migration/rdma: Plug memory leaks in qemu_rdma_registration_stop()
[qemu/armbru.git] / linux-user / i386 / cpu_loop.c
blob70cde417e605d7206b75f476de043b454c895d50
1 /*
2 * qemu user cpu loop
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu.h"
23 #include "cpu_loop-common.h"
25 /***********************************************************/
26 /* CPUX86 core interface */
28 uint64_t cpu_get_tsc(CPUX86State *env)
30 return cpu_get_host_ticks();
33 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
34 int flags)
36 unsigned int e1, e2;
37 uint32_t *p;
38 e1 = (addr << 16) | (limit & 0xffff);
39 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
40 e2 |= flags;
41 p = ptr;
42 p[0] = tswap32(e1);
43 p[1] = tswap32(e2);
46 static uint64_t *idt_table;
47 #ifdef TARGET_X86_64
48 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
49 uint64_t addr, unsigned int sel)
51 uint32_t *p, e1, e2;
52 e1 = (addr & 0xffff) | (sel << 16);
53 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
54 p = ptr;
55 p[0] = tswap32(e1);
56 p[1] = tswap32(e2);
57 p[2] = tswap32(addr >> 32);
58 p[3] = 0;
60 /* only dpl matters as we do only user space emulation */
61 static void set_idt(int n, unsigned int dpl)
63 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
65 #else
66 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
67 uint32_t addr, unsigned int sel)
69 uint32_t *p, e1, e2;
70 e1 = (addr & 0xffff) | (sel << 16);
71 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
72 p = ptr;
73 p[0] = tswap32(e1);
74 p[1] = tswap32(e2);
77 /* only dpl matters as we do only user space emulation */
78 static void set_idt(int n, unsigned int dpl)
80 set_gate(idt_table + n, 0, dpl, 0, 0);
82 #endif
84 static void gen_signal(CPUX86State *env, int sig, int code, abi_ptr addr)
86 target_siginfo_t info = {
87 .si_signo = sig,
88 .si_code = code,
89 ._sifields._sigfault._addr = addr
92 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
95 #ifdef TARGET_X86_64
96 static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
99 * For all the vsyscalls, NULL means "don't write anything" not
100 * "write it at address 0".
102 if (addr == 0 || access_ok(VERIFY_WRITE, addr, len)) {
103 return true;
106 env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
107 gen_signal(env, TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
108 return false;
112 * Since v3.1, the kernel traps and emulates the vsyscall page.
113 * Entry points other than the official generate SIGSEGV.
115 static void emulate_vsyscall(CPUX86State *env)
117 int syscall;
118 abi_ulong ret;
119 uint64_t caller;
122 * Validate the entry point. We have already validated the page
123 * during translation to get here; now verify the offset.
125 switch (env->eip & ~TARGET_PAGE_MASK) {
126 case 0x000:
127 syscall = TARGET_NR_gettimeofday;
128 break;
129 case 0x400:
130 syscall = TARGET_NR_time;
131 break;
132 case 0x800:
133 syscall = TARGET_NR_getcpu;
134 break;
135 default:
136 goto sigsegv;
140 * Validate the return address.
141 * Note that the kernel treats this the same as an invalid entry point.
143 if (get_user_u64(caller, env->regs[R_ESP])) {
144 goto sigsegv;
148 * Validate the the pointer arguments.
150 switch (syscall) {
151 case TARGET_NR_gettimeofday:
152 if (!write_ok_or_segv(env, env->regs[R_EDI],
153 sizeof(struct target_timeval)) ||
154 !write_ok_or_segv(env, env->regs[R_ESI],
155 sizeof(struct target_timezone))) {
156 return;
158 break;
159 case TARGET_NR_time:
160 if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
161 return;
163 break;
164 case TARGET_NR_getcpu:
165 if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
166 !write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
167 return;
169 break;
170 default:
171 g_assert_not_reached();
175 * Perform the syscall. None of the vsyscalls should need restarting.
