json: Update references to RFC 7159 to RFC 8259
[qemu/armbru.git] / block / io.c
blob7100344c7b3575dec609f6de8a12d549142b9a8a
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
36 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 static AioWait drain_all_aio_wait;
43 static void bdrv_parent_cb_resize(BlockDriverState *bs);
44 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
45 int64_t offset, int bytes, BdrvRequestFlags flags);
47 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
48 bool ignore_bds_parents)
50 BdrvChild *c, *next;
52 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
53 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
54 continue;
56 bdrv_parent_drained_begin_single(c, false);
60 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
61 bool ignore_bds_parents)
63 BdrvChild *c, *next;
65 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
66 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
67 continue;
69 if (c->role->drained_end) {
70 c->role->drained_end(c);
75 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
77 if (c->role->drained_poll) {
78 return c->role->drained_poll(c);
80 return false;
83 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
84 bool ignore_bds_parents)
86 BdrvChild *c, *next;
87 bool busy = false;
89 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
90 if (c == ignore || (ignore_bds_parents && c->role->parent_is_bds)) {
91 continue;
93 busy |= bdrv_parent_drained_poll_single(c);
96 return busy;
99 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
101 if (c->role->drained_begin) {
102 c->role->drained_begin(c);
104 if (poll) {
105 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
109 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
111 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
112 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
113 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
114 src->opt_mem_alignment);
115 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
116 src->min_mem_alignment);
117 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
120 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
122 BlockDriver *drv = bs->drv;
123 Error *local_err = NULL;
125 memset(&bs->bl, 0, sizeof(bs->bl));
127 if (!drv) {
128 return;
131 /* Default alignment based on whether driver has byte interface */
132 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
133 drv->bdrv_aio_preadv) ? 1 : 512;
135 /* Take some limits from the children as a default */
136 if (bs->file) {
137 bdrv_refresh_limits(bs->file->bs, &local_err);
138 if (local_err) {
139 error_propagate(errp, local_err);
140 return;
142 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
143 } else {
144 bs->bl.min_mem_alignment = 512;
145 bs->bl.opt_mem_alignment = getpagesize();
147 /* Safe default since most protocols use readv()/writev()/etc */
148 bs->bl.max_iov = IOV_MAX;
151 if (bs->backing) {
152 bdrv_refresh_limits(bs->backing->bs, &local_err);
153 if (local_err) {
154 error_propagate(errp, local_err);
155 return;
157 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
160 /* Then let the driver override it */
161 if (drv->bdrv_refresh_limits) {
162 drv->bdrv_refresh_limits(bs, errp);
167 * The copy-on-read flag is actually a reference count so multiple users may
168 * use the feature without worrying about clobbering its previous state.
169 * Copy-on-read stays enabled until all users have called to disable it.
171 void bdrv_enable_copy_on_read(BlockDriverState *bs)
173 atomic_inc(&bs->copy_on_read);
176 void bdrv_disable_copy_on_read(BlockDriverState *bs)
178 int old = atomic_fetch_dec(&bs->copy_on_read);
179 assert(old >= 1);
182 typedef struct {
183 Coroutine *co;
184 BlockDriverState *bs;
185 bool done;
186 bool begin;
187 bool recursive;
188 bool poll;
189 BdrvChild *parent;
190 bool ignore_bds_parents;
191 } BdrvCoDrainData;
193 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
195 BdrvCoDrainData *data = opaque;
196 BlockDriverState *bs = data->bs;
198 if (data->begin) {
199 bs->drv->bdrv_co_drain_begin(bs);
200 } else {
201 bs->drv->bdrv_co_drain_end(bs);
204 /* Set data->done before reading bs->wakeup. */
205 atomic_mb_set(&data->done, true);
206 bdrv_dec_in_flight(bs);
208 if (data->begin) {
209 g_free(data);
213 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
214 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
216 BdrvCoDrainData *data;
218 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
219 (!begin && !bs->drv->bdrv_co_drain_end)) {
220 return;
223 data = g_new(BdrvCoDrainData, 1);
224 *data = (BdrvCoDrainData) {
225 .bs = bs,
226 .done = false,
227 .begin = begin
230 /* Make sure the driver callback completes during the polling phase for
231 * drain_begin. */
232 bdrv_inc_in_flight(bs);
233 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
234 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
236 if (!begin) {
237 BDRV_POLL_WHILE(bs, !data->done);
238 g_free(data);
242 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
243 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
244 BdrvChild *ignore_parent, bool ignore_bds_parents)
246 BdrvChild *child, *next;
248 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
249 return true;
252 if (atomic_read(&bs->in_flight)) {
253 return true;
256 if (recursive) {
257 assert(!ignore_bds_parents);
258 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
259 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
260 return true;
265 return false;
268 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
269 BdrvChild *ignore_parent)
271 /* Execute pending BHs first and check everything else only after the BHs
272 * have executed. */
273 while (aio_poll(bs->aio_context, false));
275 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
278 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
279 BdrvChild *parent, bool ignore_bds_parents,
280 bool poll);
281 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
282 BdrvChild *parent, bool ignore_bds_parents);
284 static void bdrv_co_drain_bh_cb(void *opaque)
286 BdrvCoDrainData *data = opaque;
287 Coroutine *co = data->co;
288 BlockDriverState *bs = data->bs;
290 if (bs) {
291 bdrv_dec_in_flight(bs);
292 if (data->begin) {
293 bdrv_do_drained_begin(bs, data->recursive, data->parent,
294 data->ignore_bds_parents, data->poll);
295 } else {
296 bdrv_do_drained_end(bs, data->recursive, data->parent,
297 data->ignore_bds_parents);
299 } else {
300 assert(data->begin);
301 bdrv_drain_all_begin();
304 data->done = true;
305 aio_co_wake(co);
308 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
309 bool begin, bool recursive,
310 BdrvChild *parent,
311 bool ignore_bds_parents,
312 bool poll)
314 BdrvCoDrainData data;
316 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
317 * other coroutines run if they were queued by aio_co_enter(). */
319 assert(qemu_in_coroutine());
320 data = (BdrvCoDrainData) {
321 .co = qemu_coroutine_self(),
322 .bs = bs,
323 .done = false,
324 .begin = begin,
325 .recursive = recursive,
326 .parent = parent,
327 .ignore_bds_parents = ignore_bds_parents,
328 .poll = poll,
330 if (bs) {
331 bdrv_inc_in_flight(bs);
333 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
334 bdrv_co_drain_bh_cb, &data);
336 qemu_coroutine_yield();
337 /* If we are resumed from some other event (such as an aio completion or a
338 * timer callback), it is a bug in the caller that should be fixed. */
339 assert(data.done);
342 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
343 BdrvChild *parent, bool ignore_bds_parents)
345 assert(!qemu_in_coroutine());
347 /* Stop things in parent-to-child order */
348 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
349 aio_disable_external(bdrv_get_aio_context(bs));
352 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
353 bdrv_drain_invoke(bs, true);
356 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
357 BdrvChild *parent, bool ignore_bds_parents,
358 bool poll)
360 BdrvChild *child, *next;
362 if (qemu_in_coroutine()) {
363 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
364 poll);
365 return;
368 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
370 if (recursive) {
371 assert(!ignore_bds_parents);
372 bs->recursive_quiesce_counter++;
373 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
374 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
375 false);
380 * Wait for drained requests to finish.
382 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
383 * call is needed so things in this AioContext can make progress even
384 * though we don't return to the main AioContext loop - this automatically
385 * includes other nodes in the same AioContext and therefore all child
386 * nodes.
388 if (poll) {
389 assert(!ignore_bds_parents);
390 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
394 void bdrv_drained_begin(BlockDriverState *bs)
396 bdrv_do_drained_begin(bs, false, NULL, false, true);
399 void bdrv_subtree_drained_begin(BlockDriverState *bs)
401 bdrv_do_drained_begin(bs, true, NULL, false, true);
404 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
405 BdrvChild *parent, bool ignore_bds_parents)
407 BdrvChild *child, *next;
408 int old_quiesce_counter;
410 if (qemu_in_coroutine()) {
411 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
412 false);
413 return;
415 assert(bs->quiesce_counter > 0);
416 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
418 /* Re-enable things in child-to-parent order */
419 bdrv_drain_invoke(bs, false);
420 bdrv_parent_drained_end(bs, parent, ignore_bds_parents);
421 if (old_quiesce_counter == 1) {
422 aio_enable_external(bdrv_get_aio_context(bs));
425 if (recursive) {
426 assert(!ignore_bds_parents);
427 bs->recursive_quiesce_counter--;
428 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
429 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents);
434 void bdrv_drained_end(BlockDriverState *bs)
436 bdrv_do_drained_end(bs, false, NULL, false);
439 void bdrv_subtree_drained_end(BlockDriverState *bs)
441 bdrv_do_drained_end(bs, true, NULL, false);
444 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
446 int i;
448 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
449 bdrv_do_drained_begin(child->bs, true, child, false, true);
453 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
455 int i;
457 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
458 bdrv_do_drained_end(child->bs, true, child, false);
463 * Wait for pending requests to complete on a single BlockDriverState subtree,
464 * and suspend block driver's internal I/O until next request arrives.
466 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
467 * AioContext.
