2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug
;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
65 CPUWatchpoint details
;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps
, max_hw_wps
;
70 GArray
*hw_breakpoints
, *hw_watchpoints
;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
78 * kvm_arm_init_debug() - check for guest debug capabilities
81 * kvm_check_extension returns the number of debug registers we have
82 * or 0 if we have none.
85 static void kvm_arm_init_debug(CPUState
*cs
)
87 have_guest_debug
= kvm_check_extension(cs
->kvm_state
,
88 KVM_CAP_SET_GUEST_DEBUG
);
90 max_hw_wps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_WPS
);
91 hw_watchpoints
= g_array_sized_new(true, true,
92 sizeof(HWWatchpoint
), max_hw_wps
);
94 max_hw_bps
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GUEST_DEBUG_HW_BPS
);
95 hw_breakpoints
= g_array_sized_new(true, true,
96 sizeof(HWBreakpoint
), max_hw_bps
);
101 * insert_hw_breakpoint()
102 * @addr: address of breakpoint
104 * See ARM ARM D2.9.1 for details but here we are only going to create
105 * simple un-linked breakpoints (i.e. we don't chain breakpoints
106 * together to match address and context or vmid). The hardware is
107 * capable of fancier matching but that will require exposing that
108 * fanciness to GDB's interface
110 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
112 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
113 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115 * +------+------+-------+-----+----+------+-----+------+-----+---+
117 * BT: Breakpoint type (0 = unlinked address match)
118 * LBN: Linked BP number (0 = unused)
119 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120 * BAS: Byte Address Select (RES1 for AArch64)
123 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
125 * 63 53 52 49 48 2 1 0
126 * +------+-----------+----------+-----+
127 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128 * +------+-----------+----------+-----+
130 * Depending on the addressing mode bits the top bits of the register
131 * are a sign extension of the highest applicable VA bit. Some
132 * versions of GDB don't do it correctly so we ensure they are correct
133 * here so future PC comparisons will work properly.
136 static int insert_hw_breakpoint(target_ulong addr
)
139 .bcr
= 0x1, /* BCR E=1, enable */
140 .bvr
= sextract64(addr
, 0, 53)
143 if (cur_hw_bps
>= max_hw_bps
) {
147 brk
.bcr
= deposit32(brk
.bcr
, 1, 2, 0x3); /* PMC = 11 */
148 brk
.bcr
= deposit32(brk
.bcr
, 5, 4, 0xf); /* BAS = RES1 */
150 g_array_append_val(hw_breakpoints
, brk
);
156 * delete_hw_breakpoint()
157 * @pc: address of breakpoint
159 * Delete a breakpoint and shuffle any above down
162 static int delete_hw_breakpoint(target_ulong pc
)
165 for (i
= 0; i
< hw_breakpoints
->len
; i
++) {
166 HWBreakpoint
*brk
= get_hw_bp(i
);
167 if (brk
->bvr
== pc
) {
168 g_array_remove_index(hw_breakpoints
, i
);
176 * insert_hw_watchpoint()
177 * @addr: address of watch point
179 * @type: type of watch point
181 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182 * stuff if we want to. The watch points can be linked with the break
183 * points above to make them context aware. However for simplicity
184 * currently we only deal with simple read/write watch points.
