qapi: Restrict Xen migration commands to migration.json
[qemu/armbru.git] / block / block-copy.c
blobcd9bc47c8f6d0509fe7240b53341092458b6b487
1 /*
2 * block_copy API
4 * Copyright (C) 2013 Proxmox Server Solutions
5 * Copyright (c) 2019 Virtuozzo International GmbH.
7 * Authors:
8 * Dietmar Maurer (dietmar@proxmox.com)
9 * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
17 #include "trace.h"
18 #include "qapi/error.h"
19 #include "block/block-copy.h"
20 #include "sysemu/block-backend.h"
21 #include "qemu/units.h"
22 #include "qemu/coroutine.h"
23 #include "block/aio_task.h"
25 #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
26 #define BLOCK_COPY_MAX_BUFFER (1 * MiB)
27 #define BLOCK_COPY_MAX_MEM (128 * MiB)
28 #define BLOCK_COPY_MAX_WORKERS 64
30 static coroutine_fn int block_copy_task_entry(AioTask *task);
32 typedef struct BlockCopyCallState {
33 bool failed;
34 bool error_is_read;
35 } BlockCopyCallState;
37 typedef struct BlockCopyTask {
38 AioTask task;
40 BlockCopyState *s;
41 BlockCopyCallState *call_state;
42 int64_t offset;
43 int64_t bytes;
44 bool zeroes;
45 QLIST_ENTRY(BlockCopyTask) list;
46 CoQueue wait_queue; /* coroutines blocked on this task */
47 } BlockCopyTask;
49 static int64_t task_end(BlockCopyTask *task)
51 return task->offset + task->bytes;
54 typedef struct BlockCopyState {
56 * BdrvChild objects are not owned or managed by block-copy. They are
57 * provided by block-copy user and user is responsible for appropriate
58 * permissions on these children.
60 BdrvChild *source;
61 BdrvChild *target;
62 BdrvDirtyBitmap *copy_bitmap;
63 int64_t in_flight_bytes;
64 int64_t cluster_size;
65 bool use_copy_range;
66 int64_t copy_size;
67 uint64_t len;
68 QLIST_HEAD(, BlockCopyTask) tasks;
70 BdrvRequestFlags write_flags;
73 * skip_unallocated:
75 * Used by sync=top jobs, which first scan the source node for unallocated
76 * areas and clear them in the copy_bitmap. During this process, the bitmap
77 * is thus not fully initialized: It may still have bits set for areas that
78 * are unallocated and should actually not be copied.
80 * This is indicated by skip_unallocated.
82 * In this case, block_copy() will query the source’s allocation status,
83 * skip unallocated regions, clear them in the copy_bitmap, and invoke
84 * block_copy_reset_unallocated() every time it does.
86 bool skip_unallocated;
88 ProgressMeter *progress;
89 /* progress_bytes_callback: called when some copying progress is done. */
90 ProgressBytesCallbackFunc progress_bytes_callback;
91 void *progress_opaque;
93 SharedResource *mem;
94 } BlockCopyState;
96 static BlockCopyTask *find_conflicting_task(BlockCopyState *s,
97 int64_t offset, int64_t bytes)
99 BlockCopyTask *t;
101 QLIST_FOREACH(t, &s->tasks, list) {
102 if (offset + bytes > t->offset && offset < t->offset + t->bytes) {
103 return t;
107 return NULL;
111 * If there are no intersecting tasks return false. Otherwise, wait for the
112 * first found intersecting tasks to finish and return true.
114 static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
115 int64_t bytes)
117 BlockCopyTask *task = find_conflicting_task(s, offset, bytes);
119 if (!task) {
120 return false;
123 qemu_co_queue_wait(&task->wait_queue, NULL);
125 return true;
129 * Search for the first dirty area in offset/bytes range and create task at
130 * the beginning of it.
