
*env
, ppc_avr_t
*r
,
814 ppc_avr_t
*a
, ppc_avr_t
*b
, int record
)
819 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
820 int le_rel
= float32_compare_quiet(a
->f
[i
], b
->f
[i
], &env
->vec_status
);
821 if (le_rel
== float_relation_unordered
) {
822 r
->u32
[i
] = 0xc0000000;
825 float32 bneg
= float32_chs(b
->f
[i
]);
826 int ge_rel
= float32_compare_quiet(a
->f
[i
], bneg
, &env
->vec_status
);
827 int le
= le_rel
!= float_relation_greater
;
828 int ge
= ge_rel
!= float_relation_less
;
830 r
->u32
[i
] = ((!le
) << 31) | ((!ge
) << 30);
831 all_in
|= (!le
| !ge
);
835 env
->crf
[6] = (all_in
== 0) << 1;
839 void helper_vcmpbfp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
841 vcmpbfp_internal(env
, r
, a
, b
, 0);
844 void helper_vcmpbfp_dot(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
847 vcmpbfp_internal(env
, r
, a
, b
, 1);
850 #define VCT(suffix, satcvt, element) \
851 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
852 ppc_avr_t *b, uint32_t uim) \
856 float_status s = env->vec_status; \
858 set_float_rounding_mode(float_round_to_zero, &s); \
859 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
860 if (float32_is_any_nan(b->f[i])) { \
863 float64 t = float32_to_float64(b->f[i], &s); \
866 t = float64_scalbn(t, uim, &s); \
867 j = float64_to_int64(t, &s); \
868 r->element[i] = satcvt(j, &sat); \
872 env->vscr |= (1 << VSCR_SAT); \
875 VCT(uxs
, cvtsduw
, u32
)
876 VCT(sxs
, cvtsdsw
, s32
)
879 target_ulong
helper_vclzlsbb(ppc_avr_t
*r
)
881 target_ulong count
= 0;
883 VECTOR_FOR_INORDER_I(i
, u8
) {
884 if (r
->u8
[i
] & 0x01) {
892 target_ulong
helper_vctzlsbb(ppc_avr_t
*r
)
894 target_ulong count
= 0;
896 #if defined(HOST_WORDS_BIGENDIAN)
897 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
899 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
901 if (r
->u8
[i
] & 0x01) {
909 void helper_vmhaddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
910 ppc_avr_t
*b
, ppc_avr_t
*c
)
915 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
916 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
917 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
919 r
->s16
[i
] = cvtswsh(t
, &sat
);
923 env
->vscr
|= (1 << VSCR_SAT
);
927 void helper_vmhraddshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
928 ppc_avr_t
*b
, ppc_avr_t
*c
)
933 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
934 int32_t prod
= a
->s16
[i
] * b
->s16
[i
] + 0x00004000;
935 int32_t t
= (int32_t)c
->s16
[i
] + (prod
>> 15);
936 r
->s16
[i
] = cvtswsh(t
, &sat
);
940 env
->vscr
|= (1 << VSCR_SAT
);
944 #define VMINMAX_DO(name, compare, element) \
945 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
949 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
950 if (a->element[i] compare b->element[i]) { \
951 r->element[i] = b->element[i]; \
953 r->element[i] = a->element[i]; \
957 #define VMINMAX(suffix, element) \
958 VMINMAX_DO(min##suffix, >, element) \
959 VMINMAX_DO(max##suffix, <, element)
971 void helper_vmladduhm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
975 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
976 int32_t prod
= a
->s16
[i
] * b
->s16
[i
];
977 r
->s16
[i
] = (int16_t) (prod
+ c
->s16
[i
]);
981 #define VMRG_DO(name, element, highp) \
982 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
986 size_t n_elems = ARRAY_SIZE(r->element); \
988 for (i = 0; i < n_elems / 2; i++) { \
990 result.element[i*2+HI_IDX] = a->element[i]; \
991 result.element[i*2+LO_IDX] = b->element[i]; \
993 result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
994 b->element[n_elems - i - 1]; \
995 result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
996 a->element[n_elems - i - 1]; \
1001 #if defined(HOST_WORDS_BIGENDIAN)
1008 #define VMRG(suffix, element) \
1009 VMRG_DO(mrgl##suffix, element, MRGHI) \
1010 VMRG_DO(mrgh##suffix, element, MRGLO)
1019 void helper_vmsummbm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1020 ppc_avr_t
*b
, ppc_avr_t
*c
)
1025 for (i
= 0; i
< ARRAY_SIZE(r
->s8
); i
++) {
1026 prod
[i
] = (int32_t)a
->s8
[i
] * b
->u8
[i
];
1029 VECTOR_FOR_INORDER_I(i
, s32
) {
1030 r
->s32
[i
] = c
->s32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1031 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1035 void helper_vmsumshm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1036 ppc_avr_t
*b
, ppc_avr_t
*c
)
1041 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1042 prod
[i
] = a
->s16
[i
] * b
->s16
[i
];
1045 VECTOR_FOR_INORDER_I(i
, s32
) {
1046 r
->s32
[i
] = c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1050 void helper_vmsumshs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1051 ppc_avr_t
*b
, ppc_avr_t
*c
)
1057 for (i
= 0; i
< ARRAY_SIZE(r
->s16
); i
++) {
1058 prod
[i
] = (int32_t)a
->s16
[i
] * b
->s16
[i
];
1061 VECTOR_FOR_INORDER_I(i
, s32
) {
1062 int64_t t
= (int64_t)c
->s32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1064 r
->u32
[i
] = cvtsdsw(t
, &sat
);
1068 env
->vscr
|= (1 << VSCR_SAT
);
1072 void helper_vmsumubm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1073 ppc_avr_t
*b
, ppc_avr_t
*c
)
1078 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1079 prod
[i
] = a
->u8
[i
] * b
->u8
[i
];
1082 VECTOR_FOR_INORDER_I(i
, u32
) {
1083 r
->u32
[i
] = c
->u32
[i
] + prod
[4 * i
] + prod
[4 * i
+ 1] +
1084 prod
[4 * i
+ 2] + prod
[4 * i
+ 3];
1088 void helper_vmsumuhm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1089 ppc_avr_t
*b
, ppc_avr_t
*c
)
1094 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1095 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1098 VECTOR_FOR_INORDER_I(i
, u32
) {
1099 r
->u32
[i
] = c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1103 void helper_vmsumuhs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
,
1104 ppc_avr_t
*b
, ppc_avr_t
*c
)
1110 for (i
= 0; i
< ARRAY_SIZE(r
->u16
); i
++) {
1111 prod
[i
] = a
->u16
[i
] * b
->u16
[i
];
1114 VECTOR_FOR_INORDER_I(i
, s32
) {
1115 uint64_t t
= (uint64_t)c
->u32
[i
] + prod
[2 * i
] + prod
[2 * i
+ 1];
1117 r
->u32
[i
] = cvtuduw(t
, &sat
);
1121 env
->vscr
|= (1 << VSCR_SAT
);
1125 #define VMUL_DO(name, mul_element, prod_element, cast, evenp) \
1126 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1130 VECTOR_FOR_INORDER_I(i, prod_element) { \
1132 r->prod_element[i] = \
1133 (cast)a->mul_element[i * 2 + HI_IDX] * \
1134 (cast)b->mul_element[i * 2 + HI_IDX]; \
1136 r->prod_element[i] = \
1137 (cast)a->mul_element[i * 2 + LO_IDX] * \
1138 (cast)b->mul_element[i * 2 + LO_IDX]; \
1142 #define VMUL(suffix, mul_element, prod_element, cast) \
1143 VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \
1144 VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
1145 VMUL(sb
, s8
, s16
, int16_t)
1146 VMUL(sh
, s16
, s32
, int32_t)
1147 VMUL(sw
, s32
, s64
, int64_t)
1148 VMUL(ub
, u8
, u16
, uint16_t)
1149 VMUL(uh
, u16
, u32
, uint32_t)
1150 VMUL(uw
, u32
, u64
, uint64_t)
1154 void helper_vperm(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1160 VECTOR_FOR_INORDER_I(i
, u8
) {
1161 int s
= c
->u8
[i
] & 0x1f;
1162 #if defined(HOST_WORDS_BIGENDIAN)
1163 int index
= s
& 0xf;
1165 int index
= 15 - (s
& 0xf);
1169 result
.u8
[i
] = b
->u8
[index
];
1171 result
.u8
[i
] = a
->u8
[index
];
