qapi/misc.json: Remove superfluous words in CpuModelExpansionType
[qemu/armbru.git] / util / bitmap.c
blobcb618c65a537f4fca7cf4e5ab814886cae105fd4
1 /*
2 * Bitmap Module
4 * Stolen from linux/src/lib/bitmap.c
6 * Copyright (C) 2010 Corentin Chary
8 * This source code is licensed under the GNU General Public License,
9 * Version 2.
12 #include "qemu/osdep.h"
13 #include "qemu/bitops.h"
14 #include "qemu/bitmap.h"
15 #include "qemu/atomic.h"
18 * bitmaps provide an array of bits, implemented using an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures.
41 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
43 long k, lim = bits/BITS_PER_LONG;
45 for (k = 0; k < lim; ++k) {
46 if (bitmap[k]) {
47 return 0;
50 if (bits % BITS_PER_LONG) {
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
52 return 0;
56 return 1;
59 int slow_bitmap_full(const unsigned long *bitmap, long bits)
61 long k, lim = bits/BITS_PER_LONG;
63 for (k = 0; k < lim; ++k) {
64 if (~bitmap[k]) {
65 return 0;
69 if (bits % BITS_PER_LONG) {
70 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
71 return 0;
75 return 1;
78 int slow_bitmap_equal(const unsigned long *bitmap1,
79 const unsigned long *bitmap2, long bits)
81 long k, lim = bits/BITS_PER_LONG;
83 for (k = 0; k < lim; ++k) {
84 if (bitmap1[k] != bitmap2[k]) {
85 return 0;
89 if (bits % BITS_PER_LONG) {
90 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
91 return 0;
95 return 1;
98 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
99 long bits)
101 long k, lim = bits/BITS_PER_LONG;
103 for (k = 0; k < lim; ++k) {
104 dst[k] = ~src[k];
107 if (bits % BITS_PER_LONG) {
108 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
112 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
113 const unsigned long *bitmap2, long bits)
115 long k;
116 long nr = BITS_TO_LONGS(bits);
117 unsigned long result = 0;
119 for (k = 0; k < nr; k++) {
120 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
122 return result != 0;
125 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
126 const unsigned long *bitmap2, long bits)
128 long k;
129 long nr = BITS_TO_LONGS(bits);
131 for (k = 0; k < nr; k++) {
132 dst[k] = bitmap1[k] | bitmap2[k];
136 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
137 const unsigned long *bitmap2, long bits)
139 long k;
140 long nr = BITS_TO_LONGS(bits);
142 for (k = 0; k < nr; k++) {
143 dst[k] = bitmap1[k] ^ bitmap2[k];
147 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
148 const unsigned long *bitmap2, long bits)
150 long k;
151 long nr = BITS_TO_LONGS(bits);
152 unsigned long result = 0;
154 for (k = 0; k < nr; k++) {
155 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
157 return result != 0;
160 void bitmap_set(unsigned long *map, long start, long nr)
162 unsigned long *p = map + BIT_WORD(start);
163 const long size = start + nr;
164 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
165 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
167 assert(start >= 0 && nr >= 0);
169 while (nr - bits_to_set >= 0) {
170 *p |= mask_to_set;
171 nr -= bits_to_set;
172 bits_to_set = BITS_PER_LONG;
173 mask_to_set = ~0UL;
174 p++;
176 if (nr) {
177 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
178 *p |= mask_to_set;
182 void bitmap_set_atomic(unsigned long *map, long start, long nr)
184 unsigned long *p = map + BIT_WORD(start);
185 const long size = start + nr;
186 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
187 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
189 assert(start >= 0 && nr >= 0);
191 /* First word */
192 if (nr - bits_to_set > 0) {
193 atomic_or(p, mask_to_set);
194 nr -= bits_to_set;
195 bits_to_set = BITS_PER_LONG;
196 mask_to_set = ~0UL;
197 p++;
200 /* Full words */
201 if (bits_to_set == BITS_PER_LONG) {
202 while (nr >= BITS_PER_LONG) {
203 *p = ~0UL;
204 nr -= BITS_PER_LONG;
205 p++;
209 /* Last word */
210 if (nr) {
211 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
212 atomic_or(p, mask_to_set);
213 } else {
214 /* If we avoided the full barrier in atomic_or(), issue a
215 * barrier to account for the assignments in the while loop.