132 static BlockCopyTask *block_copy_task_create(BlockCopyState *s,
133 BlockCopyCallState *call_state,
134 int64_t offset, int64_t bytes)
136 BlockCopyTask *task;
138 if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
139 offset, offset + bytes,
140 s->copy_size, &offset, &bytes))
142 return NULL;
145 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
146 bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
148 /* region is dirty, so no existent tasks possible in it */
149 assert(!find_conflicting_task(s, offset, bytes));
151 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
152 s->in_flight_bytes += bytes;
154 task = g_new(BlockCopyTask, 1);
155 *task = (BlockCopyTask) {
156 .task.func = block_copy_task_entry,
157 .s = s,
158 .call_state = call_state,
159 .offset = offset,
160 .bytes = bytes,
162 qemu_co_queue_init(&task->wait_queue);
163 QLIST_INSERT_HEAD(&s->tasks, task, list);
165 return task;
169 * block_copy_task_shrink
171 * Drop the tail of the task to be handled later. Set dirty bits back and
172 * wake up all tasks waiting for us (may be some of them are not intersecting
173 * with shrunk task)
175 static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
176 int64_t new_bytes)
178 if (new_bytes == task->bytes) {
179 return;
182 assert(new_bytes > 0 && new_bytes < task->bytes);
184 task->s->in_flight_bytes -= task->bytes - new_bytes;
185 bdrv_set_dirty_bitmap(task->s->copy_bitmap,
186 task->offset + new_bytes, task->bytes - new_bytes);
188 task->bytes = new_bytes;
189 qemu_co_queue_restart_all(&task->wait_queue);
192 static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
194 task->s->in_flight_bytes -= task->bytes;
195 if (ret < 0) {
196 bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes);
198 QLIST_REMOVE(task, list);
199 qemu_co_queue_restart_all(&task->wait_queue);
202 void block_copy_state_free(BlockCopyState *s)
204 if (!s) {
205 return;
208 bdrv_release_dirty_bitmap(s->copy_bitmap);
209 shres_destroy(s->mem);
210 g_free(s);
213 static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
215 return MIN_NON_ZERO(INT_MAX,
216 MIN_NON_ZERO(source->bs->bl.max_transfer,
217 target->bs->bl.max_transfer));
220 BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
221 int64_t cluster_size,
222 BdrvRequestFlags write_flags, Error **errp)
224 BlockCopyState *s;
225 BdrvDirtyBitmap *copy_bitmap;
227 copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
228 errp);
229 if (!copy_bitmap) {
230 return NULL;
232 bdrv_disable_dirty_bitmap(copy_bitmap);
234 s = g_new(BlockCopyState, 1);
235 *s = (BlockCopyState) {
236 .source = source,
237 .target = target,
238 .copy_bitmap = copy_bitmap,
239 .cluster_size = cluster_size,
240 .len = bdrv_dirty_bitmap_size(copy_bitmap),
241 .write_flags = write_flags,
242 .mem = shres_create(BLOCK_COPY_MAX_MEM),
245 if (block_copy_max_transfer(source, target) < cluster_size) {
247 * copy_range does not respect max_transfer. We don't want to bother
248 * with requests smaller than block-copy cluster size, so fallback to
249 * buffered copying (read and write respect max_transfer on their
250 * behalf).
252 s->use_copy_range = false;
253 s->copy_size = cluster_size;
254 } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
255 /* Compression supports only cluster-size writes and no copy-range. */
256 s->use_copy_range = false;
257 s->copy_size = cluster_size;
258 } else {
260 * We enable copy-range, but keep small copy_size, until first
261 * successful copy_range (look at block_copy_do_copy).
263 s->use_copy_range = true;
264 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
267 QLIST_INIT(&s->tasks);
269 return s;
272 void block_copy_set_progress_callback(
273 BlockCopyState *s,
274 ProgressBytesCallbackFunc progress_bytes_callback,
275 void *progress_opaque)
277 s->progress_bytes_callback = progress_bytes_callback;
278 s->progress_opaque = progress_opaque;
281 void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
283 s->progress = pm;
287 * Takes ownership of @task
289 * If pool is NULL directly run the task, otherwise schedule it into the pool.
291 * Returns: task.func return code if pool is NULL
292 * otherwise -ECANCELED if pool status is bad
293 * otherwise 0 (successfully scheduled)
295 static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
296 BlockCopyTask *task)
298 if (!pool) {
299 int ret = task->task.func(&task->task);
301 g_free(task);
302 return ret;
305 aio_task_pool_wait_slot(pool);
306 if (aio_task_pool_status(pool) < 0) {
307 co_put_to_shres(task->s->mem, task->bytes);
308 block_copy_task_end(task, -ECANCELED);
309 g_free(task);
310 return -ECANCELED;
313 aio_task_pool_start_task(pool, &task->task);
315 return 0;
319 * block_copy_do_copy
321 * Do copy of cluster-aligned chunk. Requested region is allowed to exceed
322 * s->len only to cover last cluster when s->len is not aligned to clusters.
324 * No sync here: nor bitmap neighter intersecting requests handling, only copy.
326 * Returns 0 on success.