1177 void helper_vpermr(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1183 VECTOR_FOR_INORDER_I(i
, u8
) {
1184 int s
= c
->u8
[i
] & 0x1f;
1185 #if defined(HOST_WORDS_BIGENDIAN)
1186 int index
= 15 - (s
& 0xf);
1188 int index
= s
& 0xf;
1192 result
.u8
[i
] = a
->u8
[index
];
1194 result
.u8
[i
] = b
->u8
[index
];
1200 #if defined(HOST_WORDS_BIGENDIAN)
1201 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1202 #define VBPERMD_INDEX(i) (i)
1203 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1204 #define EXTRACT_BIT(avr, i, index) (extract64((avr)->u64[i], index, 1))
1206 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
1207 #define VBPERMD_INDEX(i) (1 - i)
1208 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1209 #define EXTRACT_BIT(avr, i, index) \
1210 (extract64((avr)->u64[1 - i], 63 - index, 1))
1213 void helper_vbpermd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1216 ppc_avr_t result
= { .u64
= { 0, 0 } };
1217 VECTOR_FOR_INORDER_I(i
, u64
) {
1218 for (j
= 0; j
< 8; j
++) {
1219 int index
= VBPERMQ_INDEX(b
, (i
* 8) + j
);
1220 if (index
< 64 && EXTRACT_BIT(a
, i
, index
)) {
1221 result
.u64
[VBPERMD_INDEX(i
)] |= (0x80 >> j
);
1228 void helper_vbpermq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1233 VECTOR_FOR_INORDER_I(i
, u8
) {
1234 int index
= VBPERMQ_INDEX(b
, i
);
1237 uint64_t mask
= (1ull << (63-(index
& 0x3F)));
1238 if (a
->u64
[VBPERMQ_DW(index
)] & mask
) {
1239 perm
|= (0x8000 >> i
);
1244 r
->u64
[HI_IDX
] = perm
;
1248 #undef VBPERMQ_INDEX
1251 static const uint64_t VGBBD_MASKS
[256] = {
1252 0x0000000000000000ull
, /* 00 */
1253 0x0000000000000080ull
, /* 01 */
1254 0x0000000000008000ull
, /* 02 */
1255 0x0000000000008080ull
, /* 03 */
1256 0x0000000000800000ull
, /* 04 */
1257 0x0000000000800080ull
, /* 05 */
1258 0x0000000000808000ull
, /* 06 */
1259 0x0000000000808080ull
, /* 07 */
1260 0x0000000080000000ull
, /* 08 */
1261 0x0000000080000080ull
, /* 09 */
1262 0x0000000080008000ull
, /* 0A */
1263 0x0000000080008080ull
, /* 0B */
1264 0x0000000080800000ull
, /* 0C */
1265 0x0000000080800080ull
, /* 0D */
1266 0x0000000080808000ull
, /* 0E */
1267 0x0000000080808080ull
, /* 0F */
1268 0x0000008000000000ull
, /* 10 */
1269 0x0000008000000080ull
, /* 11 */
1270 0x0000008000008000ull
, /* 12 */
1271 0x0000008000008080ull
, /* 13 */
1272 0x0000008000800000ull
, /* 14 */
1273 0x0000008000800080ull
, /* 15 */
1274 0x0000008000808000ull
, /* 16 */
1275 0x0000008000808080ull
, /* 17 */
1276 0x0000008080000000ull
, /* 18 */
1277 0x0000008080000080ull
, /* 19 */
1278 0x0000008080008000ull
, /* 1A */
1279 0x0000008080008080ull
, /* 1B */
1280 0x0000008080800000ull
, /* 1C */
1281 0x0000008080800080ull
, /* 1D */
1282 0x0000008080808000ull
, /* 1E */
1283 0x0000008080808080ull
, /* 1F */
1284 0x0000800000000000ull
, /* 20 */
1285 0x0000800000000080ull
, /* 21 */
1286 0x0000800000008000ull
, /* 22 */
1287 0x0000800000008080ull
, /* 23 */
1288 0x0000800000800000ull
, /* 24 */
1289 0x0000800000800080ull
, /* 25 */
1290 0x0000800000808000ull
, /* 26 */
1291 0x0000800000808080ull
, /* 27 */
1292 0x0000800080000000ull
, /* 28 */
1293 0x0000800080000080ull
, /* 29 */
1294 0x0000800080008000ull
, /* 2A */
1295 0x0000800080008080ull
, /* 2B */
1296 0x0000800080800000ull
, /* 2C */
1297 0x0000800080800080ull
, /* 2D */
1298 0x0000800080808000ull
, /* 2E */
1299 0x0000800080808080ull
, /* 2F */
1300 0x0000808000000000ull
, /* 30 */
1301 0x0000808000000080ull
, /* 31 */
1302 0x0000808000008000ull
, /* 32 */
1303 0x0000808000008080ull
, /* 33 */
1304 0x0000808000800000ull
, /* 34 */
1305 0x0000808000800080ull
, /* 35 */
1306 0x0000808000808000ull
, /* 36 */
1307 0x0000808000808080ull
, /* 37 */
1308 0x0000808080000000ull
, /* 38 */
1309 0x0000808080000080ull
, /* 39 */
1310 0x0000808080008000ull
, /* 3A */
1311 0x0000808080008080ull
, /* 3B */
1312 0x0000808080800000ull
, /* 3C */
1313 0x0000808080800080ull
, /* 3D */
1314 0x0000808080808000ull
, /* 3E */
1315 0x0000808080808080ull
, /* 3F */
1316 0x0080000000000000ull
, /* 40 */
1317 0x0080000000000080ull
, /* 41 */
1318 0x0080000000008000ull
, /* 42 */
1319 0x0080000000008080ull
, /* 43 */
1320 0x0080000000800000ull
, /* 44 */
1321 0x0080000000800080ull
, /* 45 */
1322 0x0080000000808000ull
, /* 46 */
1323 0x0080000000808080ull
, /* 47 */
1324 0x0080000080000000ull
, /* 48 */
1325 0x0080000080000080ull
, /* 49 */
1326 0x0080000080008000ull
, /* 4A */
1327 0x0080000080008080ull
, /* 4B */
1328 0x0080000080800000ull
, /* 4C */
1329 0x0080000080800080ull
, /* 4D */
1330 0x0080000080808000ull
, /* 4E */
1331 0x0080000080808080ull
, /* 4F */
1332 0x0080008000000000ull
, /* 50 */
1333 0x0080008000000080ull
, /* 51 */
1334 0x0080008000008000ull
, /* 52 */
1335 0x0080008000008080ull
, /* 53 */
1336 0x0080008000800000ull
, /* 54 */
1337 0x0080008000800080ull
, /* 55 */
1338 0x0080008000808000ull
, /* 56 */
1339 0x0080008000808080ull
, /* 57 */
1340 0x0080008080000000ull
, /* 58 */
1341 0x0080008080000080ull
, /* 59 */
1342 0x0080008080008000ull
, /* 5A */
1343 0x0080008080008080ull
, /* 5B */
1344 0x0080008080800000ull
, /* 5C */
1345 0x0080008080800080ull
, /* 5D */
1346 0x0080008080808000ull
, /* 5E */
1347 0x0080008080808080ull
, /* 5F */
1348 0x0080800000000000ull
, /* 60 */
1349 0x0080800000000080ull
, /* 61 */
1350 0x0080800000008000ull
, /* 62 */
1351 0x0080800000008080ull
, /* 63 */
1352 0x0080800000800000ull
, /* 64 */
1353 0x0080800000800080ull
, /* 65 */
1354 0x0080800000808000ull
, /* 66 */
1355 0x0080800000808080ull
, /* 67 */
1356 0x0080800080000000ull
, /* 68 */
1357 0x0080800080000080ull
, /* 69 */
1358 0x0080800080008000ull
, /* 6A */
1359 0x0080800080008080ull
, /* 6B */
1360 0x0080800080800000ull
, /* 6C */
1361 0x0080800080800080ull
, /* 6D */
1362 0x0080800080808000ull
, /* 6E */
1363 0x0080800080808080ull
, /* 6F */
1364 0x0080808000000000ull
, /* 70 */
1365 0x0080808000000080ull
, /* 71 */
1366 0x0080808000008000ull
, /* 72 */
1367 0x0080808000008080ull
, /* 73 */
1368 0x0080808000800000ull
, /* 74 */
1369 0x0080808000800080ull
, /* 75 */
1370 0x0080808000808000ull
, /* 76 */
1371 0x0080808000808080ull
, /* 77 */
1372 0x0080808080000000ull
, /* 78 */
1373 0x0080808080000080ull
, /* 79 */
1374 0x0080808080008000ull
, /* 7A */
1375 0x0080808080008080ull
, /* 7B */
1376 0x0080808080800000ull
, /* 7C */
1377 0x0080808080800080ull
, /* 7D */
1378 0x0080808080808000ull
, /* 7E */
1379 0x0080808080808080ull
, /* 7F */
1380 0x8000000000000000ull
, /* 80 */
1381 0x8000000000000080ull
, /* 81 */
1382 0x8000000000008000ull
, /* 82 */
1383 0x8000000000008080ull
, /* 83 */
1384 0x8000000000800000ull
, /* 84 */
1385 0x8000000000800080ull
, /* 85 */
1386 0x8000000000808000ull
, /* 86 */
1387 0x8000000000808080ull
, /* 87 */
1388 0x8000000080000000ull
, /* 88 */
1389 0x8000000080000080ull
, /* 89 */
1390 0x8000000080008000ull
, /* 8A */
1391 0x8000000080008080ull
, /* 8B */
1392 0x8000000080800000ull
, /* 8C */
1393 0x8000000080800080ull
, /* 8D */
1394 0x8000000080808000ull
, /* 8E */
1395 0x8000000080808080ull
, /* 8F */
1396 0x8000008000000000ull
, /* 90 */
1397 0x8000008000000080ull
, /* 91 */
1398 0x8000008000008000ull
, /* 92 */
1399 0x8000008000008080ull
, /* 93 */
1400 0x8000008000800000ull
, /* 94 */
1401 0x8000008000800080ull
, /* 95 */