469 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
471 assert(qemu_in_coroutine());
472 bdrv_drained_begin(bs);
473 bdrv_drained_end(bs);
476 void bdrv_drain(BlockDriverState *bs)
478 bdrv_drained_begin(bs);
479 bdrv_drained_end(bs);
482 static void bdrv_drain_assert_idle(BlockDriverState *bs)
484 BdrvChild *child, *next;
486 assert(atomic_read(&bs->in_flight) == 0);
487 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
488 bdrv_drain_assert_idle(child->bs);
492 unsigned int bdrv_drain_all_count = 0;
494 static bool bdrv_drain_all_poll(void)
496 BlockDriverState *bs = NULL;
497 bool result = false;
499 /* Execute pending BHs first (may modify the graph) and check everything
500 * else only after the BHs have executed. */
501 while (aio_poll(qemu_get_aio_context(), false));
503 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
504 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 AioContext *aio_context = bdrv_get_aio_context(bs);
507 aio_context_acquire(aio_context);
508 result |= bdrv_drain_poll(bs, false, NULL, true);
509 aio_context_release(aio_context);
512 return result;
516 * Wait for pending requests to complete across all BlockDriverStates
518 * This function does not flush data to disk, use bdrv_flush_all() for that
519 * after calling this function.
521 * This pauses all block jobs and disables external clients. It must
522 * be paired with bdrv_drain_all_end().
524 * NOTE: no new block jobs or BlockDriverStates can be created between
525 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
527 void bdrv_drain_all_begin(void)
529 BlockDriverState *bs = NULL;
531 if (qemu_in_coroutine()) {
532 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true);
533 return;
536 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
537 * loop AioContext, so make sure we're in the main context. */
538 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
539 assert(bdrv_drain_all_count < INT_MAX);
540 bdrv_drain_all_count++;
542 /* Quiesce all nodes, without polling in-flight requests yet. The graph
543 * cannot change during this loop. */
544 while ((bs = bdrv_next_all_states(bs))) {
545 AioContext *aio_context = bdrv_get_aio_context(bs);
547 aio_context_acquire(aio_context);
548 bdrv_do_drained_begin(bs, false, NULL, true, false);
549 aio_context_release(aio_context);
552 /* Now poll the in-flight requests */
553 AIO_WAIT_WHILE(&drain_all_aio_wait, NULL, bdrv_drain_all_poll());
555 while ((bs = bdrv_next_all_states(bs))) {
556 bdrv_drain_assert_idle(bs);
560 void bdrv_drain_all_end(void)
562 BlockDriverState *bs = NULL;
564 while ((bs = bdrv_next_all_states(bs))) {
565 AioContext *aio_context = bdrv_get_aio_context(bs);
567 aio_context_acquire(aio_context);
568 bdrv_do_drained_end(bs, false, NULL, true);
569 aio_context_release(aio_context);
572 assert(bdrv_drain_all_count > 0);
573 bdrv_drain_all_count--;
576 void bdrv_drain_all(void)
578 bdrv_drain_all_begin();
579 bdrv_drain_all_end();
583 * Remove an active request from the tracked requests list
585 * This function should be called when a tracked request is completing.
587 static void tracked_request_end(BdrvTrackedRequest *req)
589 if (req->serialising) {
590 atomic_dec(&req->bs->serialising_in_flight);
593 qemu_co_mutex_lock(&req->bs->reqs_lock);
594 QLIST_REMOVE(req, list);
595 qemu_co_queue_restart_all(&req->wait_queue);
596 qemu_co_mutex_unlock(&req->bs->reqs_lock);
600 * Add an active request to the tracked requests list
602 static void tracked_request_begin(BdrvTrackedRequest *req,
603 BlockDriverState *bs,
604 int64_t offset,
605 uint64_t bytes,
606 enum BdrvTrackedRequestType type)
608 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
610 *req = (BdrvTrackedRequest){
611 .bs = bs,
612 .offset = offset,
613 .bytes = bytes,
614 .type = type,
615 .co = qemu_coroutine_self(),
616 .serialising = false,
617 .overlap_offset = offset,
618 .overlap_bytes = bytes,
621 qemu_co_queue_init(&req->wait_queue);
623 qemu_co_mutex_lock(&bs->reqs_lock);
624 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
625 qemu_co_mutex_unlock(&bs->reqs_lock);
628 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
630 int64_t overlap_offset = req->offset & ~(align - 1);
631 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
632 - overlap_offset;
634 if (!req->serialising) {
635 atomic_inc(&req->bs->serialising_in_flight);
636 req->serialising = true;
639 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
640 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
643 static bool is_request_serialising_and_aligned(BdrvTrackedRequest *req)
646 * If the request is serialising, overlap_offset and overlap_bytes are set,
647 * so we can check if the request is aligned. Otherwise, don't care and
648 * return false.
651 return req->serialising && (req->offset == req->overlap_offset) &&
652 (req->bytes == req->overlap_bytes);
656 * Round a region to cluster boundaries
658 void bdrv_round_to_clusters(BlockDriverState *bs,
659 int64_t offset, int64_t bytes,
660 int64_t *cluster_offset,
661 int64_t *cluster_bytes)
663 BlockDriverInfo bdi;
665 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
666 *cluster_offset = offset;
667 *cluster_bytes = bytes;
668 } else {
669 int64_t c = bdi.cluster_size;
670 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
671 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
675 static int bdrv_get_cluster_size(BlockDriverState *bs)
677 BlockDriverInfo bdi;
678 int ret;
680 ret = bdrv_get_info(bs, &bdi);
681 if (ret < 0 || bdi.cluster_size == 0) {
682 return bs->bl.request_alignment;
683 } else {
684 return bdi.cluster_size;
688 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
689 int64_t offset, uint64_t bytes)
691 /* aaaa bbbb */
692 if (offset >= req->overlap_offset + req->overlap_bytes) {
693 return false;
695 /* bbbb aaaa */
696 if (req->overlap_offset >= offset + bytes) {
697 return false;
699 return true;
702 void bdrv_inc_in_flight(BlockDriverState *bs)
704 atomic_inc(&bs->in_flight);
707 void bdrv_wakeup(BlockDriverState *bs)
709 aio_wait_kick(bdrv_get_aio_wait(bs));
710 aio_wait_kick(&drain_all_aio_wait);
713 void bdrv_dec_in_flight(BlockDriverState *bs)
715 atomic_dec(&bs->in_flight);
716 bdrv_wakeup(bs);
719 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
721 BlockDriverState *bs = self->bs;
722 BdrvTrackedRequest *req;
723 bool retry;
724 bool waited = false;
726 if (!atomic_read(&bs->serialising_in_flight)) {
727 return false;
730 do {
731 retry = false;
732 qemu_co_mutex_lock(&bs->reqs_lock);
733 QLIST_FOREACH(req, &bs->tracked_requests, list) {
734 if (req == self || (!req->serialising && !self->serialising)) {
735 continue;
737 if (tracked_request_overlaps(req, self->overlap_offset,
738 self->overlap_bytes))
740 /* Hitting this means there was a reentrant request, for
741 * example, a block driver issuing nested requests. This must
742 * never happen since it means deadlock.
744 assert(qemu_coroutine_self() != req->co);
746 /* If the request is already (indirectly) waiting for us, or
747 * will wait for us as soon as it wakes up, then just go on
748 * (instead of producing a deadlock in the former case). */
749 if (!req->waiting_for) {
750 self->waiting_for = req;
751 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
752 self->waiting_for = NULL;
753 retry = true;
754 waited = true;
755 break;
759 qemu_co_mutex_unlock(&bs->reqs_lock);
760 } while (retry);
762 return waited;
765 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
766 size_t size)
768 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
769 return -EIO;
772 if (!bdrv_is_inserted(bs)) {
773 return -ENOMEDIUM;
776 if (offset < 0) {
777 return -EIO;
780 return 0;
783 typedef struct RwCo {
784 BdrvChild *child;
785 int64_t offset;
786 QEMUIOVector *qiov;
787 bool is_write;
788 int ret;
789 BdrvRequestFlags flags;
790 } RwCo;
792 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
794 RwCo *rwco = opaque;
796 if (!rwco->is_write) {
797 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
798 rwco->qiov->size, rwco->qiov,
799 rwco->flags);
800 } else {
801 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
802 rwco->qiov->size, rwco->qiov,
803 rwco->flags);
808 * Process a vectored synchronous request using coroutines
810 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
811 QEMUIOVector *qiov, bool is_write,
812 BdrvRequestFlags flags)
814 Coroutine *co;
815 RwCo rwco = {
816 .child = child,
817 .offset = offset,
818 .qiov = qiov,
819 .is_write = is_write,
820 .ret = NOT_DONE,
821 .flags = flags,
824 if (qemu_in_coroutine()) {
825 /* Fast-path if already in coroutine context */
826 bdrv_rw_co_entry(&rwco);
827 } else {
828 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
829 bdrv_coroutine_enter(child->bs, co);
830 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
832 return rwco.ret;
836 * Process a synchronous request using coroutines
838 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
839 int nb_sectors, bool is_write, BdrvRequestFlags flags)
841 QEMUIOVector qiov;
842 struct iovec iov = {
843 .iov_base = (void *)buf,
844 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
847 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
848 return -EINVAL;
851 qemu_iovec_init_external(&qiov, &iov, 1);
852 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
853 &qiov, is_write, flags);
856 /* return < 0 if error. See bdrv_write() for the return codes */
857 int bdrv_read(BdrvChild *child, int64_t sector_num,
858 uint8_t *buf, int nb_sectors)
860 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
863 /* Return < 0 if error. Important errors are:
864 -EIO generic I/O error (may happen for all errors)
865 -ENOMEDIUM No media inserted.
866 -EINVAL Invalid sector number or nb_sectors
867 -EACCES Trying to write a read-only device
869 int bdrv_write(BdrvChild *child, int64_t sector_num,
870 const uint8_t *buf, int nb_sectors)
872 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
875 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
876 int bytes, BdrvRequestFlags flags)
878 QEMUIOVector qiov;
879 struct iovec iov = {
880 .iov_base = NULL,
881 .iov_len = bytes,
884 qemu_iovec_init_external(&qiov, &iov, 1);
885 return bdrv_prwv_co(child, offset, &qiov, true,
886 BDRV_REQ_ZERO_WRITE | flags);
890 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
891 * The operation is sped up by checking the block status and only writing
892 * zeroes to the device if they currently do not return zeroes. Optional
893 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
894 * BDRV_REQ_FUA).