328 static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
329 int64_t offset, int64_t bytes,
330 bool zeroes, bool *error_is_read)
332 int ret;
333 int64_t nbytes = MIN(offset + bytes, s->len) - offset;
334 void *bounce_buffer = NULL;
336 assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
337 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
338 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
339 assert(offset < s->len);
340 assert(offset + bytes <= s->len ||
341 offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
342 assert(nbytes < INT_MAX);
344 if (zeroes) {
345 ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
346 ~BDRV_REQ_WRITE_COMPRESSED);
347 if (ret < 0) {
348 trace_block_copy_write_zeroes_fail(s, offset, ret);
349 *error_is_read = false;
351 return ret;
354 if (s->use_copy_range) {
355 ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
356 0, s->write_flags);
357 if (ret < 0) {
358 trace_block_copy_copy_range_fail(s, offset, ret);
359 s->use_copy_range = false;
360 s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
361 /* Fallback to read+write with allocated buffer */
362 } else {
363 if (s->use_copy_range) {
365 * Successful copy-range. Now increase copy_size. copy_range
366 * does not respect max_transfer (it's a TODO), so we factor
367 * that in here.
369 * Note: we double-check s->use_copy_range for the case when
370 * parallel block-copy request unsets it during previous
371 * bdrv_co_copy_range call.
373 s->copy_size =
374 MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
375 QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
376 s->target),
377 s->cluster_size));
379 goto out;
384 * In case of failed copy_range request above, we may proceed with buffered
385 * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
386 * be properly limited, so don't care too much. Moreover the most likely
387 * case (copy_range is unsupported for the configuration, so the very first
388 * copy_range request fails) is handled by setting large copy_size only
389 * after first successful copy_range.
392 bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
394 ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
395 if (ret < 0) {
396 trace_block_copy_read_fail(s, offset, ret);
397 *error_is_read = true;
398 goto out;
401 ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
402 s->write_flags);
403 if (ret < 0) {
404 trace_block_copy_write_fail(s, offset, ret);
405 *error_is_read = false;
406 goto out;
409 out:
410 qemu_vfree(bounce_buffer);
412 return ret;
415 static coroutine_fn int block_copy_task_entry(AioTask *task)
417 BlockCopyTask *t = container_of(task, BlockCopyTask, task);
418 bool error_is_read = false;
419 int ret;
421 ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes,
422 &error_is_read);
423 if (ret < 0 && !t->call_state->failed) {
424 t->call_state->failed = true;
425 t->call_state->error_is_read = error_is_read;
426 } else {
427 progress_work_done(t->s->progress, t->bytes);
428 t->s->progress_bytes_callback(t->bytes, t->s->progress_opaque);
430 co_put_to_shres(t->s->mem, t->bytes);
431 block_copy_task_end(t, ret);
433 return ret;
436 static int block_copy_block_status(BlockCopyState *s, int64_t offset,
437 int64_t bytes, int64_t *pnum)
439 int64_t num;
440 BlockDriverState *base;
441 int ret;
443 if (s->skip_unallocated) {
444 base = bdrv_backing_chain_next(s->source->bs);
445 } else {
446 base = NULL;
449 ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
450 NULL, NULL);
451 if (ret < 0 || num < s->cluster_size) {
453 * On error or if failed to obtain large enough chunk just fallback to
454 * copy one cluster.
456 num = s->cluster_size;
457 ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
458 } else if (offset + num == s->len) {
459 num = QEMU_ALIGN_UP(num, s->cluster_size);
460 } else {
461 num = QEMU_ALIGN_DOWN(num, s->cluster_size);
464 *pnum = num;
465 return ret;
469 * Check if the cluster starting at offset is allocated or not.
470 * return via pnum the number of contiguous clusters sharing this allocation.
472 static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
473 int64_t *pnum)
475 BlockDriverState *bs = s->source->bs;
476 int64_t count, total_count = 0;
477 int64_t bytes = s->len - offset;
478 int ret;
480 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
482 while (true) {
483 ret = bdrv_is_allocated(bs, offset, bytes, &count);
484 if (ret < 0) {
485 return ret;
488 total_count += count;
490 if (ret || count == 0) {
492 * ret: partial segment(s) are considered allocated.
493 * otherwise: unallocated tail is treated as an entire segment.
495 *pnum = DIV_ROUND_UP(total_count, s->cluster_size);
496 return ret;
499 /* Unallocated segment(s) with uncertain following segment(s) */
500 if (total_count >= s->cluster_size) {
501 *pnum = total_count / s->cluster_size;
502 return 0;
505 offset += count;
506 bytes -= count;
511 * Reset bits in copy_bitmap starting at offset if they represent unallocated
512 * data in the image. May reset subsequent contiguous bits.
513 * @return 0 when the cluster at @offset was unallocated,
514 * 1 otherwise, and -ret on error.