186 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
188 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
189 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
193 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194 * WT: 0 - unlinked, 1 - linked (not currently used)
195 * LBN: Linked BP number (not currently used)
196 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197 * BAS: Byte Address Select
198 * LSC: Load/Store control (01: load, 10: store, 11: both)
201 * The bottom 2 bits of the value register are masked. Therefore to
202 * break on any sizes smaller than an unaligned word you need to set
203 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204 * need to ensure you mask the address as required and set BAS=0xff
207 static int insert_hw_watchpoint(target_ulong addr
,
208 target_ulong len
, int type
)
211 .wcr
= 1, /* E=1, enable */
212 .wvr
= addr
& (~0x7ULL
),
213 .details
= { .vaddr
= addr
, .len
= len
}
216 if (cur_hw_wps
>= max_hw_wps
) {
221 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222 * valid whether EL3 is implemented or not
224 wp
.wcr
= deposit32(wp
.wcr
, 1, 2, 3);
227 case GDB_WATCHPOINT_READ
:
228 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 1);
229 wp
.details
.flags
= BP_MEM_READ
;
231 case GDB_WATCHPOINT_WRITE
:
232 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 2);
233 wp
.details
.flags
= BP_MEM_WRITE
;
235 case GDB_WATCHPOINT_ACCESS
:
236 wp
.wcr
= deposit32(wp
.wcr
, 3, 2, 3);
237 wp
.details
.flags
= BP_MEM_ACCESS
;
240 g_assert_not_reached();
244 /* we align the address and set the bits in BAS */
245 int off
= addr
& 0x7;
246 int bas
= (1 << len
) - 1;
248 wp
.wcr
= deposit32(wp
.wcr
, 5 + off
, 8 - off
, bas
);
250 /* For ranges above 8 bytes we need to be a power of 2 */
251 if (is_power_of_2(len
)) {
252 int bits
= ctz64(len
);
254 wp
.wvr
&= ~((1 << bits
) - 1);
255 wp
.wcr
= deposit32(wp
.wcr
, 24, 4, bits
);
256 wp
.wcr
= deposit32(wp
.wcr
, 5, 8, 0xff);
262 g_array_append_val(hw_watchpoints
, wp
);
267 static bool check_watchpoint_in_range(int i
, target_ulong addr
)
269 HWWatchpoint
*wp
= get_hw_wp(i
);
270 uint64_t addr_top
, addr_bottom
= wp
->wvr
;
271 int bas
= extract32(wp
->wcr
, 5, 8);
272 int mask
= extract32(wp
->wcr
, 24, 4);
275 addr_top
= addr_bottom
+ (1 << mask
);
277 /* BAS must be contiguous but can offset against the base
278 * address in DBGWVR */
279 addr_bottom
= addr_bottom
+ ctz32(bas
);
280 addr_top
= addr_bottom
+ clo32(bas
);
283 if (addr
>= addr_bottom
&& addr
<= addr_top
) {
291 * delete_hw_watchpoint()
292 * @addr: address of breakpoint
294 * Delete a breakpoint and shuffle any above down
297 static int delete_hw_watchpoint(target_ulong addr
,
298 target_ulong len
, int type
)
301 for (i
= 0; i
< cur_hw_wps
; i
++) {
302 if (check_watchpoint_in_range(i
, addr
)) {
303 g_array_remove_index(hw_watchpoints
, i
);
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
312 target_ulong len
, int type
)
315 case GDB_BREAKPOINT_HW
:
316 return insert_hw_breakpoint(addr
);
318 case GDB_WATCHPOINT_READ
:
319 case GDB_WATCHPOINT_WRITE
:
320 case GDB_WATCHPOINT_ACCESS
:
321 return insert_hw_watchpoint(addr
, len
, type
);
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
328 target_ulong len
, int type
)
331 case GDB_BREAKPOINT_HW
:
332 return delete_hw_breakpoint(addr
);
334 case GDB_WATCHPOINT_READ
:
335 case GDB_WATCHPOINT_WRITE
:
336 case GDB_WATCHPOINT_ACCESS
:
337 return delete_hw_watchpoint(addr
, len
, type
);
344 void kvm_arch_remove_all_hw_breakpoints(void)
346 if (cur_hw_wps
> 0) {
347 g_array_remove_range(hw_watchpoints
, 0, cur_hw_wps
);
349 if (cur_hw_bps
> 0) {
350 g_array_remove_range(hw_breakpoints
, 0, cur_hw_bps
);
354 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
357 memset(ptr
, 0, sizeof(struct kvm_guest_debug_arch
));
359 for (i
= 0; i
< max_hw_wps
; i
++) {
360 HWWatchpoint
*wp
= get_hw_wp(i
);
361 ptr
->dbg_wcr
[i
] = wp
->wcr
;
362 ptr
->dbg_wvr
[i
] = wp
->wvr
;
364 for (i
= 0; i
< max_hw_bps
; i
++) {
365 HWBreakpoint
*bp
= get_hw_bp(i
);
366 ptr
->dbg_bcr
[i
] = bp
->bcr
;
367 ptr
->dbg_bvr
[i
] = bp
->bvr
;
371 bool kvm_arm_hw_debug_active(CPUState
*cs
)
373 return ((cur_hw_wps
> 0) || (cur_hw_bps
> 0));
376 static bool find_hw_breakpoint(CPUState
*cpu
, target_ulong pc
)
380 for (i
= 0; i
< cur_hw_bps
; i
++) {
381 HWBreakpoint
*bp
= get_hw_bp(i
);
389 static CPUWatchpoint
*find_hw_watchpoint(CPUState
*cpu
, target_ulong addr
)
393 for (i
= 0; i
< cur_hw_wps
; i
++) {
394 if (check_watchpoint_in_range(i