896 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
898 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
900 int ret;
901 int64_t target_size, bytes, offset = 0;
902 BlockDriverState *bs = child->bs;
904 target_size = bdrv_getlength(bs);
905 if (target_size < 0) {
906 return target_size;
909 for (;;) {
910 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
911 if (bytes <= 0) {
912 return 0;
914 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
915 if (ret < 0) {
916 error_report("error getting block status at offset %" PRId64 ": %s",
917 offset, strerror(-ret));
918 return ret;
920 if (ret & BDRV_BLOCK_ZERO) {
921 offset += bytes;
922 continue;
924 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
925 if (ret < 0) {
926 error_report("error writing zeroes at offset %" PRId64 ": %s",
927 offset, strerror(-ret));
928 return ret;
930 offset += bytes;
934 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
936 int ret;
938 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
939 if (ret < 0) {
940 return ret;
943 return qiov->size;
946 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
948 QEMUIOVector qiov;
949 struct iovec iov = {
950 .iov_base = (void *)buf,
951 .iov_len = bytes,
954 if (bytes < 0) {
955 return -EINVAL;
958 qemu_iovec_init_external(&qiov, &iov, 1);
959 return bdrv_preadv(child, offset, &qiov);
962 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
964 int ret;
966 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
967 if (ret < 0) {
968 return ret;
971 return qiov->size;
974 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
976 QEMUIOVector qiov;
977 struct iovec iov = {
978 .iov_base = (void *) buf,
979 .iov_len = bytes,
982 if (bytes < 0) {
983 return -EINVAL;
986 qemu_iovec_init_external(&qiov, &iov, 1);
987 return bdrv_pwritev(child, offset, &qiov);
991 * Writes to the file and ensures that no writes are reordered across this
992 * request (acts as a barrier)
994 * Returns 0 on success, -errno in error cases.
996 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
997 const void *buf, int count)
999 int ret;
1001 ret = bdrv_pwrite(child, offset, buf, count);
1002 if (ret < 0) {
1003 return ret;
1006 ret = bdrv_flush(child->bs);
1007 if (ret < 0) {
1008 return ret;
1011 return 0;
1014 typedef struct CoroutineIOCompletion {
1015 Coroutine *coroutine;
1016 int ret;
1017 } CoroutineIOCompletion;
1019 static void bdrv_co_io_em_complete(void *opaque, int ret)
1021 CoroutineIOCompletion *co = opaque;
1023 co->ret = ret;
1024 aio_co_wake(co->coroutine);
1027 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1028 uint64_t offset, uint64_t bytes,
1029 QEMUIOVector *qiov, int flags)
1031 BlockDriver *drv = bs->drv;
1032 int64_t sector_num;
1033 unsigned int nb_sectors;
1035 assert(!(flags & ~BDRV_REQ_MASK));
1037 if (!drv) {
1038 return -ENOMEDIUM;
1041 if (drv->bdrv_co_preadv) {
1042 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1045 if (drv->bdrv_aio_preadv) {
1046 BlockAIOCB *acb;
1047 CoroutineIOCompletion co = {
1048 .coroutine = qemu_coroutine_self(),
1051 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1052 bdrv_co_io_em_complete, &co);
1053 if (acb == NULL) {
1054 return -EIO;
1055 } else {
1056 qemu_coroutine_yield();
1057 return co.ret;
1061 sector_num = offset >> BDRV_SECTOR_BITS;
1062 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1064 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1065 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1066 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1067 assert(drv->bdrv_co_readv);
1069 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1072 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1073 uint64_t offset, uint64_t bytes,
1074 QEMUIOVector *qiov, int flags)
1076 BlockDriver *drv = bs->drv;
1077 int64_t sector_num;
1078 unsigned int nb_sectors;
1079 int ret;
1081 assert(!(flags & ~BDRV_REQ_MASK));
1083 if (!drv) {
1084 return -ENOMEDIUM;
1087 if (drv->bdrv_co_pwritev) {
1088 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1089 flags & bs->supported_write_flags);
1090 flags &= ~bs->supported_write_flags;
1091 goto emulate_flags;
1094 if (drv->bdrv_aio_pwritev) {
1095 BlockAIOCB *acb;
1096 CoroutineIOCompletion co = {
1097 .coroutine = qemu_coroutine_self(),
1100 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1101 flags & bs->supported_write_flags,
1102 bdrv_co_io_em_complete, &co);
1103 flags &= ~bs->supported_write_flags;
1104 if (acb == NULL) {
1105 ret = -EIO;
1106 } else {
1107 qemu_coroutine_yield();
1108 ret = co.ret;
1110 goto emulate_flags;
1113 sector_num = offset >> BDRV_SECTOR_BITS;
1114 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1116 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1117 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1118 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
1120 assert(drv->bdrv_co_writev);
1121 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1122 flags & bs->supported_write_flags);
1123 flags &= ~bs->supported_write_flags;
1125 emulate_flags:
1126 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1127 ret = bdrv_co_flush(bs);
1130 return ret;
1133 static int coroutine_fn
1134 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1135 uint64_t bytes, QEMUIOVector *qiov)
1137 BlockDriver *drv = bs->drv;
1139 if (!drv) {
1140 return -ENOMEDIUM;
1143 if (!drv->bdrv_co_pwritev_compressed) {
1144 return -ENOTSUP;
1147 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1150 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1151 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1153 BlockDriverState *bs = child->bs;
1155 /* Perform I/O through a temporary buffer so that users who scribble over
1156 * their read buffer while the operation is in progress do not end up
1157 * modifying the image file. This is critical for zero-copy guest I/O
1158 * where anything might happen inside guest memory.
1160 void *bounce_buffer;
1162 BlockDriver *drv = bs->drv;
1163 struct iovec iov;
1164 QEMUIOVector local_qiov;
1165 int64_t cluster_offset;
1166 int64_t cluster_bytes;
1167 size_t skip_bytes;
1168 int ret;
1169 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1170 BDRV_REQUEST_MAX_BYTES);
1171 unsigned int progress = 0;
1173 if (!drv) {
1174 return -ENOMEDIUM;
1177 /* FIXME We cannot require callers to have write permissions when all they
1178 * are doing is a read request. If we did things right, write permissions
1179 * would be obtained anyway, but internally by the copy-on-read code. As
1180 * long as it is implemented here rather than in a separate filter driver,
1181 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1182 * it could request permissions. Therefore we have to bypass the permission
1183 * system for the moment. */
1184 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1186 /* Cover entire cluster so no additional backing file I/O is required when
1187 * allocating cluster in the image file. Note that this value may exceed
1188 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1189 * is one reason we loop rather than doing it all at once.
1191 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1192 skip_bytes = offset - cluster_offset;
1194 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1195 cluster_offset, cluster_bytes);
1197 bounce_buffer = qemu_try_blockalign(bs,
1198 MIN(MIN(max_transfer, cluster_bytes),
1199 MAX_BOUNCE_BUFFER));
1200 if (bounce_buffer == NULL) {
1201 ret = -ENOMEM;
1202 goto err;
1205 while (cluster_bytes) {
1206 int64_t pnum;
1208 ret = bdrv_is_allocated(bs, cluster_offset,
1209 MIN(cluster_bytes, max_transfer), &pnum);
1210 if (ret < 0) {
1211 /* Safe to treat errors in querying allocation as if
1212 * unallocated; we'll probably fail again soon on the
1213 * read, but at least that will set a decent errno.
1215 pnum = MIN(cluster_bytes, max_transfer);
1218 /* Stop at EOF if the image ends in the middle of the cluster */
1219 if (ret == 0 && pnum == 0) {
1220 assert(progress >= bytes);
1221 break;
1224 assert(skip_bytes < pnum);
1226 if (ret <= 0) {
1227 /* Must copy-on-read; use the bounce buffer */
1228 iov.iov_base = bounce_buffer;
1229 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1230 qemu_iovec_init_external(&local_qiov, &iov, 1);
1232 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1233 &local_qiov, 0);
1234 if (ret < 0) {
1235 goto err;
1238 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1239 if (drv->bdrv_co_pwrite_zeroes &&
1240 buffer_is_zero(bounce_buffer, pnum)) {
1241 /* FIXME: Should we (perhaps conditionally) be setting
1242 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1243 * that still correctly reads as zero? */
1244 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1245 BDRV_REQ_WRITE_UNCHANGED);
1246 } else {
1247 /* This does not change the data on the disk, it is not
1248 * necessary to flush even in cache=writethrough mode.
1250 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1251 &local_qiov,
1252 BDRV_REQ_WRITE_UNCHANGED);
1255 if (ret < 0) {
1256 /* It might be okay to ignore write errors for guest
1257 * requests. If this is a deliberate copy-on-read
1258 * then we don't want to ignore the error. Simply
1259 * report it in all cases.
1261 goto err;
1264 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1265 pnum - skip_bytes);
1266 } else {
1267 /* Read directly into the destination */
1268 qemu_iovec_init(&local_qiov, qiov->niov);
1269 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1270 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1271 &local_qiov, 0);
1272 qemu_iovec_destroy(&local_qiov);
1273 if (ret < 0) {
1274 goto err;
1278 cluster_offset += pnum;
1279 cluster_bytes -= pnum;
1280 progress += pnum - skip_bytes;
1281 skip_bytes = 0;
1283 ret = 0;
1285 err:
1286 qemu_vfree(bounce_buffer);
1287 return ret;
1291 * Forwards an already correctly aligned request to the BlockDriver. This
1292 * handles copy on read, zeroing after EOF, and fragmentation of large
1293 * reads; any other features must be implemented by the caller.