1402 0x8000008000808000ull
, /* 96 */
1403 0x8000008000808080ull
, /* 97 */
1404 0x8000008080000000ull
, /* 98 */
1405 0x8000008080000080ull
, /* 99 */
1406 0x8000008080008000ull
, /* 9A */
1407 0x8000008080008080ull
, /* 9B */
1408 0x8000008080800000ull
, /* 9C */
1409 0x8000008080800080ull
, /* 9D */
1410 0x8000008080808000ull
, /* 9E */
1411 0x8000008080808080ull
, /* 9F */
1412 0x8000800000000000ull
, /* A0 */
1413 0x8000800000000080ull
, /* A1 */
1414 0x8000800000008000ull
, /* A2 */
1415 0x8000800000008080ull
, /* A3 */
1416 0x8000800000800000ull
, /* A4 */
1417 0x8000800000800080ull
, /* A5 */
1418 0x8000800000808000ull
, /* A6 */
1419 0x8000800000808080ull
, /* A7 */
1420 0x8000800080000000ull
, /* A8 */
1421 0x8000800080000080ull
, /* A9 */
1422 0x8000800080008000ull
, /* AA */
1423 0x8000800080008080ull
, /* AB */
1424 0x8000800080800000ull
, /* AC */
1425 0x8000800080800080ull
, /* AD */
1426 0x8000800080808000ull
, /* AE */
1427 0x8000800080808080ull
, /* AF */
1428 0x8000808000000000ull
, /* B0 */
1429 0x8000808000000080ull
, /* B1 */
1430 0x8000808000008000ull
, /* B2 */
1431 0x8000808000008080ull
, /* B3 */
1432 0x8000808000800000ull
, /* B4 */
1433 0x8000808000800080ull
, /* B5 */
1434 0x8000808000808000ull
, /* B6 */
1435 0x8000808000808080ull
, /* B7 */
1436 0x8000808080000000ull
, /* B8 */
1437 0x8000808080000080ull
, /* B9 */
1438 0x8000808080008000ull
, /* BA */
1439 0x8000808080008080ull
, /* BB */
1440 0x8000808080800000ull
, /* BC */
1441 0x8000808080800080ull
, /* BD */
1442 0x8000808080808000ull
, /* BE */
1443 0x8000808080808080ull
, /* BF */
1444 0x8080000000000000ull
, /* C0 */
1445 0x8080000000000080ull
, /* C1 */
1446 0x8080000000008000ull
, /* C2 */
1447 0x8080000000008080ull
, /* C3 */
1448 0x8080000000800000ull
, /* C4 */
1449 0x8080000000800080ull
, /* C5 */
1450 0x8080000000808000ull
, /* C6 */
1451 0x8080000000808080ull
, /* C7 */
1452 0x8080000080000000ull
, /* C8 */
1453 0x8080000080000080ull
, /* C9 */
1454 0x8080000080008000ull
, /* CA */
1455 0x8080000080008080ull
, /* CB */
1456 0x8080000080800000ull
, /* CC */
1457 0x8080000080800080ull
, /* CD */
1458 0x8080000080808000ull
, /* CE */
1459 0x8080000080808080ull
, /* CF */
1460 0x8080008000000000ull
, /* D0 */
1461 0x8080008000000080ull
, /* D1 */
1462 0x8080008000008000ull
, /* D2 */
1463 0x8080008000008080ull
, /* D3 */
1464 0x8080008000800000ull
, /* D4 */
1465 0x8080008000800080ull
, /* D5 */
1466 0x8080008000808000ull
, /* D6 */
1467 0x8080008000808080ull
, /* D7 */
1468 0x8080008080000000ull
, /* D8 */
1469 0x8080008080000080ull
, /* D9 */
1470 0x8080008080008000ull
, /* DA */
1471 0x8080008080008080ull
, /* DB */
1472 0x8080008080800000ull
, /* DC */
1473 0x8080008080800080ull
, /* DD */
1474 0x8080008080808000ull
, /* DE */
1475 0x8080008080808080ull
, /* DF */
1476 0x8080800000000000ull
, /* E0 */
1477 0x8080800000000080ull
, /* E1 */
1478 0x8080800000008000ull
, /* E2 */
1479 0x8080800000008080ull
, /* E3 */
1480 0x8080800000800000ull
, /* E4 */
1481 0x8080800000800080ull
, /* E5 */
1482 0x8080800000808000ull
, /* E6 */
1483 0x8080800000808080ull
, /* E7 */
1484 0x8080800080000000ull
, /* E8 */
1485 0x8080800080000080ull
, /* E9 */
1486 0x8080800080008000ull
, /* EA */
1487 0x8080800080008080ull
, /* EB */
1488 0x8080800080800000ull
, /* EC */
1489 0x8080800080800080ull
, /* ED */
1490 0x8080800080808000ull
, /* EE */
1491 0x8080800080808080ull
, /* EF */
1492 0x8080808000000000ull
, /* F0 */
1493 0x8080808000000080ull
, /* F1 */
1494 0x8080808000008000ull
, /* F2 */
1495 0x8080808000008080ull
, /* F3 */
1496 0x8080808000800000ull
, /* F4 */
1497 0x8080808000800080ull
, /* F5 */
1498 0x8080808000808000ull
, /* F6 */
1499 0x8080808000808080ull
, /* F7 */
1500 0x8080808080000000ull
, /* F8 */
1501 0x8080808080000080ull
, /* F9 */
1502 0x8080808080008000ull
, /* FA */
1503 0x8080808080008080ull
, /* FB */
1504 0x8080808080800000ull
, /* FC */
1505 0x8080808080800080ull
, /* FD */
1506 0x8080808080808000ull
, /* FE */
1507 0x8080808080808080ull
, /* FF */
1510 void helper_vgbbd(ppc_avr_t
*r
, ppc_avr_t
*b
)
1513 uint64_t t
[2] = { 0, 0 };
1515 VECTOR_FOR_INORDER_I(i
, u8
) {
1516 #if defined(HOST_WORDS_BIGENDIAN)
1517 t
[i
>>3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (i
& 7);
1519 t
[i
>>3] |= VGBBD_MASKS
[b
->u8
[i
]] >> (7-(i
& 7));
1527 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1528 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1531 trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \
1533 VECTOR_FOR_INORDER_I(i, srcfld) { \
1535 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1536 if (a->srcfld[i] & (1ull<<j)) { \
1537 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1542 VECTOR_FOR_INORDER_I(i, trgfld) { \
1543 r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \
1547 PMSUM(vpmsumb
, u8
, u16
, uint16_t)
1548 PMSUM(vpmsumh
, u16
, u32
, uint32_t)
1549 PMSUM(vpmsumw
, u32
, u64
, uint64_t)
1551 void helper_vpmsumd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1554 #ifdef CONFIG_INT128
1556 __uint128_t prod
[2];
1558 VECTOR_FOR_INORDER_I(i
, u64
) {
1560 for (j
= 0; j
< 64; j
++) {
1561 if (a
->u64
[i
] & (1ull<<j
)) {
1562 prod
[i
] ^= (((__uint128_t
)b
->u64
[i
]) << j
);
1567 r
->u128
= prod
[0] ^ prod
[1];
1573 VECTOR_FOR_INORDER_I(i
, u64
) {
1574 prod
[i
].u64
[LO_IDX
] = prod
[i
].u64
[HI_IDX
] = 0;
1575 for (j
= 0; j
< 64; j
++) {
1576 if (a
->u64
[i
] & (1ull<<j
)) {
1579 bshift
.u64
[HI_IDX
] = 0;
1580 bshift
.u64
[LO_IDX
] = b
->u64
[i
];
1582 bshift
.u64
[HI_IDX
] = b
->u64
[i
] >> (64-j
);
1583 bshift
.u64
[LO_IDX
] = b
->u64
[i
] << j
;
1585 prod
[i
].u64
[LO_IDX
] ^= bshift
.u64
[LO_IDX
];
1586 prod
[i
].u64
[HI_IDX
] ^= bshift
.u64
[HI_IDX
];
1591 r
->u64
[LO_IDX
] = prod
[0].u64
[LO_IDX
] ^ prod
[1].u64
[LO_IDX
];
1592 r
->u64
[HI_IDX
] = prod
[0].u64
[HI_IDX
] ^ prod
[1].u64
[HI_IDX
];
1597 #if defined(HOST_WORDS_BIGENDIAN)
1602 void helper_vpkpx(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1606 #if defined(HOST_WORDS_BIGENDIAN)
1607 const ppc_avr_t
*x
[2] = { a
, b
};
1609 const ppc_avr_t
*x
[2] = { b
, a
};
1612 VECTOR_FOR_INORDER_I(i
, u64
) {
1613 VECTOR_FOR_INORDER_I(j
, u32
) {
1614 uint32_t e
= x
[i
]->u32
[j
];
1616 result
.u16
[4*i
+j
] = (((e
>> 9) & 0xfc00) |
1617 ((e
>> 6) & 0x3e0) |
1624 #define VPK(suffix, from, to, cvt, dosat) \
1625 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1626 ppc_avr_t *a, ppc_avr_t *b) \
1631 ppc_avr_t *a0 = PKBIG ? a : b; \
1632 ppc_avr_t *a1 = PKBIG ? b : a; \
1634 VECTOR_FOR_INORDER_I(i, from) { \
1635 result.to[i] = cvt(a0->from[i], &sat); \
1636 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
1639 if (dosat && sat) { \
1640 env->vscr |= (1 << VSCR_SAT); \
1644 VPK(shss
, s16
, s8
, cvtshsb
, 1)
1645 VPK(shus
, s16
, u8
, cvtshub
, 1)
1646 VPK(swss
, s32
, s16
, cvtswsh
, 1)
1647 VPK(swus
, s32
, u16
, cvtswuh
, 1)
1648 VPK(sdss
, s64
, s32
, cvtsdsw
, 1)
1649 VPK(sdus
, s64
, u32
, cvtsduw
, 1)
1650 VPK(uhus
, u16
, u8
, cvtuhub
, 1)
1651 VPK(uwus
, u32
, u16
, cvtuwuh
, 1)
1652 VPK(udus
, u64
, u32
, cvtuduw
, 1)
1653 VPK(uhum
, u16
, u8
, I
, 0)
1654 VPK(uwum
, u32
, u16
, I
, 0)
1655 VPK(udum
, u64
, u32
, I
, 0)
1660 void helper_vrefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1664 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1665 r