217 smp_mb();
221 void bitmap_clear(unsigned long *map, long start, long nr)
223 unsigned long *p = map + BIT_WORD(start);
224 const long size = start + nr;
225 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
226 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
228 assert(start >= 0 && nr >= 0);
230 while (nr - bits_to_clear >= 0) {
231 *p &= ~mask_to_clear;
232 nr -= bits_to_clear;
233 bits_to_clear = BITS_PER_LONG;
234 mask_to_clear = ~0UL;
235 p++;
237 if (nr) {
238 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
239 *p &= ~mask_to_clear;
243 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
245 unsigned long *p = map + BIT_WORD(start);
246 const long size = start + nr;
247 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
248 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
249 unsigned long dirty = 0;
250 unsigned long old_bits;
252 assert(start >= 0 && nr >= 0);
254 /* First word */
255 if (nr - bits_to_clear > 0) {
256 old_bits = atomic_fetch_and(p, ~mask_to_clear);
257 dirty |= old_bits & mask_to_clear;
258 nr -= bits_to_clear;
259 bits_to_clear = BITS_PER_LONG;
260 mask_to_clear = ~0UL;
261 p++;
264 /* Full words */
265 if (bits_to_clear == BITS_PER_LONG) {
266 while (nr >= BITS_PER_LONG) {
267 if (*p) {
268 old_bits = atomic_xchg(p, 0);
269 dirty |= old_bits;
271 nr -= BITS_PER_LONG;
272 p++;
276 /* Last word */
277 if (nr) {
278 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
279 old_bits = atomic_fetch_and(p, ~mask_to_clear);
280 dirty |= old_bits & mask_to_clear;
281 } else {
282 if (!dirty) {
283 smp_mb();
287 return dirty != 0;
290 void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
291 long nr)
293 while (nr > 0) {
294 *dst = atomic_xchg(src, 0);
295 dst++;
296 src++;
297 nr -= BITS_PER_LONG;
301 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
304 * bitmap_find_next_zero_area - find a contiguous aligned zero area
305 * @map: The address to base the search on
306 * @size: The bitmap size in bits
307 * @start: The bitnumber to start searching at
308 * @nr: The number of zeroed bits we're looking for
309 * @align_mask: Alignment mask for zero area
311 * The @align_mask should be one less than a power of 2; the effect is that
312 * the bit offset of all zero areas this function finds is multiples of that
313 * power of 2. A @align_mask of 0 means no alignment is required.
315 unsigned long bitmap_find_next_zero_area(unsigned long *map,
316 unsigned long size,
317 unsigned long start,
318 unsigned long nr,
319 unsigned long align_mask)
321 unsigned long index, end, i;
322 again:
323 index = find_next_zero_bit(map, size, start);
325 /* Align allocation */
326 index = ALIGN_MASK(index, align_mask);
328 end = index + nr;
329 if (end > size) {
330 return end;
332 i = find_next_bit(map, end, index);
333 if (i < end) {
334 start = i + 1;
335 goto again;
337 return index;
340 int slow_bitmap_intersects(const unsigned long *bitmap1,
341 const unsigned long *bitmap2, long bits)
343 long k, lim = bits/BITS_PER_LONG;
345 for (k = 0; k < lim; ++k) {
346 if (bitmap1[k] & bitmap2[k]) {
347 return 1;
351 if (bits % BITS_PER_LONG) {
352 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
353 return 1;
356 return 0;
359 long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
361 long k, lim = nbits / BITS_PER_LONG, result = 0;
363 for (k = 0; k < lim; k++) {
364 result += ctpopl(bitmap[k]);
367 if (nbits % BITS_PER_LONG) {
368 result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits));
371 return result;
374 static void bitmap_to_from_le(unsigned long *dst,
375 const unsigned long *src, long nbits)
377 long len = BITS_TO_LONGS(nbits);
379 #ifdef HOST_WORDS_BIGENDIAN
380 long index;
382 for (index = 0; index < len; index++) {
383 # if HOST_LONG_BITS == 64
384 dst[index] = bswap64(src[index]);
385 # else
386 dst[index] = bswap32(src[index]);
387 # endif
389 #else
390 memcpy(dst, src, len * sizeof(unsigned long));
391 #endif
394 void bitmap_from_le(unsigned long *dst, const unsigned long *src,
395 long nbits)
397 bitmap_to_from_le(dst, src, nbits);
400 void bitmap_to_le(unsigned long *dst, const unsigned long *src,
401 long nbits)
403 bitmap_to_from_le(dst, src, nbits);