1295 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1296 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1297 int64_t align, QEMUIOVector *qiov, int flags)
1299 BlockDriverState *bs = child->bs;
1300 int64_t total_bytes, max_bytes;
1301 int ret = 0;
1302 uint64_t bytes_remaining = bytes;
1303 int max_transfer;
1305 assert(is_power_of_2(align));
1306 assert((offset & (align - 1)) == 0);
1307 assert((bytes & (align - 1)) == 0);
1308 assert(!qiov || bytes == qiov->size);
1309 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1310 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1311 align);
1313 /* TODO: We would need a per-BDS .supported_read_flags and
1314 * potential fallback support, if we ever implement any read flags
1315 * to pass through to drivers. For now, there aren't any
1316 * passthrough flags. */
1317 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1319 /* Handle Copy on Read and associated serialisation */
1320 if (flags & BDRV_REQ_COPY_ON_READ) {
1321 /* If we touch the same cluster it counts as an overlap. This
1322 * guarantees that allocating writes will be serialized and not race
1323 * with each other for the same cluster. For example, in copy-on-read
1324 * it ensures that the CoR read and write operations are atomic and
1325 * guest writes cannot interleave between them. */
1326 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1329 /* BDRV_REQ_SERIALISING is only for write operation */
1330 assert(!(flags & BDRV_REQ_SERIALISING));
1332 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1333 wait_serialising_requests(req);
1336 if (flags & BDRV_REQ_COPY_ON_READ) {
1337 int64_t pnum;
1339 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1340 if (ret < 0) {
1341 goto out;
1344 if (!ret || pnum != bytes) {
1345 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1346 goto out;
1350 /* Forward the request to the BlockDriver, possibly fragmenting it */
1351 total_bytes = bdrv_getlength(bs);
1352 if (total_bytes < 0) {
1353 ret = total_bytes;
1354 goto out;
1357 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1358 if (bytes <= max_bytes && bytes <= max_transfer) {
1359 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1360 goto out;
1363 while (bytes_remaining) {
1364 int num;
1366 if (max_bytes) {
1367 QEMUIOVector local_qiov;
1369 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1370 assert(num);
1371 qemu_iovec_init(&local_qiov, qiov->niov);
1372 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1374 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1375 num, &local_qiov, 0);
1376 max_bytes -= num;
1377 qemu_iovec_destroy(&local_qiov);
1378 } else {
1379 num = bytes_remaining;
1380 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1381 bytes_remaining);
1383 if (ret < 0) {
1384 goto out;
1386 bytes_remaining -= num;
1389 out:
1390 return ret < 0 ? ret : 0;
1394 * Handle a read request in coroutine context
1396 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1397 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1398 BdrvRequestFlags flags)
1400 BlockDriverState *bs = child->bs;
1401 BlockDriver *drv = bs->drv;
1402 BdrvTrackedRequest req;
1404 uint64_t align = bs->bl.request_alignment;
1405 uint8_t *head_buf = NULL;
1406 uint8_t *tail_buf = NULL;
1407 QEMUIOVector local_qiov;
1408 bool use_local_qiov = false;
1409 int ret;
1411 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1413 if (!drv) {
1414 return -ENOMEDIUM;
1417 ret = bdrv_check_byte_request(bs, offset, bytes);
1418 if (ret < 0) {
1419 return ret;
1422 bdrv_inc_in_flight(bs);
1424 /* Don't do copy-on-read if we read data before write operation */
1425 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1426 flags |= BDRV_REQ_COPY_ON_READ;
1429 /* Align read if necessary by padding qiov */
1430 if (offset & (align - 1)) {
1431 head_buf = qemu_blockalign(bs, align);
1432 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1433 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1434 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1435 use_local_qiov = true;
1437 bytes += offset & (align - 1);
1438 offset = offset & ~(align - 1);
1441 if ((offset + bytes) & (align - 1)) {
1442 if (!use_local_qiov) {
1443 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1444 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1445 use_local_qiov = true;
1447 tail_buf = qemu_blockalign(bs, align);
1448 qemu_iovec_add(&local_qiov, tail_buf,
1449 align - ((offset + bytes) & (align - 1)));
1451 bytes = ROUND_UP(bytes, align);
1454 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1455 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1456 use_local_qiov ? &local_qiov : qiov,
1457 flags);
1458 tracked_request_end(&req);
1459 bdrv_dec_in_flight(bs);
1461 if (use_local_qiov) {
1462 qemu_iovec_destroy(&local_qiov);
1463 qemu_vfree(head_buf);
1464 qemu_vfree(tail_buf);
1467 return ret;
1470 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1471 int64_t offset, int bytes, BdrvRequestFlags flags)
1473 BlockDriver *drv = bs->drv;
1474 QEMUIOVector qiov;
1475 struct iovec iov = {0};
1476 int ret = 0;
1477 bool need_flush = false;
1478 int head = 0;
1479 int tail = 0;
1481 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1482 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1483 bs->bl.request_alignment);
1484 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1486 if (!drv) {
1487 return -ENOMEDIUM;
1490 assert(alignment % bs->bl.request_alignment == 0);
1491 head = offset % alignment;
1492 tail = (offset + bytes) % alignment;
1493 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1494 assert(max_write_zeroes >= bs->bl.request_alignment);
1496 while (bytes > 0 && !ret) {
1497 int num = bytes;
1499 /* Align request. Block drivers can expect the "bulk" of the request
1500 * to be aligned, and that unaligned requests do not cross cluster
1501 * boundaries.
1503 if (head) {
1504 /* Make a small request up to the first aligned sector. For
1505 * convenience, limit this request to max_transfer even if
1506 * we don't need to fall back to writes. */
1507 num = MIN(MIN(bytes, max_transfer), alignment - head);
1508 head = (head + num) % alignment;
1509 assert(num < max_write_zeroes);
1510 } else if (tail && num > alignment) {
1511 /* Shorten the request to the last aligned sector. */
1512 num -= tail;
1515 /* limit request size */
1516 if (num > max_write_zeroes) {
1517 num = max_write_zeroes;
1520 ret = -ENOTSUP;
1521 /* First try the efficient write zeroes operation */
1522 if (drv->bdrv_co_pwrite_zeroes) {
1523 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1524 flags & bs->supported_zero_flags);
1525 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1526 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1527 need_flush = true;
1529 } else {
1530 assert(!bs->supported_zero_flags);
1533 if (ret == -ENOTSUP) {
1534 /* Fall back to bounce buffer if write zeroes is unsupported */
1535 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1537 if ((flags & BDRV_REQ_FUA) &&
1538 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1539 /* No need for bdrv_driver_pwrite() to do a fallback
1540 * flush on each chunk; use just one at the end */
1541 write_flags &= ~BDRV_REQ_FUA;
1542 need_flush = true;
1544 num = MIN(num, max_transfer);
1545 iov.iov_len = num;
1546 if (iov.iov_base == NULL) {
1547 iov.iov_base = qemu_try_blockalign(bs, num);
1548 if (iov.iov_base == NULL) {
1549 ret = -ENOMEM;
1550 goto fail;
1552 memset(iov.iov_base, 0, num);
1554 qemu_iovec_init_external(&qiov, &iov, 1);
1556 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1558 /* Keep bounce buffer around if it is big enough for all
1559 * all future requests.
1561 if (num < max_transfer) {
1562 qemu_vfree(iov.iov_base);
1563 iov.iov_base = NULL;
1567 offset += num;
1568 bytes -= num;
1571 fail:
1572 if (ret == 0 && need_flush) {
1573 ret = bdrv_co_flush(bs);
1575 qemu_vfree(iov.iov_base);
1576 return ret;
1579 static inline int coroutine_fn
1580 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1581 BdrvTrackedRequest *req, int flags)
1583 BlockDriverState *bs = child->bs;
1584 bool waited;
1585 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1587 if (bs->read_only) {
1588 return -EPERM;
1591 /* BDRV_REQ_NO_SERIALISING is only for read operation */
1592 assert(!(flags & BDRV_REQ_NO_SERIALISING));
1593 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1594 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1595 assert(!(flags & ~BDRV_REQ_MASK));
1597 if (flags & BDRV_REQ_SERIALISING) {
1598 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1601 waited = wait_serialising_requests(req);
1603 assert(!waited || !req->serialising ||
1604 is_request_serialising_and_aligned(req));
1605 assert(req->overlap_offset <= offset);
1606 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1607 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1609 switch (req->type) {
1610 case BDRV_TRACKED_WRITE:
1611 case BDRV_TRACKED_DISCARD:
1612 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1613 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1614 } else {
1615 assert(child->perm & BLK_PERM_WRITE);
1617 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1618 req);
1619 case BDRV_TRACKED_TRUNCATE:
1620 assert(child->perm & BLK_PERM_RESIZE);
1621 return 0;
1622 default:
1623 abort();
1627 static inline void coroutine_fn
1628 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1629 BdrvTrackedRequest *req, int ret)
1631 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1632 BlockDriverState *bs = child->bs;
1634 atomic_inc(&bs->write_gen);
1637 * Discard cannot extend the image, but in error handling cases, such as
1638 * when reverting a qcow2 cluster allocation, the discarded range can pass
1639 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1640 * here. Instead, just skip it, since semantically a discard request
1641 * beyond EOF cannot expand the image anyway.