177 ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
178 env->regs[R_EDX], env->regs[10], env->regs[8],
179 env->regs[9], 0, 0);
180 g_assert(ret != -TARGET_ERESTARTSYS);
181 g_assert(ret != -TARGET_QEMU_ESIGRETURN);
182 if (ret == -TARGET_EFAULT) {
183 goto sigsegv;
185 env->regs[R_EAX] = ret;
187 /* Emulate a ret instruction to leave the vsyscall page. */
188 env->eip = caller;
189 env->regs[R_ESP] += 8;
190 return;
192 sigsegv:
193 /* Like force_sig(SIGSEGV). */
194 gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
196 #endif
198 void cpu_loop(CPUX86State *env)
200 CPUState *cs = env_cpu(env);
201 int trapnr;
202 abi_ulong pc;
203 abi_ulong ret;
205 for(;;) {
206 cpu_exec_start(cs);
207 trapnr = cpu_exec(cs);
208 cpu_exec_end(cs);
209 process_queued_cpu_work(cs);
211 switch(trapnr) {
212 case 0x80:
213 /* linux syscall from int $0x80 */
214 ret = do_syscall(env,
215 env->regs[R_EAX],
216 env->regs[R_EBX],
217 env->regs[R_ECX],
218 env->regs[R_EDX],
219 env->regs[R_ESI],
220 env->regs[R_EDI],
221 env->regs[R_EBP],
222 0, 0);
223 if (ret == -TARGET_ERESTARTSYS) {
224 env->eip -= 2;
225 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
226 env->regs[R_EAX] = ret;
228 break;
229 #ifndef TARGET_ABI32
230 case EXCP_SYSCALL:
231 /* linux syscall from syscall instruction */
232 ret = do_syscall(env,
233 env->regs[R_EAX],
234 env->regs[R_EDI],
235 env->regs[R_ESI],
236 env->regs[R_EDX],
237 env->regs[10],
238 env->regs[8],
239 env->regs[9],
240 0, 0);
241 if (ret == -TARGET_ERESTARTSYS) {
242 env->eip -= 2;
243 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
244 env->regs[R_EAX] = ret;
246 break;
247 #endif
248 #ifdef TARGET_X86_64
249 case EXCP_VSYSCALL:
250 emulate_vsyscall(env);
251 break;
252 #endif
253 case EXCP0B_NOSEG:
254 case EXCP0C_STACK:
255 gen_signal(env, TARGET_SIGBUS, TARGET_SI_KERNEL, 0);
256 break;
257 case EXCP0D_GPF:
258 /* XXX: potential problem if ABI32 */
259 #ifndef TARGET_X86_64
260 if (env->eflags & VM_MASK) {
261 handle_vm86_fault(env);
262 break;
264 #endif
265 gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
266 break;
267 case EXCP0E_PAGE:
268 gen_signal(env, TARGET_SIGSEGV,
269 (env->error_code & 1 ?
270 TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
271 env->cr[2]);
272 break;
273 case EXCP00_DIVZ:
274 #ifndef TARGET_X86_64
275 if (env->eflags & VM_MASK) {
276 handle_vm86_trap(env, trapnr);
277 break;
279 #endif
280 gen_signal(env, TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
281 break;
282 case EXCP01_DB:
283 case EXCP03_INT3:
284 #ifndef TARGET_X86_64
285 if (env->eflags & VM_MASK) {
286 handle_vm86_trap(env, trapnr);
287 break;
289 #endif
290 if (trapnr == EXCP01_DB) {
291 gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
292 } else {
293 gen_signal(env, TARGET_SIGTRAP, TARGET_SI_KERNEL, 0);
295 break;
296 case EXCP04_INTO:
297 case EXCP05_BOUND:
298 #ifndef TARGET_X86_64
299 if (env->eflags & VM_MASK) {
300 handle_vm86_trap(env, trapnr);
301 break;
303 #endif
304 gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
305 break;
306 case EXCP06_ILLOP:
307 gen_signal(env, TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
308 break;
309 case EXCP_INTERRUPT:
310 /* just indicate that signals should be handled asap */
311 break;
312 case EXCP_DEBUG:
313 gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, 0);
314 break;
315 case EXCP_ATOMIC:
316 cpu_exec_step_atomic(cs);
317 break;
318 default:
319 pc = env->segs[R_CS].base + env->eip;
320 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
321 (long)pc, trapnr);
322 abort();
