4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static CPUState
*do_raise_exception(CPUARMState
*env
, uint32_t excp
,
32 uint32_t syndrome
, uint32_t target_el
)
34 CPUState
*cs
= env_cpu(env
);
36 if (target_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
38 * Redirect NS EL1 exceptions to NS EL2. These are reported with
39 * their original syndrome register value, with the exception of
40 * SIMD/FP access traps, which are reported as uncategorized
41 * (see DDI0478C.a D1.10.4)
44 if (syn_get_ec(syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
45 syndrome
= syn_uncategorized();
49 assert(!excp_is_internal(excp
));
50 cs
->exception_index
= excp
;
51 env
->exception
.syndrome
= syndrome
;
52 env
->exception
.target_el
= target_el
;
57 void raise_exception(CPUARMState
*env
, uint32_t excp
,
58 uint32_t syndrome
, uint32_t target_el
)
60 CPUState
*cs
= do_raise_exception(env
, excp
, syndrome
, target_el
);
64 void raise_exception_ra(CPUARMState
*env
, uint32_t excp
, uint32_t syndrome
,
65 uint32_t target_el
, uintptr_t ra
)
67 CPUState
*cs
= do_raise_exception(env
, excp
, syndrome
, target_el
);
68 cpu_loop_exit_restore(cs
, ra
);
71 uint32_t HELPER(neon_tbl
)(uint32_t ireg
, uint32_t def
, void *vn
,
78 for (shift
= 0; shift
< 32; shift
+= 8) {
79 uint32_t index
= (ireg
>> shift
) & 0xff;
80 if (index
< maxindex
) {
81 uint32_t tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
84 val
|= def
& (0xff << shift
);
90 void HELPER(v8m_stackcheck
)(CPUARMState
*env
, uint32_t newvalue
)
93 * Perform the v8M stack limit check for SP updates from translated code,
94 * raising an exception if the limit is breached.
96 if (newvalue
< v7m_sp_limit(env
)) {
97 CPUState
*cs
= env_cpu(env
);
100 * Stack limit exceptions are a rare case, so rather than syncing
101 * PC/condbits before the call, we use cpu_restore_state() to
102 * get them right before raising the exception.
104 cpu_restore_state(cs
, GETPC(), true);
105 raise_exception(env
, EXCP_STKOF
, 0, 1);
109 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
111 uint32_t res
= a
+ b
;
112 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
117 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
119 uint32_t res
= a
+ b
;
120 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
122 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
127 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
129 uint32_t res
= a
- b
;
130 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
132 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
137 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
139 uint32_t res
= a
+ b
;
147 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
149 uint32_t res
= a
- b
;
157 /* Signed saturation. */
158 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
164 mask
= (1u << shift
) - 1;
168 } else if (top
< -1) {
175 /* Unsigned saturation. */
176 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
180 max
= (1u << shift
) - 1;
184 } else if (val
> max
) {
191 /* Signed saturate. */
192 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
194 return do_ssat(env
, x
, shift
);
197 /* Dual halfword signed saturate. */
198 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
202 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
203 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
207 /* Unsigned saturate. */
208 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
210 return do_usat(env
, x
, shift
);
213 /* Dual halfword unsigned saturate. */
214 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
218 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
219 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
223 void HELPER(setend
)(CPUARMState
*env
)
225 env
->uncached_cpsr
^= CPSR_E
;
226 arm_rebuild_hflags(env
);
229 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
230 * The function returns the target EL (1-3) if the instruction is to be trapped;
231 * otherwise it returns 0 indicating it is not trapped.
233 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
235 int cur_el
= arm_current_el(env
);
238 if (arm_feature(env
, ARM_FEATURE_M
)) {
239 /* M profile cores can never trap WFI/WFE. */
243 /* If we are currently in EL0 then we need to check if SCTLR is set up for
244 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
246 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
249 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
250 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
251 /* Secure EL0 and Secure PL1 is at EL3 */
257 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
262 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
263 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
264 * bits will be zero indicating no trap.