, addr
)) {
395 return &get_hw_wp(i
)->details
;
401 static bool kvm_arm_pmu_set_attr(CPUState
*cs
, struct kvm_device_attr
*attr
)
405 err
= kvm_vcpu_ioctl(cs
, KVM_HAS_DEVICE_ATTR
, attr
);
407 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err
));
411 err
= kvm_vcpu_ioctl(cs
, KVM_SET_DEVICE_ATTR
, attr
);
413 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err
));
420 void kvm_arm_pmu_init(CPUState
*cs
)
422 struct kvm_device_attr attr
= {
423 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
424 .attr
= KVM_ARM_VCPU_PMU_V3_INIT
,
427 if (!ARM_CPU(cs
)->has_pmu
) {
430 if (!kvm_arm_pmu_set_attr(cs
, &attr
)) {
431 error_report("failed to init PMU");
436 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
438 struct kvm_device_attr attr
= {
439 .group
= KVM_ARM_VCPU_PMU_V3_CTRL
,
440 .addr
= (intptr_t)&irq
,
441 .attr
= KVM_ARM_VCPU_PMU_V3_IRQ
,
444 if (!ARM_CPU(cs
)->has_pmu
) {
447 if (!kvm_arm_pmu_set_attr(cs
, &attr
)) {
448 error_report("failed to set irq for PMU");
453 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
456 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)&ret
};
459 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
460 err
= ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
468 static int read_sys_reg64(int fd
, uint64_t *pret
, uint64_t id
)
470 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
472 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U64
);
473 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
476 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
478 /* Identify the feature bits corresponding to the host CPU, and
479 * fill out the ARMHostCPUClass fields accordingly. To do this
480 * we have to create a scratch VM, create a single CPU inside it,
481 * and then query that CPU for the relevant ID registers.
485 uint64_t features
= 0;
489 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
490 * we know these will only support creating one kind of guest CPU,
491 * which is its preferred CPU type. Fortunately these old kernels
492 * support only a very limited number of CPUs.
494 static const uint32_t cpus_to_try
[] = {
495 KVM_ARM_TARGET_AEM_V8
,
496 KVM_ARM_TARGET_FOUNDATION_V8
,
497 KVM_ARM_TARGET_CORTEX_A57
,
498 QEMU_KVM_ARM_TARGET_NONE
501 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
502 * to use the preferred target
504 struct kvm_vcpu_init init
= { .target
= -1, };
506 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
510 ahcf
->target
= init
.target
;
511 ahcf
->dtb_compatible
= "arm,arm-v8";
513 err
= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr0
,
514 ARM64_SYS_REG(3, 0, 0, 4, 0));
515 if (unlikely(err
< 0)) {
517 * Before v4.15, the kernel only exposed a limited number of system
518 * registers, not including any of the interesting AArch64 ID regs.
519 * For the most part we could leave these fields as zero with minimal
520 * effect, since this does not affect the values seen by the guest.
522 * However, it could cause problems down the line for QEMU,
523 * so provide a minimal v8.0 default.
525 * ??? Could read MIDR and use knowledge from cpu64.c.
526 * ??? Could map a page of memory into our temp guest and
527 * run the tiniest of hand-crafted kernels to extract
528 * the values seen by the guest.
529 * ??? Either of these sounds like too much effort just
530 * to work around running a modern host kernel.
532 ahcf
->isar
.id_aa64pfr0
= 0x00000011; /* EL1&0, AArch64 only */
535 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64pfr1
,
536 ARM64_SYS_REG(3, 0, 0, 4, 1));
537 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr0
,
538 ARM64_SYS_REG(3, 0, 0, 5, 0));
539 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64dfr1
,
540 ARM64_SYS_REG(3, 0, 0, 5, 1));
541 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar0
,
542 ARM64_SYS_REG(3, 0, 0, 6, 0));
543 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64isar1
,
544 ARM64_SYS_REG(3, 0, 0, 6, 1));
545 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr0
,
546 ARM64_SYS_REG(3, 0, 0, 7, 0));
547 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr1
,
548 ARM64_SYS_REG(3, 0, 0, 7, 1));
549 err
|= read_sys_reg64(fdarray
[2], &ahcf
->isar
.id_aa64mmfr2
,
550 ARM64_SYS_REG(3, 0, 0, 7, 2));
553 * Note that if AArch32 support is not present in the host,
554 * the AArch32 sysregs are present to be read, but will
555 * return UNKNOWN values. This is neither better nor worse
556 * than skipping the reads and leaving 0, as we must avoid
557 * considering the values in every case.