1643 if (ret == 0 &&
1644 (req->type == BDRV_TRACKED_TRUNCATE ||
1645 end_sector > bs->total_sectors) &&
1646 req->type != BDRV_TRACKED_DISCARD) {
1647 bs->total_sectors = end_sector;
1648 bdrv_parent_cb_resize(bs);
1649 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1651 if (req->bytes) {
1652 switch (req->type) {
1653 case BDRV_TRACKED_WRITE:
1654 stat64_max(&bs->wr_highest_offset, offset + bytes);
1655 /* fall through, to set dirty bits */
1656 case BDRV_TRACKED_DISCARD:
1657 bdrv_set_dirty(bs, offset, bytes);
1658 break;
1659 default:
1660 break;
1666 * Forwards an already correctly aligned write request to the BlockDriver,
1667 * after possibly fragmenting it.
1669 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1670 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1671 int64_t align, QEMUIOVector *qiov, int flags)
1673 BlockDriverState *bs = child->bs;
1674 BlockDriver *drv = bs->drv;
1675 int ret;
1677 uint64_t bytes_remaining = bytes;
1678 int max_transfer;
1680 if (!drv) {
1681 return -ENOMEDIUM;
1684 if (bdrv_has_readonly_bitmaps(bs)) {
1685 return -EPERM;
1688 assert(is_power_of_2(align));
1689 assert((offset & (align - 1)) == 0);
1690 assert((bytes & (align - 1)) == 0);
1691 assert(!qiov || bytes == qiov->size);
1692 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1693 align);
1695 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1697 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1698 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1699 qemu_iovec_is_zero(qiov)) {
1700 flags |= BDRV_REQ_ZERO_WRITE;
1701 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1702 flags |= BDRV_REQ_MAY_UNMAP;
1706 if (ret < 0) {
1707 /* Do nothing, write notifier decided to fail this request */
1708 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1709 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1710 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1711 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1712 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1713 } else if (bytes <= max_transfer) {
1714 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1715 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1716 } else {
1717 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1718 while (bytes_remaining) {
1719 int num = MIN(bytes_remaining, max_transfer);
1720 QEMUIOVector local_qiov;
1721 int local_flags = flags;
1723 assert(num);
1724 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1725 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1726 /* If FUA is going to be emulated by flush, we only
1727 * need to flush on the last iteration */
1728 local_flags &= ~BDRV_REQ_FUA;
1730 qemu_iovec_init(&local_qiov, qiov->niov);
1731 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1733 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1734 num, &local_qiov, local_flags);
1735 qemu_iovec_destroy(&local_qiov);
1736 if (ret < 0) {
1737 break;
1739 bytes_remaining -= num;
1742 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1744 if (ret >= 0) {
1745 ret = 0;
1747 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
1749 return ret;
1752 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1753 int64_t offset,
1754 unsigned int bytes,
1755 BdrvRequestFlags flags,
1756 BdrvTrackedRequest *req)
1758 BlockDriverState *bs = child->bs;
1759 uint8_t *buf = NULL;
1760 QEMUIOVector local_qiov;
1761 struct iovec iov;
1762 uint64_t align = bs->bl.request_alignment;
1763 unsigned int head_padding_bytes, tail_padding_bytes;
1764 int ret = 0;
1766 head_padding_bytes = offset & (align - 1);
1767 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1770 assert(flags & BDRV_REQ_ZERO_WRITE);
1771 if (head_padding_bytes || tail_padding_bytes) {
1772 buf = qemu_blockalign(bs, align);
1773 iov = (struct iovec) {
1774 .iov_base = buf,
1775 .iov_len = align,
1777 qemu_iovec_init_external(&local_qiov, &iov, 1);
1779 if (head_padding_bytes) {
1780 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1782 /* RMW the unaligned part before head. */
1783 mark_request_serialising(req, align);
1784 wait_serialising_requests(req);
1785 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1786 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1787 align, &local_qiov, 0);
1788 if (ret < 0) {
1789 goto fail;
1791 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1793 memset(buf + head_padding_bytes, 0, zero_bytes);
1794 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1795 align, &local_qiov,
1796 flags & ~BDRV_REQ_ZERO_WRITE);
1797 if (ret < 0) {
1798 goto fail;
1800 offset += zero_bytes;
1801 bytes -= zero_bytes;
1804 assert(!bytes || (offset & (align - 1)) == 0);
1805 if (bytes >= align) {
1806 /* Write the aligned part in the middle. */
1807 uint64_t aligned_bytes = bytes & ~(align - 1);
1808 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1809 NULL, flags);
1810 if (ret < 0) {
1811 goto fail;
1813 bytes -= aligned_bytes;
1814 offset += aligned_bytes;
1817 assert(!bytes || (offset & (align - 1)) == 0);
1818 if (bytes) {
1819 assert(align == tail_padding_bytes + bytes);
1820 /* RMW the unaligned part after tail. */
1821 mark_request_serialising(req, align);
1822 wait_serialising_requests(req);
1823 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1824 ret = bdrv_aligned_preadv(child, req, offset, align,
1825 align, &local_qiov, 0);
1826 if (ret < 0) {
1827 goto fail;
1829 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1831 memset(buf, 0, bytes);
1832 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1833 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1835 fail:
1836 qemu_vfree(buf);
1837 return ret;
1842 * Handle a write request in coroutine context
1844 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1845 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1846 BdrvRequestFlags flags)
1848 BlockDriverState *bs = child->bs;
1849 BdrvTrackedRequest req;
1850 uint64_t align = bs->bl.request_alignment;
1851 uint8_t *head_buf = NULL;
1852 uint8_t *tail_buf = NULL;
1853 QEMUIOVector local_qiov;
1854 bool use_local_qiov = false;
1855 int ret;
1857 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1859 if (!bs->drv) {
1860 return -ENOMEDIUM;
1863 ret = bdrv_check_byte_request(bs, offset, bytes);
1864 if (ret < 0) {
1865 return ret;
1868 bdrv_inc_in_flight(bs);
1870 * Align write if necessary by performing a read-modify-write cycle.
1871 * Pad qiov with the read parts and be sure to have a tracked request not
1872 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1874 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1876 if (flags & BDRV_REQ_ZERO_WRITE) {
1877 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1878 goto out;
1881 if (offset & (align - 1)) {
1882 QEMUIOVector head_qiov;
1883 struct iovec head_iov;
1885 mark_request_serialising(&req, align);
1886 wait_serialising_requests(&req);
1888 head_buf = qemu_blockalign(bs, align);
1889 head_iov = (struct iovec) {
1890 .iov_base = head_buf,
1891 .iov_len = align,
1893 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1895 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1896 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1897 align, &head_qiov, 0);
1898 if (ret < 0) {
1899 goto fail;
1901 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1903 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1904 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1905 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1906 use_local_qiov = true;
1908 bytes += offset & (align - 1);
1909 offset = offset & ~(align - 1);
1911 /* We have read the tail already if the request is smaller
1912 * than one aligned block.
1914 if (bytes < align) {
1915 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1916 bytes = align;
1920 if ((offset + bytes) & (align - 1)) {
1921 QEMUIOVector tail_qiov;
1922 struct iovec tail_iov;
1923 size_t tail_bytes;
1924 bool waited;
1926 mark_request_serialising(&req, align);
1927 waited = wait_serialising_requests(&req);
1928 assert(!waited || !use_local_qiov);
1930 tail_buf = qemu_blockalign(bs, align);
1931 tail_iov = (struct iovec) {
1932 .iov_base = tail_buf,
1933 .iov_len = align,
1935 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1937 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1938 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1939 align, align, &tail_qiov, 0);
1940 if (ret < 0) {
1941 goto fail;
1943 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1945 if (!use_local_qiov) {
1946 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1947 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1948 use_local_qiov = true;
1951 tail_bytes = (offset + bytes) & (align - 1);
1952 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1954 bytes = ROUND_UP(bytes, align);
1957 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1958 use_local_qiov ? &local_qiov : qiov,
1959 flags);
1961 fail:
1963 if (use_local_qiov) {
1964 qemu_iovec_destroy(&local_qiov);
1966 qemu_vfree(head_buf);
1967 qemu_vfree(tail_buf);
1968 out:
1969 tracked_request_end(&req);
1970 bdrv_dec_in_flight(bs);
1971 return ret;
1974 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1975 int bytes, BdrvRequestFlags flags)
1977 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1979 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1980 flags &= ~BDRV_REQ_MAY_UNMAP;
1983 return bdrv_co_pwritev(child, offset, bytes, NULL,
1984 BDRV_REQ_ZERO_WRITE | flags);
1988 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1990 int bdrv_flush_all(void)
1992 BdrvNextIterator it;
1993 BlockDriverState *bs = NULL;
1994 int result = 0;
1996 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1997 AioContext *aio_context = bdrv_get_aio_context(bs);
1998 int ret;
2000 aio_context_acquire(aio_context);
2001 ret = bdrv_flush(bs);
2002 if (ret < 0 && !result) {
2003 result = ret;
2005 aio_context_release(aio_context);
2008 return result;
2012 typedef struct BdrvCoBlockStatusData {
2013 BlockDriverState *bs;
2014 BlockDriverState *base;
2015 bool want_zero;
2016 int64_t offset;
2017 int64_t bytes;
2018 int64_t *pnum;
2019 int64_t *map;
2020 BlockDriverState **file;
2021 int ret;
2022 bool done;
2023 } BdrvCoBlockStatusData;
2025 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2026 bool want_zero,
2027 int64_t offset,
2028 int64_t bytes,
2029 int64_t *pnum,
2030 int64_t *map,
2031 BlockDriverState **file)
2033 assert(bs->file && bs->file->bs);
2034 *pnum = bytes;
2035 *map = offset;
2036 *file = bs->file->bs;
2037 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2040 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2041 bool want_zero,
2042 int64_t offset,
2043 int64_t bytes,
2044 int64_t *pnum,
2045 int64_t *map,
2046 BlockDriverState **file)
2048 assert(bs->backing && bs->backing->bs);
2049 *pnum = bytes;
2050 *map = offset;
2051 *file = bs->backing->bs;
2052 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2056 * Returns the allocation status of the specified sectors.