516 int64_t block_copy_reset_unallocated(BlockCopyState *s,
517 int64_t offset, int64_t *count)
519 int ret;
520 int64_t clusters, bytes;
522 ret = block_copy_is_cluster_allocated(s, offset, &clusters);
523 if (ret < 0) {
524 return ret;
527 bytes = clusters * s->cluster_size;
529 if (!ret) {
530 bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
531 progress_set_remaining(s->progress,
532 bdrv_get_dirty_count(s->copy_bitmap) +
533 s->in_flight_bytes);
536 *count = bytes;
537 return ret;
541 * block_copy_dirty_clusters
543 * Copy dirty clusters in @offset/@bytes range.
544 * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
545 * clusters found and -errno on failure.
547 static int coroutine_fn block_copy_dirty_clusters(BlockCopyState *s,
548 int64_t offset, int64_t bytes,
549 bool *error_is_read)
551 int ret = 0;
552 bool found_dirty = false;
553 int64_t end = offset + bytes;
554 AioTaskPool *aio = NULL;
555 BlockCopyCallState call_state = {false, false};
558 * block_copy() user is responsible for keeping source and target in same
559 * aio context
561 assert(bdrv_get_aio_context(s->source->bs) ==
562 bdrv_get_aio_context(s->target->bs));
564 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
565 assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
567 while (bytes && aio_task_pool_status(aio) == 0) {
568 BlockCopyTask *task;
569 int64_t status_bytes;
571 task = block_copy_task_create(s, &call_state, offset, bytes);
572 if (!task) {
573 /* No more dirty bits in the bitmap */
574 trace_block_copy_skip_range(s, offset, bytes);
575 break;
577 if (task->offset > offset) {
578 trace_block_copy_skip_range(s, offset, task->offset - offset);
581 found_dirty = true;
583 ret = block_copy_block_status(s, task->offset, task->bytes,
584 &status_bytes);
585 assert(ret >= 0); /* never fail */
586 if (status_bytes < task->bytes) {
587 block_copy_task_shrink(task, status_bytes);
589 if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
590 block_copy_task_end(task, 0);
591 progress_set_remaining(s->progress,
592 bdrv_get_dirty_count(s->copy_bitmap) +
593 s->in_flight_bytes);
594 trace_block_copy_skip_range(s, task->offset, task->bytes);
595 offset = task_end(task);
596 bytes = end - offset;
597 g_free(task);
598 continue;
600 task->zeroes = ret & BDRV_BLOCK_ZERO;
602 trace_block_copy_process(s, task->offset);
604 co_get_from_shres(s->mem, task->bytes);
606 offset = task_end(task);
607 bytes = end - offset;
609 if (!aio && bytes) {
610 aio = aio_task_pool_new(BLOCK_COPY_MAX_WORKERS);
613 ret = block_copy_task_run(aio, task);
614 if (ret < 0) {
615 goto out;
619 out:
620 if (aio) {
621 aio_task_pool_wait_all(aio);
624 * We are not really interested in -ECANCELED returned from
625 * block_copy_task_run. If it fails, it means some task already failed
626 * for real reason, let's return first failure.
627 * Still, assert that we don't rewrite failure by success.
629 * Note: ret may be positive here because of block-status result.
631 assert(ret >= 0 || aio_task_pool_status(aio) < 0);
632 ret = aio_task_pool_status(aio);
634 aio_task_pool_free(aio);
636 if (error_is_read && ret < 0) {
637 *error_is_read = call_state.error_is_read;
640 return ret < 0 ? ret : found_dirty;
644 * block_copy
646 * Copy requested region, accordingly to dirty bitmap.
647 * Collaborate with parallel block_copy requests: if they succeed it will help
648 * us. If they fail, we will retry not-copied regions. So, if we return error,
649 * it means that some I/O operation failed in context of _this_ block_copy call,
650 * not some parallel operation.
652 int coroutine_fn block_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
653 bool *error_is_read)
655 int ret;
657 do {
658 ret = block_copy_dirty_clusters(s, offset, bytes, error_is_read);
660 if (ret == 0) {
661 ret = block_copy_wait_one(s, offset, bytes);
665 * We retry in two cases:
666 * 1. Some progress done
667 * Something was copied, which means that there were yield points
668 * and some new dirty bits may have appeared (due to failed parallel
669 * block-copy requests).
670 * 2. We have waited for some intersecting block-copy request
671 * It may have failed and produced new dirty bits.
673 } while (ret > 0);
675 return ret;
678 BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
680 return s->copy_bitmap;
683 void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
685 s->skip_unallocated = skip;