->f
[i
] = float32_div(float32_one
, b
->f
[i
], &env
->vec_status
);
1669 #define VRFI(suffix, rounding) \
1670 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1674 float_status s = env->vec_status; \
1676 set_float_rounding_mode(rounding, &s); \
1677 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
1678 r->f[i] = float32_round_to_int (b->f[i], &s); \
1681 VRFI(n
, float_round_nearest_even
)
1682 VRFI(m
, float_round_down
)
1683 VRFI(p
, float_round_up
)
1684 VRFI(z
, float_round_to_zero
)
1687 #define VROTATE(suffix, element, mask) \
1688 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1692 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1693 unsigned int shift = b->element[i] & mask; \
1694 r->element[i] = (a->element[i] << shift) | \
1695 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1699 VROTATE(h
, u16
, 0xF)
1700 VROTATE(w
, u32
, 0x1F)
1701 VROTATE(d
, u64
, 0x3F)
1704 void helper_vrsqrtefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1708 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1709 float32 t
= float32_sqrt(b
->f
[i
], &env
->vec_status
);
1711 r
->f
[i
] = float32_div(float32_one
, t
, &env
->vec_status
);
1715 #define VRLMI(name, size, element, insert) \
1716 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1719 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1720 uint##size##_t src1 = a->element[i]; \
1721 uint##size##_t src2 = b->element[i]; \
1722 uint##size##_t src3 = r->element[i]; \
1723 uint##size##_t begin, end, shift, mask, rot_val; \
1725 shift = extract##size(src2, 0, 6); \
1726 end = extract##size(src2, 8, 6); \
1727 begin = extract##size(src2, 16, 6); \
1728 rot_val = rol##size(src1, shift); \
1729 mask = mask_u##size(begin, end); \
1731 r->element[i] = (rot_val & mask) | (src3 & ~mask); \
1733 r->element[i] = (rot_val & mask); \
1738 VRLMI(vrldmi
, 64, u64
, 1);
1739 VRLMI(vrlwmi
, 32, u32
, 1);
1740 VRLMI(vrldnm
, 64, u64
, 0);
1741 VRLMI(vrlwnm
, 32, u32
, 0);
1743 void helper_vsel(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
,
1746 r
->u64
[0] = (a
->u64
[0] & ~c
->u64
[0]) | (b
->u64
[0] & c
->u64
[0]);
1747 r
->u64
[1] = (a
->u64
[1] & ~c
->u64
[1]) | (b
->u64
[1] & c
->u64
[1]);
1750 void helper_vexptefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1754 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1755 r
->f
[i
] = float32_exp2(b
->f
[i
], &env
->vec_status
);
1759 void helper_vlogefp(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*b
)
1763 for (i
= 0; i
< ARRAY_SIZE(r
->f
); i
++) {
1764 r
->f
[i
] = float32_log2(b
->f
[i
], &env
->vec_status
);
1768 #if defined(HOST_WORDS_BIGENDIAN)
1769 #define VEXTU_X_DO(name, size, left) \
1770 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1774 index = (a & 0xf) * 8; \
1776 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1778 return int128_getlo(int128_rshift(b->s128, index)) & \
1779 MAKE_64BIT_MASK(0, size); \
1782 #define VEXTU_X_DO(name, size, left) \
1783 target_ulong glue(helper_, name)(target_ulong a, ppc_avr_t *b) \
1787 index = ((15 - (a & 0xf) + 1) * 8) - size; \
1789 index = (a & 0xf) * 8; \
1791 return int128_getlo(int128_rshift(b->s128, index)) & \
1792 MAKE_64BIT_MASK(0, size); \
1796 VEXTU_X_DO(vextublx
, 8, 1)
1797 VEXTU_X_DO(vextuhlx
, 16, 1)
1798 VEXTU_X_DO(vextuwlx
, 32, 1)
1799 VEXTU_X_DO(vextubrx
, 8, 0)
1800 VEXTU_X_DO(vextuhrx
, 16, 0)
1801 VEXTU_X_DO(vextuwrx
, 32, 0)
1804 /* The specification says that the results are undefined if all of the
1805 * shift counts are not identical. We check to make sure that they are
1806 * to conform to what real hardware appears to do. */
1807 #define VSHIFT(suffix, leftp) \
1808 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1810 int shift = b->u8[LO_IDX*15] & 0x7; \
1814 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1815 doit = doit && ((b->u8[i] & 0x7) == shift); \
1820 } else if (leftp) { \
1821 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
1823 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
1824 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
1826 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
1828 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
1829 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
1837 #define VSL(suffix, element, mask) \
1838 void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1842 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1843 unsigned int shift = b->element[i] & mask; \
1845 r->element[i] = a->element[i] << shift; \
1854 void helper_vslv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1857 unsigned int shift
, bytes
, size
;
1859 size
= ARRAY_SIZE(r
->u8
);
1860 for (i
= 0; i
< size
; i
++) {
1861 shift
= b
->u8
[i
] & 0x7; /* extract shift value */
1862 bytes
= (a
->u8
[i
] << 8) + /* extract adjacent bytes */
1863 (((i
+ 1) < size
) ? a
->u8
[i
+ 1] : 0);
1864 r
->u8
[i
] = (bytes
<< shift
) >> 8; /* shift and store result */
1868 void helper_vsrv(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1871 unsigned int shift
, bytes
;
1873 /* Use reverse order, as destination and source register can be same. Its
1874 * being modified in place saving temporary, reverse order will guarantee
1875 * that computed result is not fed back.
1877 for (i
= ARRAY_SIZE(r
->u8
) - 1; i
>= 0; i
--) {
1878 shift
= b
->u8
[i
] & 0x7; /* extract shift value */
1879 bytes
= ((i
? a
->u8
[i
- 1] : 0) << 8) + a
->u8
[i
];
1880 /* extract adjacent bytes */
1881 r
->u8
[i
] = (bytes
>> shift
) & 0xFF; /* shift and store result */
1885 void helper_vsldoi(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t shift
)
1887 int sh
= shift
& 0xf;
1891 #if defined(HOST_WORDS_BIGENDIAN)
1892 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1895 result
.u8
[i
] = b
->u8
[index
- 0x10];
1897 result
.u8
[i
] = a
->u8
[index
];
1901 for (i
= 0; i
< ARRAY_SIZE(r
->u8
); i
++) {
1902 int index
= (16 - sh
) + i
;
1904 result
.u8
[i
] = a
->u8
[index
- 0x10];
1906 result
.u8
[i
] = b
->u8
[index
];
1913 void helper_vslo(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
1915 int sh
= (b
->u8
[LO_IDX
*0xf] >> 3) & 0xf;
1917 #if defined(HOST_WORDS_BIGENDIAN)
1918 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
1919 memset(&r
->u8
[16-sh
], 0, sh
);
1921 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
1922 memset(&r
->u8
[0], 0, sh
);
1926 /* Experimental testing shows that hardware masks the immediate. */
1927 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
1928 #if defined(HOST_WORDS_BIGENDIAN)
1929 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
1931 #define SPLAT_ELEMENT(element) \
1932 (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
1934 #define VSPLT(suffix, element) \
1935 void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
1937 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
1940 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1941 r->element[i] = s; \
1948 #undef SPLAT_ELEMENT
1949 #undef _SPLAT_MASKED
1950 #if defined(HOST_WORDS_BIGENDIAN)
1951 #define VINSERT(suffix, element) \
1952 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1954 memmove(&r->u8[index], &b->u8[8 - sizeof(r->element[0])], \
1955 sizeof(r->element[0])); \
1958 #define VINSERT(suffix, element) \