267 mask
= is_wfe
? HCR_TWE
: HCR_TWI
;
268 if (arm_hcr_el2_eff(env
) & mask
) {
273 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
275 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
276 if (env
->cp15
.scr_el3
& mask
) {
284 void HELPER(wfi
)(CPUARMState
*env
, uint32_t insn_len
)
286 CPUState
*cs
= env_cpu(env
);
287 int target_el
= check_wfx_trap(env
, false);
289 if (cpu_has_work(cs
)) {
290 /* Don't bother to go into our "low power state" if
291 * we would just wake up immediately.
300 env
->regs
[15] -= insn_len
;
303 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0, insn_len
== 2),
307 cs
->exception_index
= EXCP_HLT
;
312 void HELPER(wfe
)(CPUARMState
*env
)
314 /* This is a hint instruction that is semantically different
315 * from YIELD even though we currently implement it identically.
316 * Don't actually halt the CPU, just yield back to top
317 * level loop. This is not going into a "low power state"
318 * (ie halting until some event occurs), so we never take
319 * a configurable trap to a different exception level.
324 void HELPER(yield
)(CPUARMState
*env
)
326 CPUState
*cs
= env_cpu(env
);
328 /* This is a non-trappable hint instruction that generally indicates
329 * that the guest is currently busy-looping. Yield control back to the
330 * top level loop so that a more deserving VCPU has a chance to run.
332 cs
->exception_index
= EXCP_YIELD
;
336 /* Raise an internal-to-QEMU exception. This is limited to only
337 * those EXCP values which are special cases for QEMU to interrupt
338 * execution and not to be used for exceptions which are passed to
339 * the guest (those must all have syndrome information and thus should
340 * use exception_with_syndrome).
342 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
344 CPUState
*cs
= env_cpu(env
);
346 assert(excp_is_internal(excp
));
347 cs
->exception_index
= excp
;
351 /* Raise an exception with the specified syndrome register value */
352 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
353 uint32_t syndrome
, uint32_t target_el
)
355 raise_exception(env
, excp
, syndrome
, target_el
);
358 /* Raise an EXCP_BKPT with the specified syndrome register value,
359 * targeting the correct exception level for debug exceptions.
361 void HELPER(exception_bkpt_insn
)(CPUARMState
*env
, uint32_t syndrome
)
363 int debug_el
= arm_debug_target_el(env
);
364 int cur_el
= arm_current_el(env
);
366 /* FSR will only be used if the debug target EL is AArch32. */
367 env
->exception
.fsr
= arm_debug_exception_fsr(env
);
368 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
369 * values to the guest that it shouldn't be able to see at its
370 * exception/security level.
372 env
->exception
.vaddress
= 0;
374 * Other kinds of architectural debug exception are ignored if
375 * they target an exception level below the current one (in QEMU
376 * this is checked by arm_generate_debug_exceptions()). Breakpoint
377 * instructions are special because they always generate an exception
378 * to somewhere: if they can't go to the configured debug exception
379 * level they are taken to the current exception level.
381 if (debug_el
< cur_el
) {
384 raise_exception(env
, EXCP_BKPT
, syndrome
, debug_el
);
387 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
390 * We store the ARMv8 PSTATE.SS bit in env->uncached_cpsr.
391 * This is convenient for populating SPSR_ELx, but must be
392 * hidden from aarch32 mode, where it is not visible.
394 * TODO: ARMv8.4-DIT -- need to move SS somewhere else.
396 return cpsr_read(env
) & ~(CPSR_EXEC
| PSTATE_SS
);
399 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
401 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
402 /* TODO: Not all cpsr bits are relevant to hflags. */
403 arm_rebuild_hflags(env
);
406 /* Write the CPSR for a 32-bit exception return */
407 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
411 qemu_mutex_lock_iothread();
412 arm_call_pre_el_change_hook(env_archcpu(env
));
413 qemu_mutex_unlock_iothread();
415 mask
= aarch32_cpsr_valid_mask(env
->features
, &env_archcpu(env
)->isar
);
416 cpsr_write(env
, val
, mask
, CPSRWriteExceptionReturn
);
418 /* Generated code has already stored the new PC value, but
419 * without masking out its low bits, because which bits need
420 * masking depends on whether we're returning to Thumb or ARM
421 * state. Do the masking now.