559 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
560 ARM64_SYS_REG(3, 0, 0, 1, 2));
561 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
562 ARM64_SYS_REG(3, 0, 0, 1, 4));
563 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
564 ARM64_SYS_REG(3, 0, 0, 1, 5));
565 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
566 ARM64_SYS_REG(3, 0, 0, 1, 6));
567 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
568 ARM64_SYS_REG(3, 0, 0, 1, 7));
569 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
570 ARM64_SYS_REG(3, 0, 0, 2, 0));
571 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
572 ARM64_SYS_REG(3, 0, 0, 2, 1));
573 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
574 ARM64_SYS_REG(3, 0, 0, 2, 2));
575 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
576 ARM64_SYS_REG(3, 0, 0, 2, 3));
577 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
578 ARM64_SYS_REG(3, 0, 0, 2, 4));
579 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
580 ARM64_SYS_REG(3, 0, 0, 2, 5));
581 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
582 ARM64_SYS_REG(3, 0, 0, 2, 6));
583 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
584 ARM64_SYS_REG(3, 0, 0, 2, 7));
586 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
587 ARM64_SYS_REG(3, 0, 0, 3, 0));
588 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
589 ARM64_SYS_REG(3, 0, 0, 3, 1));
590 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr2
,
591 ARM64_SYS_REG(3, 0, 0, 3, 2));
594 * DBGDIDR is a bit complicated because the kernel doesn't
595 * provide an accessor for it in 64-bit mode, which is what this
596 * scratch VM is in, and there's no architected "64-bit sysreg
597 * which reads the same as the 32-bit register" the way there is
598 * for other ID registers. Instead we synthesize a value from the
599 * AArch64 ID_AA64DFR0, the same way the kernel code in
600 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
601 * We only do this if the CPU supports AArch32 at EL1.
603 if (FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL1
) >= 2) {
604 int wrps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, WRPS
);
605 int brps
= FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, BRPS
);
607 FIELD_EX64(ahcf
->isar
.id_aa64dfr0
, ID_AA64DFR0
, CTX_CMPS
);
608 int version
= 6; /* ARMv8 debug architecture */
610 !!FIELD_EX32(ahcf
->isar
.id_aa64pfr0
, ID_AA64PFR0
, EL3
);
611 uint32_t dbgdidr
= 0;
613 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, WRPS
, wrps
);
614 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, BRPS
, brps
);
615 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, CTX_CMPS
, ctx_cmps
);
616 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, VERSION
, version
);
617 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, NSUHD_IMP
, has_el3
);
618 dbgdidr
= FIELD_DP32(dbgdidr
, DBGDIDR
, SE_IMP
, has_el3
);
619 dbgdidr
|= (1 << 15); /* RES1 bit */
620 ahcf
->isar
.dbgdidr
= dbgdidr
;
624 sve_supported
= ioctl(fdarray
[0], KVM_CHECK_EXTENSION
, KVM_CAP_ARM_SVE
) > 0;
626 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
632 /* Add feature bits that can't appear until after VCPU init. */
634 t
= ahcf
->isar
.id_aa64pfr0
;
635 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
636 ahcf
->isar
.id_aa64pfr0
= t
;
640 * We can assume any KVM supporting CPU is at least a v8
641 * with VFPv4+Neon; this in turn implies most of the other
644 features
|= 1ULL << ARM_FEATURE_V8
;
645 features
|= 1ULL << ARM_FEATURE_NEON
;
646 features
|= 1ULL << ARM_FEATURE_AARCH64
;
647 features
|= 1ULL << ARM_FEATURE_PMU
;
648 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
650 ahcf
->features
= features
;
655 bool kvm_arm_aarch32_supported(void)
657 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_EL1_32BIT
);
660 bool kvm_arm_sve_supported(void)
662 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_SVE
);
665 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN
!= 1);
667 void kvm_arm_sve_get_vls(CPUState
*cs
, unsigned long *map
)
669 /* Only call this function if kvm_arm_sve_supported() returns true. */
670 static uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
];
675 bitmap_clear(map
, 0, ARM_MAX_VQ
);
678 * KVM ensures all host CPUs support the same set of vector lengths.