1959 void helper_vinsert##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1961 uint32_t d = (16 - index) - sizeof(r->element[0]); \
1962 memmove(&r->u8[d], &b->u8[8], sizeof(r->element[0])); \
1970 #if defined(HOST_WORDS_BIGENDIAN)
1971 #define VEXTRACT(suffix, element) \
1972 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1974 uint32_t es = sizeof(r->element[0]); \
1975 memmove(&r->u8[8 - es], &b->u8[index], es); \
1976 memset(&r->u8[8], 0, 8); \
1977 memset(&r->u8[0], 0, 8 - es); \
1980 #define VEXTRACT(suffix, element) \
1981 void helper_vextract##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t index) \
1983 uint32_t es = sizeof(r->element[0]); \
1984 uint32_t s = (16 - index) - es; \
1985 memmove(&r->u8[8], &b->u8[s], es); \
1986 memset(&r->u8[0], 0, 8); \
1987 memset(&r->u8[8 + es], 0, 8 - es); \
1996 void helper_xxextractuw(CPUPPCState
*env
, target_ulong xtn
,
1997 target_ulong xbn
, uint32_t index
)
2000 size_t es
= sizeof(uint32_t);
2004 getVSR(xbn
, &xb
, env
);
2005 memset(&xt
, 0, sizeof(xt
));
2007 #if defined(HOST_WORDS_BIGENDIAN)
2009 for (i
= 0; i
< es
; i
++, ext_index
++) {
2010 xt
.u8
[8 - es
+ i
] = xb
.u8
[ext_index
% 16];
2013 ext_index
= 15 - index
;
2014 for (i
= es
- 1; i
>= 0; i
--, ext_index
--) {
2015 xt
.u8
[8 + i
] = xb
.u8
[ext_index
% 16];
2019 putVSR(xtn
, &xt
, env
);
2022 void helper_xxinsertw(CPUPPCState
*env
, target_ulong xtn
,
2023 target_ulong xbn
, uint32_t index
)
2026 size_t es
= sizeof(uint32_t);
2027 int ins_index
, i
= 0;
2029 getVSR(xbn
, &xb
, env
);
2030 getVSR(xtn
, &xt
, env
);
2032 #if defined(HOST_WORDS_BIGENDIAN)
2034 for (i
= 0; i
< es
&& ins_index
< 16; i
++, ins_index
++) {
2035 xt
.u8
[ins_index
] = xb
.u8
[8 - es
+ i
];
2038 ins_index
= 15 - index
;
2039 for (i
= es
- 1; i
>= 0 && ins_index
>= 0; i
--, ins_index
--) {
2040 xt
.u8
[ins_index
] = xb
.u8
[8 + i
];
2044 putVSR(xtn
, &xt
, env
);
2047 #define VEXT_SIGNED(name, element, mask, cast, recast) \
2048 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
2051 VECTOR_FOR_INORDER_I(i, element) { \
2052 r->element[i] = (recast)((cast)(b->element[i] & mask)); \
2055 VEXT_SIGNED(vextsb2w
, s32
, UINT8_MAX
, int8_t, int32_t)
2056 VEXT_SIGNED(vextsb2d
, s64
, UINT8_MAX
, int8_t, int64_t)
2057 VEXT_SIGNED(vextsh2w
, s32
, UINT16_MAX
, int16_t, int32_t)
2058 VEXT_SIGNED(vextsh2d
, s64
, UINT16_MAX
, int16_t, int64_t)
2059 VEXT_SIGNED(vextsw2d
, s64
, UINT32_MAX
, int32_t, int64_t)
2062 #define VNEG(name, element) \
2063 void helper_##name(ppc_avr_t *r, ppc_avr_t *b) \
2066 VECTOR_FOR_INORDER_I(i, element) { \
2067 r->element[i] = -b->element[i]; \
2074 #define VSPLTI(suffix, element, splat_type) \
2075 void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
2077 splat_type x = (int8_t)(splat << 3) >> 3; \
2080 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2081 r->element[i] = x; \
2084 VSPLTI(b
, s8
, int8_t)
2085 VSPLTI(h
, s16
, int16_t)
2086 VSPLTI(w
, s32
, int32_t)
2089 #define VSR(suffix, element, mask) \
2090 void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2094 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2095 unsigned int shift = b->element[i] & mask; \
2096 r->element[i] = a->element[i] >> shift; \
2109 void helper_vsro(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2111 int sh
= (b
->u8
[LO_IDX
* 0xf] >> 3) & 0xf;
2113 #if defined(HOST_WORDS_BIGENDIAN)
2114 memmove(&r
->u8
[sh
], &a
->u8
[0], 16 - sh
);
2115 memset(&r
->u8
[0], 0, sh
);
2117 memmove(&r
->u8
[0], &a
->u8
[sh
], 16 - sh
);
2118 memset(&r
->u8
[16 - sh
], 0, sh
);
2122 void helper_vsubcuw(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2126 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2127 r
->u32
[i
] = a
->u32
[i
] >= b
->u32
[i
];
2131 void helper_vsumsws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2138 #if defined(HOST_WORDS_BIGENDIAN)
2139 upper
= ARRAY_SIZE(r
->s32
)-1;
2143 t
= (int64_t)b
->s32
[upper
];
2144 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2148 result
.s32
[upper
] = cvtsdsw(t
, &sat
);
2152 env
->vscr
|= (1 << VSCR_SAT
);
2156 void helper_vsum2sws(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2162 #if defined(HOST_WORDS_BIGENDIAN)
2167 for (i
= 0; i
< ARRAY_SIZE(r
->u64
); i
++) {
2168 int64_t t
= (int64_t)b
->s32
[upper
+ i
* 2];
2171 for (j
= 0; j
< ARRAY_SIZE(r
->u64
); j
++) {
2172 t
+= a
->s32
[2 * i
+ j
];
2174 result
.s32
[upper
+ i
* 2] = cvtsdsw(t
, &sat
);
2179 env
->vscr
|= (1 << VSCR_SAT
);
2183 void helper_vsum4sbs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2188 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2189 int64_t t
= (int64_t)b
->s32
[i
];
2191 for (j
= 0; j
< ARRAY_SIZE(r
->s32
); j
++) {
2192 t
+= a
->s8
[4 * i
+ j
];
2194 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2198 env
->vscr
|= (1 << VSCR_SAT
);
2202 void helper_vsum4shs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2207 for (i
= 0; i
< ARRAY_SIZE(r
->s32
); i
++) {
2208 int64_t t
= (int64_t)b
->s32
[i
];
2210 t
+= a
->s16
[2 * i
] + a
->s16
[2 * i
+ 1];
2211 r
->s32
[i
] = cvtsdsw(t
, &sat
);
2215 env
->vscr
|= (1 << VSCR_SAT
);
2219 void helper_vsum4ubs(CPUPPCState
*env
, ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2224 for (i
= 0; i
< ARRAY_SIZE(r
->u32
); i
++) {
2225 uint64_t t
= (uint64_t)b
->u32
[i
];
2227 for (j
= 0; j
< ARRAY_SIZE(r
->u32
); j
++) {
2228 t
+= a
->u8
[4 * i
+ j
];
2230 r
->u32
[i
] = cvtuduw(t
, &sat
);
2234 env
->vscr
|= (1 << VSCR_SAT
);
2238 #if defined(HOST_WORDS_BIGENDIAN)
2245 #define VUPKPX(suffix, hi) \
2246 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2251 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2252 uint16_t e = b->u16[hi ? i : i+4]; \
2253 uint8_t a = (e >> 15) ? 0xff : 0; \
2254 uint8_t r = (e >> 10) & 0x1f; \
2255 uint8_t g = (e >> 5) & 0x1f; \
2256 uint8_t b = e & 0x1f; \
2258 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2266 #define VUPK(suffix, unpacked, packee, hi) \
2267 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
2273 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2274 result.unpacked[i] = b->packee[i]; \
2277 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2279 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2284 VUPK(hsb
, s16
, s8
, UPKHI
)
2285 VUPK(hsh
, s32
, s16
, UPKHI
)
2286 VUPK(hsw
, s64
, s32
, UPKHI
)
2287 VUPK(lsb
, s16
, s8
, UPKLO
)
2288 VUPK(lsh
, s32
, s16
, UPKLO
)
2289 VUPK(lsw
, s64
, s32
, UPKLO
)
2294 #define VGENERIC_DO(name, element) \
2295 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2299 VECTOR_FOR_INORDER_I(i, element) { \
2300 r->element[i] = name(b->element[i]); \
2304 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2305 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2306 #define clzw(v) clz32((v))
2307 #define clzd(v) clz64((v))
2309 VGENERIC_DO(clzb
, u8
)
2310 VGENERIC_DO(clzh
, u16
)
2311 VGENERIC_DO(clzw
, u32
)
2312 VGENERIC_DO(clzd
, u64
)
2319 #define ctzb(v) ((v) ? ctz32(v) : 8)
2320 #define ctzh(v) ((v) ? ctz32(v) : 16)
2321 #define ctzw(v) ctz32((v))
2322 #define ctzd(v) ctz64((v))
2324 VGENERIC_DO(ctzb
, u8
)
2325 VGENERIC_DO(ctzh
, u16
)
2326 VGENERIC_DO(ctzw
, u32
)
2327 VGENERIC_DO(ctzd
, u64
)
2334 #define popcntb(v) ctpop8(v)
2335 #define popcnth(v) ctpop16(v)