2057 * Drivers not implementing the functionality are assumed to not support
2058 * backing files, hence all their sectors are reported as allocated.
2060 * If 'want_zero' is true, the caller is querying for mapping
2061 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2062 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2063 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2065 * If 'offset' is beyond the end of the disk image the return value is
2066 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2068 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2069 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2070 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2072 * 'pnum' is set to the number of bytes (including and immediately
2073 * following the specified offset) that are easily known to be in the
2074 * same allocated/unallocated state. Note that a second call starting
2075 * at the original offset plus returned pnum may have the same status.
2076 * The returned value is non-zero on success except at end-of-file.
2078 * Returns negative errno on failure. Otherwise, if the
2079 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2080 * set to the host mapping and BDS corresponding to the guest offset.
2082 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2083 bool want_zero,
2084 int64_t offset, int64_t bytes,
2085 int64_t *pnum, int64_t *map,
2086 BlockDriverState **file)
2088 int64_t total_size;
2089 int64_t n; /* bytes */
2090 int ret;
2091 int64_t local_map = 0;
2092 BlockDriverState *local_file = NULL;
2093 int64_t aligned_offset, aligned_bytes;
2094 uint32_t align;
2096 assert(pnum);
2097 *pnum = 0;
2098 total_size = bdrv_getlength(bs);
2099 if (total_size < 0) {
2100 ret = total_size;
2101 goto early_out;
2104 if (offset >= total_size) {
2105 ret = BDRV_BLOCK_EOF;
2106 goto early_out;
2108 if (!bytes) {
2109 ret = 0;
2110 goto early_out;
2113 n = total_size - offset;
2114 if (n < bytes) {
2115 bytes = n;
2118 /* Must be non-NULL or bdrv_getlength() would have failed */
2119 assert(bs->drv);
2120 if (!bs->drv->bdrv_co_block_status) {
2121 *pnum = bytes;
2122 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2123 if (offset + bytes == total_size) {
2124 ret |= BDRV_BLOCK_EOF;
2126 if (bs->drv->protocol_name) {
2127 ret |= BDRV_BLOCK_OFFSET_VALID;
2128 local_map = offset;
2129 local_file = bs;
2131 goto early_out;
2134 bdrv_inc_in_flight(bs);
2136 /* Round out to request_alignment boundaries */
2137 align = bs->bl.request_alignment;
2138 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2139 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2141 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2142 aligned_bytes, pnum, &local_map,
2143 &local_file);
2144 if (ret < 0) {
2145 *pnum = 0;
2146 goto out;
2150 * The driver's result must be a non-zero multiple of request_alignment.
2151 * Clamp pnum and adjust map to original request.
2153 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2154 align > offset - aligned_offset);
2155 *pnum -= offset - aligned_offset;
2156 if (*pnum > bytes) {
2157 *pnum = bytes;
2159 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2160 local_map += offset - aligned_offset;
2163 if (ret & BDRV_BLOCK_RAW) {
2164 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2165 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2166 *pnum, pnum, &local_map, &local_file);
2167 goto out;
2170 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2171 ret |= BDRV_BLOCK_ALLOCATED;
2172 } else if (want_zero) {
2173 if (bdrv_unallocated_blocks_are_zero(bs)) {
2174 ret |= BDRV_BLOCK_ZERO;
2175 } else if (bs->backing) {
2176 BlockDriverState *bs2 = bs->backing->bs;
2177 int64_t size2 = bdrv_getlength(bs2);
2179 if (size2 >= 0 && offset >= size2) {
2180 ret |= BDRV_BLOCK_ZERO;
2185 if (want_zero && local_file && local_file != bs &&
2186 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2187 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2188 int64_t file_pnum;
2189 int ret2;
2191 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2192 *pnum, &file_pnum, NULL, NULL);
2193 if (ret2 >= 0) {
2194 /* Ignore errors. This is just providing extra information, it
2195 * is useful but not necessary.
2197 if (ret2 & BDRV_BLOCK_EOF &&
2198 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2200 * It is valid for the format block driver to read
2201 * beyond the end of the underlying file's current
2202 * size; such areas read as zero.
2204 ret |= BDRV_BLOCK_ZERO;
2205 } else {
2206 /* Limit request to the range reported by the protocol driver */
2207 *pnum = file_pnum;
2208 ret |= (ret2 & BDRV_BLOCK_ZERO);
2213 out:
2214 bdrv_dec_in_flight(bs);
2215 if (ret >= 0 && offset + *pnum == total_size) {
2216 ret |= BDRV_BLOCK_EOF;
2218 early_out:
2219 if (file) {
2220 *file = local_file;
2222 if (map) {
2223 *map = local_map;
2225 return ret;
2228 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2229 BlockDriverState *base,
2230 bool want_zero,
2231 int64_t offset,
2232 int64_t bytes,
2233 int64_t *pnum,
2234 int64_t *map,
2235 BlockDriverState **file)
2237 BlockDriverState *p;
2238 int ret = 0;
2239 bool first = true;
2241 assert(bs != base);
2242 for (p = bs; p != base; p = backing_bs(p)) {
2243 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2244 file);
2245 if (ret < 0) {
2246 break;
2248 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2250 * Reading beyond the end of the file continues to read
2251 * zeroes, but we can only widen the result to the
2252 * unallocated length we learned from an earlier
2253 * iteration.
2255 *pnum = bytes;
2257 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2258 break;
2260 /* [offset, pnum] unallocated on this layer, which could be only
2261 * the first part of [offset, bytes]. */
2262 bytes = MIN(bytes, *pnum);
2263 first = false;
2265 return ret;
2268 /* Coroutine wrapper for bdrv_block_status_above() */
2269 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2271 BdrvCoBlockStatusData *data = opaque;
2273 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2274 data->want_zero,
2275 data->offset, data->bytes,
2276 data->pnum, data->map, data->file);
2277 data->done = true;
2281 * Synchronous wrapper around bdrv_co_block_status_above().
2283 * See bdrv_co_block_status_above() for details.
2285 static int bdrv_common_block_status_above(BlockDriverState *bs,
2286 BlockDriverState *base,
2287 bool want_zero, int64_t offset,
2288 int64_t bytes, int64_t *pnum,
2289 int64_t *map,
2290 BlockDriverState **file)
2292 Coroutine *co;
2293 BdrvCoBlockStatusData data = {
2294 .bs = bs,
2295 .base = base,
2296 .want_zero = want_zero,
2297 .offset = offset,
2298 .bytes = bytes,
2299 .pnum = pnum,
2300 .map = map,
2301 .file = file,
2302 .done = false,
2305 if (qemu_in_coroutine()) {
2306 /* Fast-path if already in coroutine context */
2307 bdrv_block_status_above_co_entry(&data);
2308 } else {
2309 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2310 bdrv_coroutine_enter(bs, co);
2311 BDRV_POLL_WHILE(bs, !data.done);
2313 return data.ret;
2316 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2317 int64_t offset, int64_t bytes, int64_t *pnum,
2318 int64_t *map, BlockDriverState **file)
2320 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2321 pnum, map, file);
2324 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2325 int64_t *pnum, int64_t *map, BlockDriverState **file)
2327 return bdrv_block_status_above(bs, backing_bs(bs),
2328 offset, bytes, pnum, map, file);
2331 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2332 int64_t bytes, int64_t *pnum)
2334 int ret;
2335 int64_t dummy;
2337 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2338 bytes, pnum ? pnum : &dummy, NULL,
2339 NULL);
2340 if (ret < 0) {
2341 return ret;
2343 return !!(ret & BDRV_BLOCK_ALLOCATED);
2347 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2349 * Return true if (a prefix of) the given range is allocated in any image
2350 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2351 * offset is allocated in any image of the chain. Return false otherwise,
2352 * or negative errno on failure.
2354 * 'pnum' is set to the number of bytes (including and immediately
2355 * following the specified offset) that are known to be in the same
2356 * allocated/unallocated state. Note that a subsequent call starting
2357 * at 'offset + *pnum' may return the same allocation status (in other
2358 * words, the result is not necessarily the maximum possible range);
2359 * but 'pnum' will only be 0 when end of file is reached.