679 * So we only need to create the scratch VCPUs once and then cache
683 struct kvm_vcpu_init init
= {
685 .features
[0] = (1 << KVM_ARM_VCPU_SVE
),
687 struct kvm_one_reg reg
= {
688 .id
= KVM_REG_ARM64_SVE_VLS
,
689 .addr
= (uint64_t)&vls
[0],
695 if (!kvm_arm_create_scratch_host_vcpu(NULL
, fdarray
, &init
)) {
696 error_report("failed to create scratch VCPU with SVE enabled");
699 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, ®
);
700 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
702 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
707 for (i
= KVM_ARM64_SVE_VLS_WORDS
- 1; i
>= 0; --i
) {
709 vq
= 64 - clz64(vls
[i
]) + i
* 64;
713 if (vq
> ARM_MAX_VQ
) {
714 warn_report("KVM supports vector lengths larger than "
719 for (i
= 0; i
< KVM_ARM64_SVE_VLS_WORDS
; ++i
) {
723 for (j
= 1; j
<= 64; ++j
) {
725 if (vq
> ARM_MAX_VQ
) {
728 if (vls
[i
] & (1UL << (j
- 1))) {
729 set_bit(vq
- 1, map
);
735 static int kvm_arm_sve_set_vls(CPUState
*cs
)
737 uint64_t vls
[KVM_ARM64_SVE_VLS_WORDS
] = {0};
738 struct kvm_one_reg reg
= {
739 .id
= KVM_REG_ARM64_SVE_VLS
,
740 .addr
= (uint64_t)&vls
[0],
742 ARMCPU
*cpu
= ARM_CPU(cs
);
746 assert(cpu
->sve_max_vq
<= KVM_ARM64_SVE_VQ_MAX
);
748 for (vq
= 1; vq
<= cpu
->sve_max_vq
; ++vq
) {
749 if (test_bit(vq
- 1, cpu
->sve_vq_map
)) {
756 return kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
759 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
761 int kvm_arch_init_vcpu(CPUState
*cs
)
765 ARMCPU
*cpu
= ARM_CPU(cs
);
766 CPUARMState
*env
= &cpu
->env
;
768 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
||
769 !object_dynamic_cast(OBJECT(cpu
), TYPE_AARCH64_CPU
)) {
770 error_report("KVM is not supported for this guest CPU type");
774 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
776 /* Determine init features for this CPU */
777 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
778 if (cpu
->start_powered_off
) {
779 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
781 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
782 cpu
->psci_version
= 2;
783 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
785 if (!arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
786 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT
;
788 if (!kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PMU_V3
)) {
789 cpu
->has_pmu
= false;
792 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PMU_V3
;
794 env
->features
&= ~(1ULL << ARM_FEATURE_PMU
);
796 if (cpu_isar_feature(aa64_sve
, cpu
)) {
797 assert(kvm_arm_sve_supported());
798 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_SVE
;
801 /* Do KVM_ARM_VCPU_INIT ioctl */
802 ret
= kvm_arm_vcpu_init(cs
);
807 if (cpu_isar_feature(aa64_sve
, cpu
)) {
808 ret
= kvm_arm_sve_set_vls(cs
);
812 ret
= kvm_arm_vcpu_finalize(cs
, KVM_ARM_VCPU_SVE
);
819 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
820 * Currently KVM has its own idea about MPIDR assignment, so we
821 * override our defaults with what we get from KVM.
823 ret
= kvm_get_one_reg(cs
, ARM64_SYS_REG(ARM_CPU_ID_MPIDR
), &mpidr
);
827 cpu
->mp_affinity
= mpidr
& ARM64_AFFINITY_MASK
;
829 kvm_arm_init_debug(cs
);
831 /* Check whether user space can specify guest syndrome value */
832 kvm_arm_init_serror_injection(cs
);
834 return kvm_arm_init_cpreg_list(cpu
);
837 int kvm_arch_destroy_vcpu(CPUState
*cs
)
842 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
844 /* Return true if the regidx is a register we should synchronize
845 * via the cpreg_tuples array (ie is not a core or sve reg that
846 * we sync by hand in kvm_arch_get/put_registers())
848 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
849 case KVM_REG_ARM_CORE
:
850 case KVM_REG_ARM64_SVE
:
857 typedef struct CPRegStateLevel
{
862 /* All system registers not listed in the following table are assumed to be
863 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
864 * often, you must add it to this table with a state of either
865 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
867 static const CPRegStateLevel non_runtime_cpregs
[] = {
868 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
871 int kvm_arm_cpreg_level(uint64_t regidx
)
875 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
876 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
877 if (l
->regidx
== regidx
) {
882 return KVM_PUT_RUNTIME_STATE
;
885 /* Callers must hold the iothread mutex lock */
886 static void kvm_inject_arm_sea(CPUState
*c
)
888 ARMCPU
*cpu
= ARM_CPU(c
);
889 CPUARMState
*env
= &cpu
->env
;
890 CPUClass
*cc
= CPU_GET_CLASS(c
);
894 c
->exception_index
= EXCP_DATA_ABORT
;
895 env
->exception
.target_el
= 1;
898 * Set the DFSC to synchronous external abort and set FnV to not valid,
899 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
901 same_el
= arm_current_el(env
) == env
->exception
.target_el
;
902 esr
= syn_data_abort_no_iss(same_el
, 1, 0, 0, 0, 0, 0x10);
904 env
->exception
.syndrome
= esr
;
909 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
910 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
912 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
913 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
915 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
916 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
918 static int kvm_arch_put_fpsimd(CPUState
*cs
)
920 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
921 struct kvm_one_reg reg
;
924 for (i
= 0; i
< 32; i
++) {
925 uint64_t *q
= aa64_vfp_qreg(env
, i
);
926 #ifdef HOST_WORDS_BIGENDIAN
927 uint64_t fp_val
[2] = { q
[1], q
[0] };
928 reg
.addr
= (uintptr_t)fp_val
;
930 reg
.addr
= (uintptr_t)q
;
932 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
933 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
943 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
944 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
945 * code the slice index to zero for now as it's unlikely we'll need more than
946 * one slice for quite some time.