2336 #define popcntw(v) ctpop32(v)
2337 #define popcntd(v) ctpop64(v)
2339 VGENERIC_DO(popcntb
, u8
)
2340 VGENERIC_DO(popcnth
, u16
)
2341 VGENERIC_DO(popcntw
, u32
)
2342 VGENERIC_DO(popcntd
, u64
)
2351 #if defined(HOST_WORDS_BIGENDIAN)
2352 #define QW_ONE { .u64 = { 0, 1 } }
2354 #define QW_ONE { .u64 = { 1, 0 } }
2357 #ifndef CONFIG_INT128
2359 static inline void avr_qw_not(ppc_avr_t
*t
, ppc_avr_t a
)
2361 t
->u64
[0] = ~a
.u64
[0];
2362 t
->u64
[1] = ~a
.u64
[1];
2365 static int avr_qw_cmpu(ppc_avr_t a
, ppc_avr_t b
)
2367 if (a
.u64
[HI_IDX
] < b
.u64
[HI_IDX
]) {
2369 } else if (a
.u64
[HI_IDX
] > b
.u64
[HI_IDX
]) {
2371 } else if (a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]) {
2373 } else if (a
.u64
[LO_IDX
] > b
.u64
[LO_IDX
]) {
2380 static void avr_qw_add(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2382 t
->u64
[LO_IDX
] = a
.u64
[LO_IDX
] + b
.u64
[LO_IDX
];
2383 t
->u64
[HI_IDX
] = a
.u64
[HI_IDX
] + b
.u64
[HI_IDX
] +
2384 (~a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]);
2387 static int avr_qw_addc(ppc_avr_t
*t
, ppc_avr_t a
, ppc_avr_t b
)
2390 t
->u64
[LO_IDX
] = a
.u64
[LO_IDX
] + b
.u64
[LO_IDX
];
2391 t
->u64
[HI_IDX
] = a
.u64
[HI_IDX
] + b
.u64
[HI_IDX
] +
2392 (~a
.u64
[LO_IDX
] < b
.u64
[LO_IDX
]);
2393 avr_qw_not(¬_a
, a
);
2394 return avr_qw_cmpu(not_a
, b
) < 0;
2399 void helper_vadduqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2401 #ifdef CONFIG_INT128
2402 r
->u128
= a
->u128
+ b
->u128
;
2404 avr_qw_add(r
, *a
, *b
);
2408 void helper_vaddeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2410 #ifdef CONFIG_INT128
2411 r
->u128
= a
->u128
+ b
->u128
+ (c
->u128
& 1);
2414 if (c
->u64
[LO_IDX
] & 1) {
2417 tmp
.u64
[HI_IDX
] = 0;
2418 tmp
.u64
[LO_IDX
] = c
->u64
[LO_IDX
] & 1;
2419 avr_qw_add(&tmp
, *a
, tmp
);
2420 avr_qw_add(r
, tmp
, *b
);
2422 avr_qw_add(r
, *a
, *b
);
2427 void helper_vaddcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2429 #ifdef CONFIG_INT128
2430 r
->u128
= (~a
->u128
< b
->u128
);
2434 avr_qw_not(¬_a
, *a
);
2437 r
->u64
[LO_IDX
] = (avr_qw_cmpu(not_a
, *b
) < 0);
2441 void helper_vaddecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2443 #ifdef CONFIG_INT128
2444 int carry_out
= (~a
->u128
< b
->u128
);
2445 if (!carry_out
&& (c
->u128
& 1)) {
2446 carry_out
= ((a
->u128
+ b
->u128
+ 1) == 0) &&
2447 ((a
->u128
!= 0) || (b
->u128
!= 0));
2449 r
->u128
= carry_out
;
2452 int carry_in
= c
->u64
[LO_IDX
] & 1;
2456 carry_out
= avr_qw_addc(&tmp
, *a
, *b
);
2458 if (!carry_out
&& carry_in
) {
2459 ppc_avr_t one
= QW_ONE
;
2460 carry_out
= avr_qw_addc(&tmp
, tmp
, one
);
2463 r
->u64
[LO_IDX
] = carry_out
;
2467 void helper_vsubuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2469 #ifdef CONFIG_INT128
2470 r
->u128
= a
->u128
- b
->u128
;
2473 ppc_avr_t one
= QW_ONE
;
2475 avr_qw_not(&tmp
, *b
);
2476 avr_qw_add(&tmp
, *a
, tmp
);
2477 avr_qw_add(r
, tmp
, one
);
2481 void helper_vsubeuqm(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2483 #ifdef CONFIG_INT128
2484 r
->u128
= a
->u128
+ ~b
->u128
+ (c
->u128
& 1);
2488 avr_qw_not(&tmp
, *b
);
2489 avr_qw_add(&sum
, *a
, tmp
);
2491 tmp
.u64
[HI_IDX
] = 0;
2492 tmp
.u64
[LO_IDX
] = c
->u64
[LO_IDX
] & 1;
2493 avr_qw_add(r
, sum
, tmp
);
2497 void helper_vsubcuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
2499 #ifdef CONFIG_INT128
2500 r
->u128
= (~a
->u128
< ~b
->u128
) ||
2501 (a
->u128
+ ~b
->u128
== (__uint128_t
)-1);
2503 int carry
= (avr_qw_cmpu(*a
, *b
) > 0);
2506 avr_qw_not(&tmp
, *b
);
2507 avr_qw_add(&tmp
, *a
, tmp
);
2508 carry
= ((tmp
.s64
[HI_IDX
] == -1ull) && (tmp
.s64
[LO_IDX
] == -1ull));
2511 r
->u64
[LO_IDX
] = carry
;
2515 void helper_vsubecuq(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
2517 #ifdef CONFIG_INT128
2519 (~a
->u128
< ~b
->u128
) ||
2520 ((c
->u128
& 1) && (a
->u128
+ ~b
->u128
== (__uint128_t
)-1));
2522 int carry_in
= c
->u64
[LO_IDX
] & 1;
2523 int carry_out
= (avr_qw_cmpu(*a
, *b
) > 0);
2524 if (!carry_out
&& carry_in
) {
2526 avr_qw_not(&tmp
, *b
);
2527 avr_qw_add(&tmp
, *a
, tmp
);
2528 carry_out
= ((tmp
.u64
[HI_IDX
] == -1ull) && (tmp
.u64
[LO_IDX
] == -1ull));
2532 r
->u64
[LO_IDX
] = carry_out
;
2536 #define BCD_PLUS_PREF_1 0xC
2537 #define BCD_PLUS_PREF_2 0xF
2538 #define BCD_PLUS_ALT_1 0xA
2539 #define BCD_NEG_PREF 0xD
2540 #define BCD_NEG_ALT 0xB
2541 #define BCD_PLUS_ALT_2 0xE
2542 #define NATIONAL_PLUS 0x2B
2543 #define NATIONAL_NEG 0x2D
2545 #if defined(HOST_WORDS_BIGENDIAN)
2546 #define BCD_DIG_BYTE(n) (15 - ((n) / 2))
2548 #define BCD_DIG_BYTE(n) ((n) / 2)
2551 static int bcd_get_sgn(ppc_avr_t
*bcd
)
2553 switch (bcd
->u8
[BCD_DIG_BYTE(0)] & 0xF) {
2554 case BCD_PLUS_PREF_1
:
2555 case BCD_PLUS_PREF_2
:
2556 case BCD_PLUS_ALT_1
:
2557 case BCD_PLUS_ALT_2
:
2575 static int bcd_preferred_sgn(int sgn
, int ps
)
2578 return (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
;
2580 return BCD_NEG_PREF
;
2584 static uint8_t bcd_get_digit(ppc_avr_t
*bcd
, int n
, int *invalid
)
2588 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] >> 4;
2590 result
= bcd
->u8
[BCD_DIG_BYTE(n
)] & 0xF;
2593 if (unlikely(result
> 9)) {
2599 static void bcd_put_digit(ppc_avr_t
*bcd
, uint8_t digit
, int n
)
2602 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0x0F;
2603 bcd
->u8
[BCD_DIG_BYTE(n
)] |= (digit
<<4);
2605 bcd
->u8
[BCD_DIG_BYTE(n
)] &= 0xF0;
2606 bcd
->u8
[BCD_DIG_BYTE(n
)] |= digit
;
2610 static bool bcd_is_valid(ppc_avr_t
*bcd
)
2615 if (bcd_get_sgn(bcd
) == 0) {
2619 for (i
= 1; i
< 32; i
++) {
2620 bcd_get_digit(bcd
, i
, &invalid
);
2621 if (unlikely(invalid
)) {
2628 static int bcd_cmp_zero(ppc_avr_t
*bcd
)
2630 if (bcd
->u64
[HI_IDX
] == 0 && (bcd
->u64
[LO_IDX
] >> 4) == 0) {
2633 return (bcd_get_sgn(bcd
) == 1) ? CRF_GT
: CRF_LT
;
2637 static uint16_t get_national_digit(ppc_avr_t
*reg
, int n
)
2639 #if defined(HOST_WORDS_BIGENDIAN)
2640 return reg
->u16
[7 - n
];
2646 static void set_national_digit(ppc_avr_t
*reg
, uint8_t val
, int n
)
2648 #if defined(HOST_WORDS_BIGENDIAN)
2649 reg
->u16
[7 - n
] = val
;
2655 static int bcd_cmp_mag(ppc_avr_t
*a
, ppc_avr_t
*b
)
2659 for (i
= 31; i
> 0; i
--) {
2660 uint8_t dig_a
= bcd_get_digit(a
, i
, &invalid
);
2661 uint8_t dig_b
= bcd_get_digit(b
, i
, &invalid
);
2662 if (unlikely(invalid
)) {
2663 return 0; /* doesn't matter */
2664 } else if (dig_a
> dig_b
) {
2666 } else if (dig_a
< dig_b
) {
2674 static void bcd_add_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2679 for (i
= 1; i
<= 31; i
++) {
2680 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) +
2681 bcd_get_digit(b
, i
, invalid
) + carry
;
2689 bcd_put_digit(t
, digit
, i
);
2695 static void bcd_sub_mag(ppc_avr_t
*t
, ppc_avr_t
*a
, ppc_avr_t
*b
, int *invalid
,
2701 for (i
= 1; i
<= 31; i
++) {
2702 uint8_t digit
= bcd_get_digit(a
, i
, invalid
) -
2703 bcd_get_digit(b
, i
, invalid
) + carry
;
2711 bcd_put_digit(t
, digit
, i
);
2717 uint32_t helper_bcdadd(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2720 int sgna
= bcd_get_sgn(a
);
2721 int sgnb
= bcd_get_sgn(b
);
2722 int invalid
= (sgna
== 0) || (sgnb
== 0);
2725 ppc_avr_t result
= { .u64
= { 0, 0 } };
2729 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2730 bcd_add_mag(&result
, a
, b
, &invalid
, &overflow