2362 int bdrv_is_allocated_above(BlockDriverState *top,
2363 BlockDriverState *base,
2364 int64_t offset, int64_t bytes, int64_t *pnum)
2366 BlockDriverState *intermediate;
2367 int ret;
2368 int64_t n = bytes;
2370 intermediate = top;
2371 while (intermediate && intermediate != base) {
2372 int64_t pnum_inter;
2373 int64_t size_inter;
2375 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2376 if (ret < 0) {
2377 return ret;
2379 if (ret) {
2380 *pnum = pnum_inter;
2381 return 1;
2384 size_inter = bdrv_getlength(intermediate);
2385 if (size_inter < 0) {
2386 return size_inter;
2388 if (n > pnum_inter &&
2389 (intermediate == top || offset + pnum_inter < size_inter)) {
2390 n = pnum_inter;
2393 intermediate = backing_bs(intermediate);
2396 *pnum = n;
2397 return 0;
2400 typedef struct BdrvVmstateCo {
2401 BlockDriverState *bs;
2402 QEMUIOVector *qiov;
2403 int64_t pos;
2404 bool is_read;
2405 int ret;
2406 } BdrvVmstateCo;
2408 static int coroutine_fn
2409 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2410 bool is_read)
2412 BlockDriver *drv = bs->drv;
2413 int ret = -ENOTSUP;
2415 bdrv_inc_in_flight(bs);
2417 if (!drv) {
2418 ret = -ENOMEDIUM;
2419 } else if (drv->bdrv_load_vmstate) {
2420 if (is_read) {
2421 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2422 } else {
2423 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2425 } else if (bs->file) {
2426 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2429 bdrv_dec_in_flight(bs);
2430 return ret;
2433 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2435 BdrvVmstateCo *co = opaque;
2436 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2439 static inline int
2440 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2441 bool is_read)
2443 if (qemu_in_coroutine()) {
2444 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2445 } else {
2446 BdrvVmstateCo data = {
2447 .bs = bs,
2448 .qiov = qiov,
2449 .pos = pos,
2450 .is_read = is_read,
2451 .ret = -EINPROGRESS,
2453 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2455 bdrv_coroutine_enter(bs, co);
2456 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2457 return data.ret;
2461 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2462 int64_t pos, int size)
2464 QEMUIOVector qiov;
2465 struct iovec iov = {
2466 .iov_base = (void *) buf,
2467 .iov_len = size,
2469 int ret;
2471 qemu_iovec_init_external(&qiov, &iov, 1);
2473 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2474 if (ret < 0) {
2475 return ret;
2478 return size;
2481 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2483 return bdrv_rw_vmstate(bs, qiov, pos, false);
2486 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2487 int64_t pos, int size)
2489 QEMUIOVector qiov;
2490 struct iovec iov = {
2491 .iov_base = buf,
2492 .iov_len = size,
2494 int ret;
2496 qemu_iovec_init_external(&qiov, &iov, 1);
2497 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2498 if (ret < 0) {
2499 return ret;
2502 return size;
2505 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2507 return bdrv_rw_vmstate(bs, qiov, pos, true);
2510 /**************************************************************/
2511 /* async I/Os */
2513 void bdrv_aio_cancel(BlockAIOCB *acb)
2515 qemu_aio_ref(acb);
2516 bdrv_aio_cancel_async(acb);
2517 while (acb->refcnt > 1) {
2518 if (acb->aiocb_info->get_aio_context) {
2519 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2520 } else if (acb->bs) {
2521 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2522 * assert that we're not using an I/O thread. Thread-safe
2523 * code should use bdrv_aio_cancel_async exclusively.
2525 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2526 aio_poll(bdrv_get_aio_context(acb->bs), true);
2527 } else {
2528 abort();
2531 qemu_aio_unref(acb);
2534 /* Async version of aio cancel. The caller is not blocked if the acb implements
2535 * cancel_async, otherwise we do nothing and let the request normally complete.
2536 * In either case the completion callback must be called. */
2537 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2539 if (acb->aiocb_info->cancel_async) {
2540 acb->aiocb_info->cancel_async(acb);
2544 /**************************************************************/
2545 /* Coroutine block device emulation */
2547 typedef struct FlushCo {
2548 BlockDriverState *bs;
2549 int ret;
2550 } FlushCo;
2553 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2555 FlushCo *rwco = opaque;
2557 rwco->ret = bdrv_co_flush(rwco->bs);
2560 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2562 int current_gen;
2563 int ret = 0;
2565 bdrv_inc_in_flight(bs);
2567 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2568 bdrv_is_sg(bs)) {
2569 goto early_exit;
2572 qemu_co_mutex_lock(&bs->reqs_lock);
2573 current_gen = atomic_read(&bs->write_gen);
2575 /* Wait until any previous flushes are completed */
2576 while (bs->active_flush_req) {
2577 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2580 /* Flushes reach this point in nondecreasing current_gen order. */
2581 bs->active_flush_req = true;
2582 qemu_co_mutex_unlock(&bs->reqs_lock);
2584 /* Write back all layers by calling one driver function */
2585 if (bs->drv->bdrv_co_flush) {
2586 ret = bs->drv->bdrv_co_flush(bs);
2587 goto out;
2590 /* Write back cached data to the OS even with cache=unsafe */
2591 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2592 if (bs->drv->bdrv_co_flush_to_os) {
2593 ret = bs->drv->bdrv_co_flush_to_os(bs);
2594 if (ret < 0) {
2595 goto out;
2599 /* But don't actually force it to the disk with cache=unsafe */
2600 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2601 goto flush_parent;
2604 /* Check if we really need to flush anything */
2605 if (bs->flushed_gen == current_gen) {
2606 goto flush_parent;
2609 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2610 if (!bs->drv) {
2611 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2612 * (even in case of apparent success) */
2613 ret = -ENOMEDIUM;
2614 goto out;
2616 if (bs->drv->bdrv_co_flush_to_disk) {
2617 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2618 } else if (bs->drv->bdrv_aio_flush) {
2619 BlockAIOCB *acb;
2620 CoroutineIOCompletion co = {
2621 .coroutine = qemu_coroutine_self(),
2624 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2625 if (acb == NULL) {
2626 ret = -EIO;
2627 } else {
2628 qemu_coroutine_yield();
2629 ret = co.ret;
2631 } else {
2633 * Some block drivers always operate in either writethrough or unsafe
2634 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2635 * know how the server works (because the behaviour is hardcoded or
2636 * depends on server-side configuration), so we can't ensure that
2637 * everything is safe on disk. Returning an error doesn't work because
2638 * that would break guests even if the server operates in writethrough
2639 * mode.
2641 * Let's hope the user knows what he's doing.
2643 ret = 0;
2646 if (ret < 0) {
2647 goto out;
2650 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2651 * in the case of cache=unsafe, so there are no useless flushes.
2653 flush_parent:
2654 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2655 out:
2656 /* Notify any pending flushes that we have completed */
2657 if (ret == 0) {
2658 bs->flushed_gen = current_gen;
2661 qemu_co_mutex_lock(&bs->reqs_lock);
2662 bs->active_flush_req = false;
2663 /* Return value is ignored - it's ok if wait queue is empty */
2664 qemu_co_queue_next(&bs->flush_queue);
2665 qemu_co_mutex_unlock(&bs->reqs_lock);
2667 early_exit:
2668 bdrv_dec_in_flight(bs);
2669 return ret;
2672 int bdrv_flush(BlockDriverState *bs)
2674 Coroutine *co;
2675 FlushCo flush_co = {
2676 .bs = bs,
2677 .ret = NOT_DONE,
2680 if (qemu_in_coroutine()) {
2681 /* Fast-path if already in coroutine context */
2682 bdrv_flush_co_entry(&flush_co);
2683 } else {
2684 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2685 bdrv_coroutine_enter(bs, co);
2686 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2689 return flush_co.ret;
2692 typedef struct DiscardCo {
2693 BdrvChild *child;
2694 int64_t offset;
2695 int bytes;
2696 int ret;
2697 } DiscardCo;
2698 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2700 DiscardCo *rwco = opaque;
2702 rwco->ret = bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2705 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2707 BdrvTrackedRequest req;
2708 int max_pdiscard, ret;
2709 int head, tail, align;
2710 BlockDriverState *bs = child->bs;
2712 if (!bs || !bs->drv) {
2713 return -ENOMEDIUM;
2716 if (bdrv_has_readonly_bitmaps(bs)) {
2717 return -EPERM;
2720 ret = bdrv_check_byte_request(bs, offset, bytes);
2721 if (ret < 0) {
2722 return ret;
2725 /* Do nothing if disabled. */
2726 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2727 return 0;
2730 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2731 return 0;
2734 /* Discard is advisory, but some devices track and coalesce
2735 * unaligned requests, so we must pass everything down rather than
2736 * round here. Still, most devices will just silently ignore
2737 * unaligned requests (by returning -ENOTSUP), so we must fragment
2738 * the request accordingly. */
2739 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2740 assert(align % bs->bl.request_alignment == 0);
2741 head = offset % align;
2742 tail = (offset + bytes) % align;
2744 bdrv_inc_in_flight(bs);
2745 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2747 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2748 if (ret < 0) {
2749 goto out;
2752 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2753 align);
2754 assert(max_pdiscard >= bs->bl.request_alignment);
2756 while (bytes > 0) {
2757 int num = bytes;
2759 if (head) {
2760 /* Make small requests to get to alignment boundaries. */
2761 num = MIN(bytes, align - head);
2762 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2763 num %= bs->bl.request_alignment;
2765 head = (head + num) % align;
2766 assert(num < max_pdiscard);
2767 } else if (tail) {
2768 if (num > align) {
2769 /* Shorten the request to the last aligned cluster. */
2770 num -= tail;
2771 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2772 tail > bs->bl.request_alignment) {
2773 tail %= bs->bl.request_alignment;
2774 num -= tail;
2777 /* limit request size */
2778 if (num > max_pdiscard) {
2779 num = max_pdiscard;
2782 if (!bs->drv) {
2783 ret = -ENOMEDIUM;
2784 goto out;
2786 if (bs->drv->bdrv_co_pdiscard) {
2787 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2788 } else {
2789 BlockAIOCB *acb;
2790 CoroutineIOCompletion co = {
2791 .coroutine = qemu_coroutine_self(),
2794 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2795 bdrv_co_io_em_complete, &co);
2796 if (acb == NULL) {
2797 ret = -EIO;
2798 goto out;
2799 } else {
2800 qemu_coroutine_yield();
2801 ret = co.ret;
2804 if (ret && ret != -ENOTSUP) {
2805 goto out;
2808 offset += num;
2809 bytes -= num;
2811 ret = 0;
2812 out:
2813 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2814 tracked_request_end(&req);
2815 bdrv_dec_in_flight(bs);
2816 return ret;
2819 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int bytes)
2821 Coroutine *co;
2822 DiscardCo rwco = {
2823 .child = child,
2824 .offset = offset,
2825 .bytes = bytes,
2826 .ret = NOT_DONE,
2829 if (qemu_in_coroutine()) {
2830 /* Fast-path if already in coroutine context */
2831 bdrv_pdiscard_co_entry(&rwco);
2832 } else {
2833 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2834 bdrv_coroutine_enter(child->bs, co);
2835 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
2838 return rwco.ret;
2841 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2843 BlockDriver *drv = bs->drv;
2844 CoroutineIOCompletion co = {
2845 .coroutine = qemu_coroutine_self(),
2847 BlockAIOCB *acb;
2849 bdrv_inc_in_flight(bs);
2850 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2851 co.ret = -ENOTSUP;
2852 goto out;
2855 if (drv->bdrv_co_ioctl) {
2856 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2857 } else {
2858 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2859 if (!acb) {
2860 co.ret = -ENOTSUP;
2861 goto out;
2863 qemu_coroutine_yield();
2865 out:
2866 bdrv_dec_in_flight(bs);
2867 return co.ret;
2870 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2872 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2875 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2877 return memset(qemu_blockalign(bs, size), 0, size);
2880 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2882 size_t align = bdrv_opt_mem_align(bs);
2884 /* Ensure that NULL is never returned on success */
2885 assert(align > 0);
2886 if (size == 0) {
2887 size = align;
2890 return qemu_try_memalign(align, size);
2893 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2895 void *mem = qemu_try_blockalign(bs, size);
2897 if (mem) {
2898 memset(mem, 0, size);
2901 return mem;
2905 * Check if all memory in this vector is sector aligned.