948 static int kvm_arch_put_sve(CPUState
*cs
)
950 ARMCPU
*cpu
= ARM_CPU(cs
);
951 CPUARMState
*env
= &cpu
->env
;
952 uint64_t tmp
[ARM_MAX_VQ
* 2];
954 struct kvm_one_reg reg
;
957 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
958 r
= sve_bswap64(tmp
, &env
->vfp
.zregs
[n
].d
[0], cpu
->sve_max_vq
* 2);
959 reg
.addr
= (uintptr_t)r
;
960 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
961 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
967 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
968 r
= sve_bswap64(tmp
, r
= &env
->vfp
.pregs
[n
].p
[0],
969 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
970 reg
.addr
= (uintptr_t)r
;
971 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
972 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
978 r
= sve_bswap64(tmp
, &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0],
979 DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
980 reg
.addr
= (uintptr_t)r
;
981 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
982 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
990 int kvm_arch_put_registers(CPUState
*cs
, int level
)
992 struct kvm_one_reg reg
;
998 ARMCPU
*cpu
= ARM_CPU(cs
);
999 CPUARMState
*env
= &cpu
->env
;
1001 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1002 * AArch64 registers before pushing them out to 64-bit KVM.
1005 aarch64_sync_32_to_64(env
);
1008 for (i
= 0; i
< 31; i
++) {
1009 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1010 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1011 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1017 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1018 * QEMU side we keep the current SP in xregs[31] as well.
1020 aarch64_save_sp(env
, 1);
1022 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1023 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1024 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1029 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1030 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1031 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1036 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1038 val
= pstate_read(env
);
1040 val
= cpsr_read(env
);
1042 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1043 reg
.addr
= (uintptr_t) &val
;
1044 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1049 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1050 reg
.addr
= (uintptr_t) &env
->pc
;
1051 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1056 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1057 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1058 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1063 /* Saved Program State Registers
1065 * Before we restore from the banked_spsr[] array we need to
1066 * ensure that any modifications to env->spsr are correctly
1067 * reflected in the banks.
1069 el
= arm_current_el(env
);
1070 if (el
> 0 && !is_a64(env
)) {
1071 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1072 env
->banked_spsr
[i
] = env
->spsr
;
1075 /* KVM 0-4 map to QEMU banks 1-5 */
1076 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1077 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1078 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1079 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1085 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1086 ret
= kvm_arch_put_sve(cs
);
1088 ret
= kvm_arch_put_fpsimd(cs
);
1094 reg
.addr
= (uintptr_t)(&fpr
);
1095 fpr
= vfp_get_fpsr(env
);
1096 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1097 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1102 reg
.addr
= (uintptr_t)(&fpr
);
1103 fpr
= vfp_get_fpcr(env
);
1104 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1105 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
1110 write_cpustate_to_list(cpu
, true);
1112 if (!write_list_to_kvmstate(cpu
, level
)) {
1117 * Setting VCPU events should be triggered after syncing the registers
1118 * to avoid overwriting potential changes made by KVM upon calling
1119 * KVM_SET_VCPU_EVENTS ioctl
1121 ret
= kvm_put_vcpu_events(cpu
);
1126 kvm_arm_sync_mpstate_to_kvm(cpu
);
1131 static int kvm_arch_get_fpsimd(CPUState
*cs
)
1133 CPUARMState
*env
= &ARM_CPU(cs
)->env
;
1134 struct kvm_one_reg reg
;
1137 for (i
= 0; i
< 32; i
++) {
1138 uint64_t *q
= aa64_vfp_qreg(env
, i
);
1139 reg
.id
= AARCH64_SIMD_CORE_REG(fp_regs
.vregs
[i
]);
1140 reg
.addr
= (uintptr_t)q
;
1141 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1145 #ifdef HOST_WORDS_BIGENDIAN
1147 t
= q
[0], q
[0] = q
[1], q
[1] = t
;
1156 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1157 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1158 * code the slice index to zero for now as it's unlikely we'll need more than
1159 * one slice for quite some time.