423 env
->regs
[15] &= (env
->thumb
? ~1 : ~3);
424 arm_rebuild_hflags(env
);
426 qemu_mutex_lock_iothread();
427 arm_call_el_change_hook(env_archcpu(env
));
428 qemu_mutex_unlock_iothread();
431 /* Access to user mode registers from privileged modes. */
432 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
437 val
= env
->banked_r13
[BANK_USRSYS
];
438 } else if (regno
== 14) {
439 val
= env
->banked_r14
[BANK_USRSYS
];
440 } else if (regno
>= 8
441 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
442 val
= env
->usr_regs
[regno
- 8];
444 val
= env
->regs
[regno
];
449 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
452 env
->banked_r13
[BANK_USRSYS
] = val
;
453 } else if (regno
== 14) {
454 env
->banked_r14
[BANK_USRSYS
] = val
;
455 } else if (regno
>= 8
456 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
457 env
->usr_regs
[regno
- 8] = val
;
459 env
->regs
[regno
] = val
;
463 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
465 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
468 env
->banked_r13
[bank_number(mode
)] = val
;
472 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
474 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
475 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
476 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
478 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
479 exception_target_el(env
));
482 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
483 return env
->regs
[13];
485 return env
->banked_r13
[bank_number(mode
)];
489 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
492 /* Raise an exception if the requested access is one of the UNPREDICTABLE
493 * cases; otherwise return. This broadly corresponds to the pseudocode
494 * BankedRegisterAccessValid() and SPSRAccessValid(),
495 * except that we have already handled some cases at translate time.
497 int curmode
= env
->uncached_cpsr
& CPSR_M
;
500 /* ELR_Hyp: a special case because access from tgtmode is OK */
501 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
507 if (curmode
== tgtmode
) {
511 if (tgtmode
== ARM_CPU_MODE_USR
) {
514 if (curmode
!= ARM_CPU_MODE_FIQ
) {
519 if (curmode
== ARM_CPU_MODE_SYS
) {
524 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
533 if (tgtmode
== ARM_CPU_MODE_HYP
) {
534 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
535 if (curmode
!= ARM_CPU_MODE_MON
) {
543 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
544 exception_target_el(env
));
547 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
550 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
554 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
556 case 17: /* ELR_Hyp */
557 env
->elr_el
[2] = value
;
560 env
->banked_r13
[bank_number(tgtmode
)] = value
;
563 env
->banked_r14
[r14_bank_number(tgtmode
)] = value
;
567 case ARM_CPU_MODE_USR
:
568 env
->usr_regs
[regno
- 8] = value
;
570 case ARM_CPU_MODE_FIQ
:
571 env
->fiq_regs
[regno
- 8] = value
;
574 g_assert_not_reached();
578 g_assert_not_reached();
582 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
584 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
588 return env
->banked_spsr
[bank_number(tgtmode
)];
589 case 17: /* ELR_Hyp */
590 return env
->elr_el
[2];
592 return env
->banked_r13
[bank_number(tgtmode
)];
594 return env
->banked_r14
[r14_bank_number(tgtmode
)];
597 case ARM_CPU_MODE_USR
:
598 return env
->usr_regs
[regno
- 8];
599 case ARM_CPU_MODE_FIQ
:
600 return env
->fiq_regs
[regno
- 8];
602 g_assert_not_reached();
605 g_assert_not_reached();
609 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
612 const ARMCPRegInfo
*ri
= rip
;
615 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
616 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
617 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
621 * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses
622 * to sysregs non accessible at EL0 to have UNDEF-ed already.