);
2731 cr
= bcd_cmp_zero(&result
);
2733 int magnitude
= bcd_cmp_mag(a
, b
);
2734 if (magnitude
> 0) {
2735 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna
, ps
);
2736 bcd_sub_mag(&result
, a
, b
, &invalid
, &overflow
);
2737 cr
= (sgna
> 0) ? CRF_GT
: CRF_LT
;
2738 } else if (magnitude
< 0) {
2739 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb
, ps
);
2740 bcd_sub_mag(&result
, b
, a
, &invalid
, &overflow
);
2741 cr
= (sgnb
> 0) ? CRF_GT
: CRF_LT
;
2743 result
.u8
[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(0, ps
);
2749 if (unlikely(invalid
)) {
2750 result
.u64
[HI_IDX
] = result
.u64
[LO_IDX
] = -1;
2752 } else if (overflow
) {
2761 uint32_t helper_bcdsub(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
2763 ppc_avr_t bcopy
= *b
;
2764 int sgnb
= bcd_get_sgn(b
);
2766 bcd_put_digit(&bcopy
, BCD_PLUS_PREF_1
, 0);
2767 } else if (sgnb
> 0) {
2768 bcd_put_digit(&bcopy
, BCD_NEG_PREF
, 0);
2770 /* else invalid ... defer to bcdadd code for proper handling */
2772 return helper_bcdadd(r
, a
, &bcopy
, ps
);
2775 uint32_t helper_bcdcfn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2779 uint16_t national
= 0;
2780 uint16_t sgnb
= get_national_digit(b
, 0);
2781 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2782 int invalid
= (sgnb
!= NATIONAL_PLUS
&& sgnb
!= NATIONAL_NEG
);
2784 for (i
= 1; i
< 8; i
++) {
2785 national
= get_national_digit(b
, i
);
2786 if (unlikely(national
< 0x30 || national
> 0x39)) {
2791 bcd_put_digit(&ret
, national
& 0xf, i
);
2794 if (sgnb
== NATIONAL_PLUS
) {
2795 bcd_put_digit(&ret
, (ps
== 0) ? BCD_PLUS_PREF_1
: BCD_PLUS_PREF_2
, 0);
2797 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2800 cr
= bcd_cmp_zero(&ret
);
2802 if (unlikely(invalid
)) {
2811 uint32_t helper_bcdctn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2815 int sgnb
= bcd_get_sgn(b
);
2816 int invalid
= (sgnb
== 0);
2817 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2819 int ox_flag
= (b
->u64
[HI_IDX
] != 0) || ((b
->u64
[LO_IDX
] >> 32) != 0);
2821 for (i
= 1; i
< 8; i
++) {
2822 set_national_digit(&ret
, 0x30 + bcd_get_digit(b
, i
, &invalid
), i
);
2824 if (unlikely(invalid
)) {
2828 set_national_digit(&ret
, (sgnb
== -1) ? NATIONAL_NEG
: NATIONAL_PLUS
, 0);
2830 cr
= bcd_cmp_zero(b
);
2836 if (unlikely(invalid
)) {
2845 uint32_t helper_bcdcfz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2851 int zone_lead
= ps
? 0xF : 0x3;
2853 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2854 int sgnb
= b
->u8
[BCD_DIG_BYTE(0)] >> 4;
2856 if (unlikely((sgnb
< 0xA) && ps
)) {
2860 for (i
= 0; i
< 16; i
++) {
2861 zone_digit
= i
? b
->u8
[BCD_DIG_BYTE(i
* 2)] >> 4 : zone_lead
;
2862 digit
= b
->u8
[BCD_DIG_BYTE(i
* 2)] & 0xF;
2863 if (unlikely(zone_digit
!= zone_lead
|| digit
> 0x9)) {
2868 bcd_put_digit(&ret
, digit
, i
+ 1);
2871 if ((ps
&& (sgnb
== 0xB || sgnb
== 0xD)) ||
2872 (!ps
&& (sgnb
& 0x4))) {
2873 bcd_put_digit(&ret
, BCD_NEG_PREF
, 0);
2875 bcd_put_digit(&ret
, BCD_PLUS_PREF_1
, 0);
2878 cr
= bcd_cmp_zero(&ret
);
2880 if (unlikely(invalid
)) {
2889 uint32_t helper_bcdctz(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2894 int sgnb
= bcd_get_sgn(b
);
2895 int zone_lead
= (ps
) ? 0xF0 : 0x30;
2896 int invalid
= (sgnb
== 0);
2897 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2899 int ox_flag
= ((b
->u64
[HI_IDX
] >> 4) != 0);
2901 for (i
= 0; i
< 16; i
++) {
2902 digit
= bcd_get_digit(b
, i
+ 1, &invalid
);
2904 if (unlikely(invalid
)) {
2908 ret
.u8
[BCD_DIG_BYTE(i
* 2)] = zone_lead
+ digit
;
2912 bcd_put_digit(&ret
, (sgnb
== 1) ? 0xC : 0xD, 1);
2914 bcd_put_digit(&ret
, (sgnb
== 1) ? 0x3 : 0x7, 1);
2917 cr
= bcd_cmp_zero(b
);
2923 if (unlikely(invalid
)) {
2932 uint32_t helper_bcdcfsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2938 ppc_avr_t ret
= { .u64
= { 0, 0 } };
2940 if (b
->s64
[HI_IDX
] < 0) {
2941 lo_value
= -b
->s64
[LO_IDX
];
2942 hi_value
= ~b
->u64
[HI_IDX
] + !lo_value
;
2943 bcd_put_digit(&ret
, 0xD, 0);
2945 lo_value
= b
->u64
[LO_IDX
];
2946 hi_value
= b
->u64
[HI_IDX
];
2947 bcd_put_digit(&ret
, bcd_preferred_sgn(0, ps
), 0);
2950 if (divu128(&lo_value
, &hi_value
, 1000000000000000ULL) ||
2951 lo_value
> 9999999999999999ULL) {
2955 for (i
= 1; i
< 16; hi_value
/= 10, i
++) {
2956 bcd_put_digit(&ret
, hi_value
% 10, i
);
2959 for (; i
< 32; lo_value
/= 10, i
++) {
2960 bcd_put_digit(&ret
, lo_value
% 10, i
);
2963 cr
|= bcd_cmp_zero(&ret
);
2970 uint32_t helper_bcdctsq(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
2977 uint64_t hi_value
= 0;
2978 int sgnb
= bcd_get_sgn(b
);
2979 int invalid
= (sgnb
== 0);
2981 lo_value
= bcd_get_digit(b
, 31, &invalid
);
2982 for (i
= 30; i
> 0; i
--) {
2983 mulu64(&lo_value
, &carry
, lo_value
, 10ULL);
2984 mulu64(&hi_value
, &unused
, hi_value
, 10ULL);
2985 lo_value
+= bcd_get_digit(b
, i
, &invalid
);
2988 if (unlikely(invalid
)) {
2994 r
->s64
[LO_IDX
] = -lo_value
;
2995 r
->s64
[HI_IDX
] = ~hi_value
+ !r
->s64
[LO_IDX
];
2997 r
->s64
[LO_IDX
] = lo_value
;
2998 r
->s64
[HI_IDX
] = hi_value
;
3001 cr
= bcd_cmp_zero(b
);
3003 if (unlikely(invalid
)) {
3010 uint32_t helper_bcdcpsgn(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3015 if (bcd_get_sgn(a
) == 0 || bcd_get_sgn(b
) == 0) {
3020 bcd_put_digit(r
, b
->u8
[BCD_DIG_BYTE(0)] & 0xF, 0);
3022 for (i
= 1; i
< 32; i
++) {
3023 bcd_get_digit(a
, i
, &invalid
);
3024 bcd_get_digit(b
, i
, &invalid
);
3025 if (unlikely(invalid
)) {
3030 return bcd_cmp_zero(r
);
3033 uint32_t helper_bcdsetsgn(ppc_avr_t
*r
, ppc_avr_t
*b
, uint32_t ps
)
3035 int sgnb
= bcd_get_sgn(b
);
3038 bcd_put_digit(r
, bcd_preferred_sgn(sgnb
, ps
), 0);
3040 if (bcd_is_valid(b
) == false) {
3044 return bcd_cmp_zero(r
);
3047 uint32_t helper_bcds(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3050 #if defined(HOST_WORDS_BIGENDIAN)
3055 bool ox_flag
= false;
3056 int sgnb
= bcd_get_sgn(b
);
3058 ret
.u64
[LO_IDX
] &= ~0xf;
3060 if (bcd_is_valid(b
) == false) {
3064 if (unlikely(i
> 31)) {
3066 } else if (unlikely(i
< -31)) {
3071 ulshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], i
* 4, &ox_flag
);
3073 urshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], -i
* 4);
3075 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
3079 cr
= bcd_cmp_zero(r
);
3087 uint32_t helper_bcdus(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3092 bool ox_flag
= false;
3095 for (i
= 0; i
< 32; i
++) {
3096 bcd_get_digit(b
, i
, &invalid
);
3098 if (unlikely(invalid
)) {
3103 #if defined(HOST_WORDS_BIGENDIAN)
3110 ret
.u64
[LO_IDX
] = ret
.u64
[HI_IDX
] = 0;
3111 } else if (i
<= -32) {
3112 ret
.u64
[LO_IDX
] = ret
.u64
[HI_IDX
] = 0;
3114 ulshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], i
* 4, &ox_flag
);
3116 urshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], -i
* 4);
3120 cr
= bcd_cmp_zero(r
);
3128 uint32_t helper_bcdsr(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3133 bool ox_flag
= false;
3134 int sgnb
= bcd_get_sgn(b
);
3136 ret
.u64
[LO_IDX
] &= ~0xf;
3138 #if defined(HOST_WORDS_BIGENDIAN)
3140 ppc_avr_t bcd_one
= { .u64
= { 0, 0x10 } };
3143 ppc_avr_t bcd_one
= { .u64
= { 0x10, 0 } };
3146 if (bcd_is_valid(b
) == false) {
3150 if (unlikely(i
> 31)) {
3152 } else if (unlikely(i
< -31)) {