1161 static int kvm_arch_get_sve(CPUState
*cs
)
1163 ARMCPU
*cpu
= ARM_CPU(cs
);
1164 CPUARMState
*env
= &cpu
->env
;
1165 struct kvm_one_reg reg
;
1169 for (n
= 0; n
< KVM_ARM64_SVE_NUM_ZREGS
; ++n
) {
1170 r
= &env
->vfp
.zregs
[n
].d
[0];
1171 reg
.addr
= (uintptr_t)r
;
1172 reg
.id
= KVM_REG_ARM64_SVE_ZREG(n
, 0);
1173 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1177 sve_bswap64(r
, r
, cpu
->sve_max_vq
* 2);
1180 for (n
= 0; n
< KVM_ARM64_SVE_NUM_PREGS
; ++n
) {
1181 r
= &env
->vfp
.pregs
[n
].p
[0];
1182 reg
.addr
= (uintptr_t)r
;
1183 reg
.id
= KVM_REG_ARM64_SVE_PREG(n
, 0);
1184 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1188 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1191 r
= &env
->vfp
.pregs
[FFR_PRED_NUM
].p
[0];
1192 reg
.addr
= (uintptr_t)r
;
1193 reg
.id
= KVM_REG_ARM64_SVE_FFR(0);
1194 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1198 sve_bswap64(r
, r
, DIV_ROUND_UP(cpu
->sve_max_vq
* 2, 8));
1203 int kvm_arch_get_registers(CPUState
*cs
)
1205 struct kvm_one_reg reg
;
1211 ARMCPU
*cpu
= ARM_CPU(cs
);
1212 CPUARMState
*env
= &cpu
->env
;
1214 for (i
= 0; i
< 31; i
++) {
1215 reg
.id
= AARCH64_CORE_REG(regs
.regs
[i
]);
1216 reg
.addr
= (uintptr_t) &env
->xregs
[i
];
1217 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1223 reg
.id
= AARCH64_CORE_REG(regs
.sp
);
1224 reg
.addr
= (uintptr_t) &env
->sp_el
[0];
1225 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1230 reg
.id
= AARCH64_CORE_REG(sp_el1
);
1231 reg
.addr
= (uintptr_t) &env
->sp_el
[1];
1232 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1237 reg
.id
= AARCH64_CORE_REG(regs
.pstate
);
1238 reg
.addr
= (uintptr_t) &val
;
1239 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1244 env
->aarch64
= ((val
& PSTATE_nRW
) == 0);
1246 pstate_write(env
, val
);
1248 cpsr_write(env
, val
, 0xffffffff, CPSRWriteRaw
);
1251 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1252 * QEMU side we keep the current SP in xregs[31] as well.
1254 aarch64_restore_sp(env
, 1);
1256 reg
.id
= AARCH64_CORE_REG(regs
.pc
);
1257 reg
.addr
= (uintptr_t) &env
->pc
;
1258 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1263 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1264 * incoming AArch64 regs received from 64-bit KVM.
1265 * We must perform this after all of the registers have been acquired from
1269 aarch64_sync_64_to_32(env
);
1272 reg
.id
= AARCH64_CORE_REG(elr_el1
);
1273 reg
.addr
= (uintptr_t) &env
->elr_el
[1];
1274 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1279 /* Fetch the SPSR registers
1281 * KVM SPSRs 0-4 map to QEMU banks 1-5
1283 for (i
= 0; i
< KVM_NR_SPSR
; i
++) {
1284 reg
.id
= AARCH64_CORE_REG(spsr
[i
]);
1285 reg
.addr
= (uintptr_t) &env
->banked_spsr
[i
+ 1];
1286 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1292 el
= arm_current_el(env
);
1293 if (el
> 0 && !is_a64(env
)) {
1294 i
= bank_number(env
->uncached_cpsr
& CPSR_M
);
1295 env
->spsr
= env
->banked_spsr
[i
];
1298 if (cpu_isar_feature(aa64_sve
, cpu
)) {
1299 ret
= kvm_arch_get_sve(cs
);
1301 ret
= kvm_arch_get_fpsimd(cs
);
1307 reg
.addr
= (uintptr_t)(&fpr
);
1308 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpsr
);
1309 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1313 vfp_set_fpsr(env
, fpr
);
1315 reg
.addr
= (uintptr_t)(&fpr
);
1316 reg
.id
= AARCH64_SIMD_CTRL_REG(fp_regs
.fpcr
);
1317 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
1321 vfp_set_fpcr(env
, fpr
);
1323 ret
= kvm_get_vcpu_events(cpu
);
1328 if (!write_kvmstate_to_list(cpu
)) {
1331 /* Note that it's OK to have registers which aren't in CPUState,
1332 * so we can ignore a failure return here.