624 if (!is_a64(env
) && arm_current_el(env
) < 2 && ri
->cp
== 15 &&
625 (arm_hcr_el2_eff(env
) & (HCR_E2H
| HCR_TGE
)) != (HCR_E2H
| HCR_TGE
)) {
626 uint32_t mask
= 1 << ri
->crn
;
628 if (ri
->type
& ARM_CP_64BIT
) {
632 /* T4 and T14 are RES0 */
633 mask
&= ~((1 << 4) | (1 << 14));
635 if (env
->cp15
.hstr_el2
& mask
) {
645 switch (ri
->accessfn(env
, ri
, isread
)) {
649 target_el
= exception_target_el(env
);
651 case CP_ACCESS_TRAP_EL2
:
652 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
653 * a bug in the access function.
655 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
658 case CP_ACCESS_TRAP_EL3
:
661 case CP_ACCESS_TRAP_UNCATEGORIZED
:
662 target_el
= exception_target_el(env
);
663 syndrome
= syn_uncategorized();
665 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
667 syndrome
= syn_uncategorized();
669 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
671 syndrome
= syn_uncategorized();
673 case CP_ACCESS_TRAP_FP_EL2
:
675 /* Since we are an implementation that takes exceptions on a trapped
676 * conditional insn only if the insn has passed its condition code
677 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
678 * (which is also the required value for AArch64 traps).
680 syndrome
= syn_fp_access_trap(1, 0xe, false);
682 case CP_ACCESS_TRAP_FP_EL3
:
684 syndrome
= syn_fp_access_trap(1, 0xe, false);
687 g_assert_not_reached();
691 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
694 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
696 const ARMCPRegInfo
*ri
= rip
;
698 if (ri
->type
& ARM_CP_IO
) {
699 qemu_mutex_lock_iothread();
700 ri
->writefn(env
, ri
, value
);
701 qemu_mutex_unlock_iothread();
703 ri
->writefn(env
, ri
, value
);
707 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
709 const ARMCPRegInfo
*ri
= rip
;
712 if (ri
->type
& ARM_CP_IO
) {
713 qemu_mutex_lock_iothread();
714 res
= ri
->readfn(env
, ri
);
715 qemu_mutex_unlock_iothread();
717 res
= ri
->readfn(env
, ri
);
723 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
725 const ARMCPRegInfo
*ri
= rip
;
727 if (ri
->type
& ARM_CP_IO
) {
728 qemu_mutex_lock_iothread();
729 ri
->writefn(env
, ri
, value
);
730 qemu_mutex_unlock_iothread();
732 ri
->writefn(env
, ri
, value
);
736 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
738 const ARMCPRegInfo
*ri
= rip
;
741 if (ri
->type
& ARM_CP_IO
) {
742 qemu_mutex_lock_iothread();
743 res
= ri
->readfn(env
, ri
);
744 qemu_mutex_unlock_iothread();
746 res
= ri
->readfn(env
, ri
);
752 void HELPER(pre_hvc
)(CPUARMState
*env
)
754 ARMCPU
*cpu
= env_archcpu(env
);
755 int cur_el
= arm_current_el(env
);
756 /* FIXME: Use actual secure state. */
760 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
761 /* If PSCI is enabled and this looks like a valid PSCI call then
762 * that overrides the architecturally mandated HVC behaviour.
767 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
768 /* If EL2 doesn't exist, HVC always UNDEFs */
770 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
771 /* EL3.HCE has priority over EL2.HCD. */
772 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
774 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
777 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
778 * For ARMv8/AArch64, HVC is allowed in EL3.
779 * Note that we've already trapped HVC from EL0 at translation
782 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
787 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
788 exception_target_el(env
));
792 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
794 ARMCPU
*cpu
= env_archcpu(env
);
795 int cur_el
= arm_current_el(env
);
796 bool secure
= arm_is_secure(env
);
797 bool smd_flag
= env
->cp15
.scr_el3
& SCR_SMD
;
800 * SMC behaviour is summarized in the following table.