2907 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2909 int i;
2910 size_t alignment = bdrv_min_mem_align(bs);
2912 for (i = 0; i < qiov->niov; i++) {
2913 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2914 return false;
2916 if (qiov->iov[i].iov_len % alignment) {
2917 return false;
2921 return true;
2924 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2925 NotifierWithReturn *notifier)
2927 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2930 void bdrv_io_plug(BlockDriverState *bs)
2932 BdrvChild *child;
2934 QLIST_FOREACH(child, &bs->children, next) {
2935 bdrv_io_plug(child->bs);
2938 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2939 BlockDriver *drv = bs->drv;
2940 if (drv && drv->bdrv_io_plug) {
2941 drv->bdrv_io_plug(bs);
2946 void bdrv_io_unplug(BlockDriverState *bs)
2948 BdrvChild *child;
2950 assert(bs->io_plugged);
2951 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2952 BlockDriver *drv = bs->drv;
2953 if (drv && drv->bdrv_io_unplug) {
2954 drv->bdrv_io_unplug(bs);
2958 QLIST_FOREACH(child, &bs->children, next) {
2959 bdrv_io_unplug(child->bs);
2963 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2965 BdrvChild *child;
2967 if (bs->drv && bs->drv->bdrv_register_buf) {
2968 bs->drv->bdrv_register_buf(bs, host, size);
2970 QLIST_FOREACH(child, &bs->children, next) {
2971 bdrv_register_buf(child->bs, host, size);
2975 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2977 BdrvChild *child;
2979 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2980 bs->drv->bdrv_unregister_buf(bs, host);
2982 QLIST_FOREACH(child, &bs->children, next) {
2983 bdrv_unregister_buf(child->bs, host);
2987 static int coroutine_fn bdrv_co_copy_range_internal(
2988 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
2989 uint64_t dst_offset, uint64_t bytes,
2990 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
2991 bool recurse_src)
2993 BdrvTrackedRequest req;
2994 int ret;
2996 if (!dst || !dst->bs) {
2997 return -ENOMEDIUM;
2999 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3000 if (ret) {
3001 return ret;
3003 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3004 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3007 if (!src || !src->bs) {
3008 return -ENOMEDIUM;
3010 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3011 if (ret) {
3012 return ret;
3015 if (!src->bs->drv->bdrv_co_copy_range_from
3016 || !dst->bs->drv->bdrv_co_copy_range_to
3017 || src->bs->encrypted || dst->bs->encrypted) {
3018 return -ENOTSUP;
3021 if (recurse_src) {
3022 bdrv_inc_in_flight(src->bs);
3023 tracked_request_begin(&req, src->bs, src_offset, bytes,
3024 BDRV_TRACKED_READ);
3026 /* BDRV_REQ_SERIALISING is only for write operation */
3027 assert(!(read_flags & BDRV_REQ_SERIALISING));
3028 if (!(read_flags & BDRV_REQ_NO_SERIALISING)) {
3029 wait_serialising_requests(&req);
3032 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3033 src, src_offset,
3034 dst, dst_offset,
3035 bytes,
3036 read_flags, write_flags);
3038 tracked_request_end(&req);
3039 bdrv_dec_in_flight(src->bs);
3040 } else {
3041 bdrv_inc_in_flight(dst->bs);
3042 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3043 BDRV_TRACKED_WRITE);
3044 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3045 write_flags);
3046 if (!ret) {
3047 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3048 src, src_offset,
3049 dst, dst_offset,
3050 bytes,
3051 read_flags, write_flags);
3053 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3054 tracked_request_end(&req);
3055 bdrv_dec_in_flight(dst->bs);
3058 return ret;
3061 /* Copy range from @src to @dst.
3063 * See the comment of bdrv_co_copy_range for the parameter and return value
3064 * semantics. */
3065 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3066 BdrvChild *dst, uint64_t dst_offset,
3067 uint64_t bytes,
3068 BdrvRequestFlags read_flags,
3069 BdrvRequestFlags write_flags)
3071 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3072 read_flags, write_flags);
3073 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3074 bytes, read_flags, write_flags, true);
3077 /* Copy range from @src to @dst.
3079 * See the comment of bdrv_co_copy_range for the parameter and return value
3080 * semantics. */
3081 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3082 BdrvChild *dst, uint64_t dst_offset,
3083 uint64_t bytes,
3084 BdrvRequestFlags read_flags,
3085 BdrvRequestFlags write_flags)
3087 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3088 read_flags, write_flags);
3089 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3090 bytes, read_flags, write_flags, false);
3093 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3094 BdrvChild *dst, uint64_t dst_offset,
3095 uint64_t bytes, BdrvRequestFlags read_flags,
3096 BdrvRequestFlags write_flags)
3098 return bdrv_co_copy_range_from(src, src_offset,
3099 dst, dst_offset,
3100 bytes, read_flags, write_flags);
3103 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3105 BdrvChild *c;
3106 QLIST_FOREACH(c, &bs->parents, next_parent) {
3107 if (c->role->resize) {
3108 c->role->resize(c);
3114 * Truncate file to 'offset' bytes (needed only for file protocols)
3116 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset,
3117 PreallocMode prealloc, Error **errp)
3119 BlockDriverState *bs = child->bs;
3120 BlockDriver *drv = bs->drv;
3121 BdrvTrackedRequest req;
3122 int64_t old_size, new_bytes;
3123 int ret;
3126 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3127 if (!drv) {
3128 error_setg(errp, "No medium inserted");
3129 return -ENOMEDIUM;
3131 if (offset < 0) {
3132 error_setg(errp, "Image size cannot be negative");
3133 return -EINVAL;
3136 old_size = bdrv_getlength(bs);
3137 if (old_size < 0) {
3138 error_setg_errno(errp, -old_size, "Failed to get old image size");
3139 return old_size;
3142 if (offset > old_size) {
3143 new_bytes = offset - old_size;
3144 } else {
3145 new_bytes = 0;
3148 bdrv_inc_in_flight(bs);
3149 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3150 BDRV_TRACKED_TRUNCATE);
3152 /* If we are growing the image and potentially using preallocation for the
3153 * new area, we need to make sure that no write requests are made to it
3154 * concurrently or they might be overwritten by preallocation. */
3155 if (new_bytes) {
3156 mark_request_serialising(&req, 1);
3158 if (bs->read_only) {
3159 error_setg(errp, "Image is read-only");
3160 ret = -EACCES;
3161 goto out;
3163 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3165 if (ret < 0) {
3166 error_setg_errno(errp, -ret,
3167 "Failed to prepare request for truncation");
3168 goto out;
3171 if (!drv->bdrv_co_truncate) {
3172 if (bs->file && drv->is_filter) {
3173 ret = bdrv_co_truncate(bs->file, offset, prealloc, errp);
3174 goto out;
3176 error_setg(errp, "Image format driver does not support resize");
3177 ret = -ENOTSUP;
3178 goto out;
3181 ret = drv->bdrv_co_truncate(bs, offset, prealloc, errp);
3182 if (ret < 0) {
3183 goto out;
3185 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3186 if (ret < 0) {
3187 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3188 } else {
3189 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3191 /* It's possible that truncation succeeded but refresh_total_sectors
3192 * failed, but the latter doesn't affect how we should finish the request.
3193 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3194 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3196 out:
3197 tracked_request_end(&req);
3198 bdrv_dec_in_flight(bs);
3200 return ret;
3203 typedef struct TruncateCo {
3204 BdrvChild *child;
3205 int64_t offset;
3206 PreallocMode prealloc;
3207 Error **errp;
3208 int ret;
3209 } TruncateCo;
3211 static void coroutine_fn bdrv_truncate_co_entry(void *opaque)
3213 TruncateCo *tco = opaque;
3214 tco->ret = bdrv_co_truncate(tco->child, tco->offset, tco->prealloc,
3215 tco->errp);
3218 int bdrv_truncate(BdrvChild *child, int64_t offset, PreallocMode prealloc,
3219 Error **errp)
3221 Coroutine *co;
3222 TruncateCo tco = {
3223 .child = child,
3224 .offset = offset,
3225 .prealloc = prealloc,
3226 .errp = errp,
3227 .ret = NOT_DONE,
3230 if (qemu_in_coroutine()) {
3231 /* Fast-path if already in coroutine context */
3232 bdrv_truncate_co_entry(&tco);
3233 } else {
3234 co = qemu_coroutine_create(bdrv_truncate_co_entry, &tco);
3235 qemu_coroutine_enter(co);
3236 BDRV_POLL_WHILE(child->bs, tco.ret == NOT_DONE);
3239 return tco.ret;