1334 write_list_to_cpustate(cpu
);
1336 kvm_arm_sync_mpstate_to_qemu(cpu
);
1338 /* TODO: other registers */
1342 void kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
1344 ram_addr_t ram_addr
;
1346 Object
*obj
= qdev_get_machine();
1347 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1348 bool acpi_enabled
= virt_is_acpi_enabled(vms
);
1350 assert(code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
);
1352 if (acpi_enabled
&& addr
&&
1353 object_property_get_bool(obj
, "ras", NULL
)) {
1354 ram_addr
= qemu_ram_addr_from_host(addr
);
1355 if (ram_addr
!= RAM_ADDR_INVALID
&&
1356 kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
1357 kvm_hwpoison_page_add(ram_addr
);
1359 * If this is a BUS_MCEERR_AR, we know we have been called
1360 * synchronously from the vCPU thread, so we can easily
1361 * synchronize the state and inject an error.
1363 * TODO: we currently don't tell the guest at all about
1364 * BUS_MCEERR_AO. In that case we might either be being
1365 * called synchronously from the vCPU thread, or a bit
1366 * later from the main thread, so doing the injection of
1367 * the error would be more complicated.
1369 if (code
== BUS_MCEERR_AR
) {
1370 kvm_cpu_synchronize_state(c
);
1371 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA
, paddr
)) {
1372 kvm_inject_arm_sea(c
);
1374 error_report("failed to record the error");
1380 if (code
== BUS_MCEERR_AO
) {
1381 error_report("Hardware memory error at addr %p for memory used by "
1382 "QEMU itself instead of guest system!", addr
);
1386 if (code
== BUS_MCEERR_AR
) {
1387 error_report("Hardware memory error!");
1392 /* C6.6.29 BRK instruction */
1393 static const uint32_t brk_insn
= 0xd4200000;
1395 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1397 if (have_guest_debug
) {
1398 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 0) ||
1399 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk_insn
, 4, 1)) {
1404 error_report("guest debug not supported on this kernel");
1409 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
1411 static uint32_t brk
;
1413 if (have_guest_debug
) {
1414 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&brk
, 4, 0) ||
1416 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 4, 1)) {
1421 error_report("guest debug not supported on this kernel");
1426 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1428 * To minimise translating between kernel and user-space the kernel
1429 * ABI just provides user-space with the full exception syndrome
1430 * register value to be decoded in QEMU.
1433 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
1435 int hsr_ec
= syn_get_ec(debug_exit
->hsr
);
1436 ARMCPU
*cpu
= ARM_CPU(cs
);
1437 CPUClass
*cc
= CPU_GET_CLASS(cs
);
1438 CPUARMState
*env
= &cpu
->env
;
1440 /* Ensure PC is synchronised */
1441 kvm_cpu_synchronize_state(cs
);
1444 case EC_SOFTWARESTEP
:
1445 if (cs
->singlestep_enabled
) {
1449 * The kernel should have suppressed the guest's ability to
1450 * single step at this point so something has gone wrong.
1452 error_report("%s: guest single-step while debugging unsupported"
1453 " (%"PRIx64
", %"PRIx32
")",
1454 __func__
, env
->pc
, debug_exit
->hsr
);
1459 if (kvm_find_sw_breakpoint(cs
, env
->pc
)) {
1464 if (find_hw_breakpoint(cs
, env
->pc
)) {
1470 CPUWatchpoint
*wp
= find_hw_watchpoint(cs
, debug_exit
->far
);
1472 cs
->watchpoint_hit
= wp
;
1478 error_report("%s: unhandled debug exit (%"PRIx32
", %"PRIx64
")",
1479 __func__
, debug_exit
->hsr
, env
->pc
);
1482 /* If we are not handling the debug exception it must belong to
1483 * the guest. Let's re-use the existing TCG interrupt code to set
1484 * everything up properly.
1486 cs
->exception_index
= EXCP_BKPT
;
1487 env
->exception
.syndrome
= debug_exit
->hsr
;
1488 env
->exception
.vaddress
= debug_exit
->far
;
1489 env
->exception
.target_el
= 1;
1490 qemu_mutex_lock_iothread();
1491 cc
->do_interrupt(cs
);
1492 qemu_mutex_unlock_iothread();