801 * This helper handles the "Trap to EL2" and "Undef insn" cases.
802 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
805 * -> ARM_FEATURE_EL3 and !SMD
806 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
808 * Conduit SMC, valid call Trap to EL2 PSCI Call
809 * Conduit SMC, inval call Trap to EL2 Trap to EL3
810 * Conduit not SMC Trap to EL2 Trap to EL3
813 * -> ARM_FEATURE_EL3 and SMD
814 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
816 * Conduit SMC, valid call Trap to EL2 PSCI Call
817 * Conduit SMC, inval call Trap to EL2 Undef insn
818 * Conduit not SMC Trap to EL2 Undef insn
821 * -> !ARM_FEATURE_EL3
822 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
824 * Conduit SMC, valid call Trap to EL2 PSCI Call
825 * Conduit SMC, inval call Trap to EL2 Undef insn
826 * Conduit not SMC Undef insn Undef insn
829 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
830 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
831 * extensions, SMD only applies to NS state.
832 * On ARMv7 without the Virtualization extensions, the SMD bit
833 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
834 * so we need not special case this here.
836 bool smd
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd_flag
837 : smd_flag
&& !secure
;
839 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
840 cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
841 /* If we have no EL3 then SMC always UNDEFs and can't be
842 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
843 * firmware within QEMU, and we want an EL2 guest to be able
844 * to forbid its EL1 from making PSCI calls into QEMU's
845 * "firmware" via HCR.TSC, so for these purposes treat
846 * PSCI-via-SMC as implying an EL3.
847 * This handles the very last line of the previous table.
849 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
850 exception_target_el(env
));
853 if (cur_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TSC
)) {
854 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
855 * We also want an EL2 guest to be able to forbid its EL1 from
856 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
857 * This handles all the "Trap to EL2" cases of the previous table.
859 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
862 /* Catch the two remaining "Undef insn" cases of the previous table:
863 * - PSCI conduit is SMC but we don't have a valid PCSI call,
864 * - We don't have EL3 or SMD is set.
866 if (!arm_is_psci_call(cpu
, EXCP_SMC
) &&
867 (smd
|| !arm_feature(env
, ARM_FEATURE_EL3
))) {
868 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
869 exception_target_el(env
));
873 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
874 The only way to do that in TCG is a conditional branch, which clobbers
875 all our temporaries. For now implement these as helper functions. */
877 /* Similarly for variable shift instructions. */
879 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
881 int shift
= i
& 0xff;
888 } else if (shift
!= 0) {
889 env
->CF
= (x
>> (32 - shift
)) & 1;
895 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
897 int shift
= i
& 0xff;
900 env
->CF
= (x
>> 31) & 1;
904 } else if (shift
!= 0) {
905 env
->CF
= (x
>> (shift
- 1)) & 1;
911 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
913 int shift
= i
& 0xff;
915 env
->CF
= (x
>> 31) & 1;
916 return (int32_t)x
>> 31;
917 } else if (shift
!= 0) {
918 env
->CF
= (x
>> (shift
- 1)) & 1;
919 return (int32_t)x
>> shift
;
924 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
928 shift
= shift1
& 0x1f;
931 env
->CF
= (x
>> 31) & 1;
934 env
->CF
= (x
>> (shift
- 1)) & 1;
935 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));
939 void HELPER(probe_access
)(CPUARMState
*env
, target_ulong ptr
,
940 uint32_t access_type
, uint32_t mmu_idx
,
943 uint32_t in_page
= -((uint32_t)ptr
| TARGET_PAGE_SIZE
);
944 uintptr_t ra
= GETPC();
946 if (likely(size
<= in_page
)) {
947 probe_access(env
, ptr
, size
, access_type
, mmu_idx
, ra
);
949 probe_access(env
, ptr
, in_page
, access_type
, mmu_idx
, ra
);
950 probe_access(env
, ptr
+ in_page
, size
- in_page
,
951 access_type
, mmu_idx
, ra
);