324 process_pending_signals(env);
328 void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
330 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
331 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
332 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
333 env->cr[4] |= CR4_OSFXSR_MASK;
334 env->hflags |= HF_OSFXSR_MASK;
336 #ifndef TARGET_ABI32
337 /* enable 64 bit mode if possible */
338 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
339 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
340 exit(EXIT_FAILURE);
342 env->cr[4] |= CR4_PAE_MASK;
343 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
344 env->hflags |= HF_LMA_MASK;
345 #endif
347 /* flags setup : we activate the IRQs by default as in user mode */
348 env->eflags |= IF_MASK;
350 /* linux register setup */
351 #ifndef TARGET_ABI32
352 env->regs[R_EAX] = regs->rax;
353 env->regs[R_EBX] = regs->rbx;
354 env->regs[R_ECX] = regs->rcx;
355 env->regs[R_EDX] = regs->rdx;
356 env->regs[R_ESI] = regs->rsi;
357 env->regs[R_EDI] = regs->rdi;
358 env->regs[R_EBP] = regs->rbp;
359 env->regs[R_ESP] = regs->rsp;
360 env->eip = regs->rip;
361 #else
362 env->regs[R_EAX] = regs->eax;
363 env->regs[R_EBX] = regs->ebx;
364 env->regs[R_ECX] = regs->ecx;
365 env->regs[R_EDX] = regs->edx;
366 env->regs[R_ESI] = regs->esi;
367 env->regs[R_EDI] = regs->edi;
368 env->regs[R_EBP] = regs->ebp;
369 env->regs[R_ESP] = regs->esp;
370 env->eip = regs->eip;
371 #endif
373 /* linux interrupt setup */
374 #ifndef TARGET_ABI32
375 env->idt.limit = 511;
376 #else
377 env->idt.limit = 255;
378 #endif
379 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
380 PROT_READ|PROT_WRITE,
381 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
382 idt_table = g2h(env->idt.base);
383 set_idt(0, 0);
384 set_idt(1, 0);
385 set_idt(2, 0);
386 set_idt(3, 3);
387 set_idt(4, 3);
388 set_idt(5, 0);
389 set_idt(6, 0);
390 set_idt(7, 0);
391 set_idt(8, 0);
392 set_idt(9, 0);
393 set_idt(10, 0);
394 set_idt(11, 0);
395 set_idt(12, 0);
396 set_idt(13, 0);
397 set_idt(14, 0);
398 set_idt(15, 0);
399 set_idt(16, 0);
400 set_idt(17, 0);
401 set_idt(18, 0);
402 set_idt(19, 0);
403 set_idt(0x80, 3);
405 /* linux segment setup */
407 uint64_t *gdt_table;
408 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
409 PROT_READ|PROT_WRITE,
410 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
411 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
412 gdt_table = g2h(env->gdt.base);
413 #ifdef TARGET_ABI32
414 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
415 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
416 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
417 #else
418 /* 64 bit code segment */
419 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
420 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
421 DESC_L_MASK |
422 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
423 #endif
424 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
425 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
426 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
428 cpu_x86_load_seg(env, R_CS, __USER_CS);
429 cpu_x86_load_seg(env, R_SS, __USER_DS);
430 #ifdef TARGET_ABI32
431 cpu_x86_load_seg(env, R_DS, __USER_DS);
432 cpu_x86_load_seg(env, R_ES, __USER_DS);
433 cpu_x86_load_seg(env, R_FS, __USER_DS);
434 cpu_x86_load_seg(env, R_GS, __USER_DS);
435 /* This hack makes Wine work... */
436 env->segs[R_FS].selector = 0;
437 #else
438 cpu_x86_load_seg(env, R_DS, 0);
439 cpu_x86_load_seg(env, R_ES, 0);
440 cpu_x86_load_seg(env, R_FS, 0);
441 cpu_x86_load_seg(env, R_GS, 0);
442 #endif