3157 ulshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], i
* 4, &ox_flag
);
3159 urshift(&ret
.u64
[LO_IDX
], &ret
.u64
[HI_IDX
], -i
* 4);
3161 if (bcd_get_digit(&ret
, 0, &invalid
) >= 5) {
3162 bcd_add_mag(&ret
, &ret
, &bcd_one
, &invalid
, &unused
);
3165 bcd_put_digit(&ret
, bcd_preferred_sgn(sgnb
, ps
), 0);
3167 cr
= bcd_cmp_zero(&ret
);
3176 uint32_t helper_bcdtrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3179 uint32_t ox_flag
= 0;
3180 #if defined(HOST_WORDS_BIGENDIAN)
3181 int i
= a
->s16
[3] + 1;
3183 int i
= a
->s16
[4] + 1;
3187 if (bcd_is_valid(b
) == false) {
3191 if (i
> 16 && i
< 32) {
3192 mask
= (uint64_t)-1 >> (128 - i
* 4);
3193 if (ret
.u64
[HI_IDX
] & ~mask
) {
3197 ret
.u64
[HI_IDX
] &= mask
;
3198 } else if (i
>= 0 && i
<= 16) {
3199 mask
= (uint64_t)-1 >> (64 - i
* 4);
3200 if (ret
.u64
[HI_IDX
] || (ret
.u64
[LO_IDX
] & ~mask
)) {
3204 ret
.u64
[LO_IDX
] &= mask
;
3205 ret
.u64
[HI_IDX
] = 0;
3207 bcd_put_digit(&ret
, bcd_preferred_sgn(bcd_get_sgn(b
), ps
), 0);
3210 return bcd_cmp_zero(&ret
) | ox_flag
;
3213 uint32_t helper_bcdutrunc(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, uint32_t ps
)
3217 uint32_t ox_flag
= 0;
3221 for (i
= 0; i
< 32; i
++) {
3222 bcd_get_digit(b
, i
, &invalid
);
3224 if (unlikely(invalid
)) {
3229 #if defined(HOST_WORDS_BIGENDIAN)
3234 if (i
> 16 && i
< 33) {
3235 mask
= (uint64_t)-1 >> (128 - i
* 4);
3236 if (ret
.u64
[HI_IDX
] & ~mask
) {
3240 ret
.u64
[HI_IDX
] &= mask
;
3241 } else if (i
> 0 && i
<= 16) {
3242 mask
= (uint64_t)-1 >> (64 - i
* 4);
3243 if (ret
.u64
[HI_IDX
] || (ret
.u64
[LO_IDX
] & ~mask
)) {
3247 ret
.u64
[LO_IDX
] &= mask
;
3248 ret
.u64
[HI_IDX
] = 0;
3249 } else if (i
== 0) {
3250 if (ret
.u64
[HI_IDX
] || ret
.u64
[LO_IDX
]) {
3253 ret
.u64
[HI_IDX
] = ret
.u64
[LO_IDX
] = 0;
3257 if (r
->u64
[HI_IDX
] == 0 && r
->u64
[LO_IDX
] == 0) {
3258 return ox_flag
| CRF_EQ
;
3261 return ox_flag
| CRF_GT
;
3264 void helper_vsbox(ppc_avr_t
*r
, ppc_avr_t
*a
)
3267 VECTOR_FOR_INORDER_I(i
, u8
) {
3268 r
->u8
[i
] = AES_sbox
[a
->u8
[i
]];
3272 void helper_vcipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3277 VECTOR_FOR_INORDER_I(i
, u32
) {
3278 result
.AVRW(i
) = b
->AVRW(i
) ^
3279 (AES_Te0
[a
->AVRB(AES_shifts
[4*i
+ 0])] ^
3280 AES_Te1
[a
->AVRB(AES_shifts
[4*i
+ 1])] ^
3281 AES_Te2
[a
->AVRB(AES_shifts
[4*i
+ 2])] ^
3282 AES_Te3
[a
->AVRB(AES_shifts
[4*i
+ 3])]);
3287 void helper_vcipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3292 VECTOR_FOR_INORDER_I(i
, u8
) {
3293 result
.AVRB(i
) = b
->AVRB(i
) ^ (AES_sbox
[a
->AVRB(AES_shifts
[i
])]);
3298 void helper_vncipher(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3300 /* This differs from what is written in ISA V2.07. The RTL is */
3301 /* incorrect and will be fixed in V2.07B. */
3305 VECTOR_FOR_INORDER_I(i
, u8
) {
3306 tmp
.AVRB(i
) = b
->AVRB(i
) ^ AES_isbox
[a
->AVRB(AES_ishifts
[i
])];
3309 VECTOR_FOR_INORDER_I(i
, u32
) {
3311 AES_imc
[tmp
.AVRB(4*i
+ 0)][0] ^
3312 AES_imc
[tmp
.AVRB(4*i
+ 1)][1] ^
3313 AES_imc
[tmp
.AVRB(4*i
+ 2)][2] ^
3314 AES_imc
[tmp
.AVRB(4*i
+ 3)][3];
3318 void helper_vncipherlast(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
)
3323 VECTOR_FOR_INORDER_I(i
, u8
) {
3324 result
.AVRB(i
) = b
->AVRB(i
) ^ (AES_isbox
[a
->AVRB(AES_ishifts
[i
])]);
3329 #define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
3330 #if defined(HOST_WORDS_BIGENDIAN)
3331 #define EL_IDX(i) (i)
3333 #define EL_IDX(i) (3 - (i))
3336 void helper_vshasigmaw(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3338 int st
= (st_six
& 0x10) != 0;
3339 int six
= st_six
& 0xF;
3342 VECTOR_FOR_INORDER_I(i
, u32
) {
3344 if ((six
& (0x8 >> i
)) == 0) {
3345 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 7) ^
3346 ROTRu32(a
->u32
[EL_IDX(i
)], 18) ^
3347 (a
->u32
[EL_IDX(i
)] >> 3);
3348 } else { /* six.bit[i] == 1 */
3349 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 17) ^
3350 ROTRu32(a
->u32
[EL_IDX(i
)], 19) ^
3351 (a
->u32
[EL_IDX(i
)] >> 10);
3353 } else { /* st == 1 */
3354 if ((six
& (0x8 >> i
)) == 0) {
3355 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 2) ^
3356 ROTRu32(a
->u32
[EL_IDX(i
)], 13) ^
3357 ROTRu32(a
->u32
[EL_IDX(i
)], 22);
3358 } else { /* six.bit[i] == 1 */
3359 r
->u32
[EL_IDX(i
)] = ROTRu32(a
->u32
[EL_IDX(i
)], 6) ^
3360 ROTRu32(a
->u32
[EL_IDX(i
)], 11) ^
3361 ROTRu32(a
->u32
[EL_IDX(i
)], 25);
3370 #define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
3371 #if defined(HOST_WORDS_BIGENDIAN)
3372 #define EL_IDX(i) (i)
3374 #define EL_IDX(i) (1 - (i))
3377 void helper_vshasigmad(ppc_avr_t
*r
, ppc_avr_t
*a
, uint32_t st_six
)
3379 int st
= (st_six
& 0x10) != 0;
3380 int six
= st_six
& 0xF;
3383 VECTOR_FOR_INORDER_I(i
, u64
) {
3385 if ((six
& (0x8 >> (2*i
))) == 0) {
3386 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 1) ^
3387 ROTRu64(a
->u64
[EL_IDX(i
)], 8) ^
3388 (a
->u64
[EL_IDX(i
)] >> 7);
3389 } else { /* six.bit[2*i] == 1 */
3390 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 19) ^
3391 ROTRu64(a
->u64
[EL_IDX(i
)], 61) ^
3392 (a
->u64
[EL_IDX(i
)] >> 6);
3394 } else { /* st == 1 */
3395 if ((six
& (0x8 >> (2*i
))) == 0) {
3396 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 28) ^
3397 ROTRu64(a
->u64
[EL_IDX(i
)], 34) ^
3398 ROTRu64(a
->u64
[EL_IDX(i
)], 39);
3399 } else { /* six.bit[2*i] == 1 */
3400 r
->u64
[EL_IDX(i
)] = ROTRu64(a
->u64
[EL_IDX(i
)], 14) ^
3401 ROTRu64(a
->u64
[EL_IDX(i
)], 18) ^
3402 ROTRu64(a
->u64
[EL_IDX(i
)], 41);
3411 void helper_vpermxor(ppc_avr_t
*r
, ppc_avr_t
*a
, ppc_avr_t
*b
, ppc_avr_t
*c
)
3416 VECTOR_FOR_INORDER_I(i
, u8
) {
3417 int indexA
= c
->u8
[i
] >> 4;
3418 int indexB
= c
->u8
[i
] & 0xF;
3419 #if defined(HOST_WORDS_BIGENDIAN)
3420 result
.u8
[i
] = a
->u8
[indexA
] ^ b
->u8
[indexB
];
3422 result
.u8
[i
] = a
->u8
[15-indexA
] ^ b
->u8
[15-indexB
];
3428 #undef VECTOR_FOR_INORDER_I
3432 /*****************************************************************************/
3433 /* SPE extension helpers */
3434 /* Use a table to make this quicker */
3435 static const uint8_t hbrev
[16] = {
3436 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
3437 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
3440 static inline uint8_t byte_reverse(uint8_t val
)
3442 return hbrev
[val
>> 4] | (hbrev
[val
& 0xF] << 4);
3445 static inline uint32_t word_reverse(uint32_t val
)
3447 return byte_reverse(val
>> 24) | (byte_reverse(val
>> 16) << 8) |
3448 (byte_reverse(val
>> 8) << 16) | (byte_reverse(val
) << 24);
3451 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
3452 target_ulong
helper_brinc(target_ulong arg1
, target_ulong arg2
)
3454 uint32_t a
, b
, d
, mask
;
3456 mask
= UINT32_MAX
>> (32 - MASKBITS
);
3459 d
= word_reverse(1 + word_reverse(a
| ~b
));
3460 return (arg1
& ~mask
) | (d
& b
);
3463 uint32_t helper_cntlsw32(uint32_t val
)
3465 if (val
& 0x80000000) {
3472 uint32_t helper_cntlzw32(uint32_t val
)
3478 target_ulong
helper_dlmzb(CPUPPCState
*env
, target_ulong high
,
3479 target_ulong low
, uint32_t update_Rc
)
3485 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3486 if ((high
& mask
) == 0) {
3494 for (mask
= 0xFF000000; mask
!= 0; mask
= mask
>> 8) {
3495 if ((low
& mask
) == 0) {
3508 env
->xer
= (env
->xer
& ~0x7F) | i
;
3510 env
->crf
[0] |= xer_so
;