migration/rdma: Plug memory leaks in qemu_rdma_registration_stop()
[qemu/armbru.git] / tcg / sparc / tcg-target.inc.c
blob65fddb310d4b42a0986657de45c3fc15be648e29
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "../tcg-pool.inc.c"
27 #ifdef CONFIG_DEBUG_TCG
28 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
29 "%g0",
30 "%g1",
31 "%g2",
32 "%g3",
33 "%g4",
34 "%g5",
35 "%g6",
36 "%g7",
37 "%o0",
38 "%o1",
39 "%o2",
40 "%o3",
41 "%o4",
42 "%o5",
43 "%o6",
44 "%o7",
45 "%l0",
46 "%l1",
47 "%l2",
48 "%l3",
49 "%l4",
50 "%l5",
51 "%l6",
52 "%l7",
53 "%i0",
54 "%i1",
55 "%i2",
56 "%i3",
57 "%i4",
58 "%i5",
59 "%i6",
60 "%i7",
62 #endif
64 #ifdef __arch64__
65 # define SPARC64 1
66 #else
67 # define SPARC64 0
68 #endif
70 /* Note that sparcv8plus can only hold 64 bit quantities in %g and %o
71 registers. These are saved manually by the kernel in full 64-bit
72 slots. The %i and %l registers are saved by the register window
73 mechanism, which only allocates space for 32 bits. Given that this
74 window spill/fill can happen on any signal, we must consider the
75 high bits of the %i and %l registers garbage at all times. */
76 #if SPARC64
77 # define ALL_64 0xffffffffu
78 #else
79 # define ALL_64 0xffffu
80 #endif
82 /* Define some temporary registers. T2 is used for constant generation. */
83 #define TCG_REG_T1 TCG_REG_G1
84 #define TCG_REG_T2 TCG_REG_O7
86 #ifndef CONFIG_SOFTMMU
87 # define TCG_GUEST_BASE_REG TCG_REG_I5
88 #endif
90 #define TCG_REG_TB TCG_REG_I1
91 #define USE_REG_TB (sizeof(void *) > 4)
93 static const int tcg_target_reg_alloc_order[] = {
94 TCG_REG_L0,
95 TCG_REG_L1,
96 TCG_REG_L2,
97 TCG_REG_L3,
98 TCG_REG_L4,
99 TCG_REG_L5,
100 TCG_REG_L6,
101 TCG_REG_L7,
103 TCG_REG_I0,
104 TCG_REG_I1,
105 TCG_REG_I2,
106 TCG_REG_I3,
107 TCG_REG_I4,
108 TCG_REG_I5,
110 TCG_REG_G2,
111 TCG_REG_G3,
112 TCG_REG_G4,
113 TCG_REG_G5,
115 TCG_REG_O0,
116 TCG_REG_O1,
117 TCG_REG_O2,
118 TCG_REG_O3,
119 TCG_REG_O4,
120 TCG_REG_O5,
123 static const int tcg_target_call_iarg_regs[6] = {
124 TCG_REG_O0,
125 TCG_REG_O1,
126 TCG_REG_O2,
127 TCG_REG_O3,
128 TCG_REG_O4,
129 TCG_REG_O5,
132 static const int tcg_target_call_oarg_regs[] = {
133 TCG_REG_O0,
134 TCG_REG_O1,
135 TCG_REG_O2,
136 TCG_REG_O3,
139 #define INSN_OP(x) ((x) << 30)
140 #define INSN_OP2(x) ((x) << 22)
141 #define INSN_OP3(x) ((x) << 19)
142 #define INSN_OPF(x) ((x) << 5)
143 #define INSN_RD(x) ((x) << 25)
144 #define INSN_RS1(x) ((x) << 14)
145 #define INSN_RS2(x) (x)
146 #define INSN_ASI(x) ((x) << 5)
148 #define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
149 #define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
150 #define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
151 #define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
152 #define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
153 #define INSN_COND(x) ((x) << 25)
155 #define COND_N 0x0
156 #define COND_E 0x1
157 #define COND_LE 0x2
158 #define COND_L 0x3
159 #define COND_LEU 0x4
160 #define COND_CS 0x5
161 #define COND_NEG 0x6
162 #define COND_VS 0x7
163 #define COND_A 0x8
164 #define COND_NE 0x9
165 #define COND_G 0xa
166 #define COND_GE 0xb
167 #define COND_GU 0xc
168 #define COND_CC 0xd
169 #define COND_POS 0xe
170 #define COND_VC 0xf
171 #define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
173 #define RCOND_Z 1
174 #define RCOND_LEZ 2
175 #define RCOND_LZ 3
176 #define RCOND_NZ 5
177 #define RCOND_GZ 6
178 #define RCOND_GEZ 7
180 #define MOVCC_ICC (1 << 18)
181 #define MOVCC_XCC (1 << 18 | 1 << 12)
183 #define BPCC_ICC 0
184 #define BPCC_XCC (2 << 20)
185 #define BPCC_PT (1 << 19)
186 #define BPCC_PN 0
187 #define BPCC_A (1 << 29)
189 #define BPR_PT BPCC_PT
191 #define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00))
192 #define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
193 #define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01))
194 #define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
195 #define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02))
196 #define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
197 #define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06))
198 #define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03))
199 #define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04))
200 #define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
201 #define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08))
202 #define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c))
203 #define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
204 #define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b))
205 #define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
206 #define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
207 #define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
208 #define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
209 #define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
210 #define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
211 #define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
213 #define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11))
214 #define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16))
216 #define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25))
217 #define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26))
218 #define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27))
220 #define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
221 #define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
222 #define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
224 #define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
225 #define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
226 #define JMPL (INSN_OP(2) | INSN_OP3(0x38))
227 #define RETURN (INSN_OP(2) | INSN_OP3(0x39))
228 #define SAVE (INSN_OP(2) | INSN_OP3(0x3c))
229 #define RESTORE (INSN_OP(2) | INSN_OP3(0x3d))
230 #define SETHI (INSN_OP(0) | INSN_OP2(0x4))
231 #define CALL INSN_OP(1)
232 #define LDUB (INSN_OP(3) | INSN_OP3(0x01))
233 #define LDSB (INSN_OP(3) | INSN_OP3(0x09))
234 #define LDUH (INSN_OP(3) | INSN_OP3(0x02))
235 #define LDSH (INSN_OP(3) | INSN_OP3(0x0a))
236 #define LDUW (INSN_OP(3) | INSN_OP3(0x00))
237 #define LDSW (INSN_OP(3) | INSN_OP3(0x08))
238 #define LDX (INSN_OP(3) | INSN_OP3(0x0b))
239 #define STB (INSN_OP(3) | INSN_OP3(0x05))
240 #define STH (INSN_OP(3) | INSN_OP3(0x06))
241 #define STW (INSN_OP(3) | INSN_OP3(0x04))
242 #define STX (INSN_OP(3) | INSN_OP3(0x0e))
243 #define LDUBA (INSN_OP(3) | INSN_OP3(0x11))
244 #define LDSBA (INSN_OP(3) | INSN_OP3(0x19))
245 #define LDUHA (INSN_OP(3) | INSN_OP3(0x12))
246 #define LDSHA (INSN_OP(3) | INSN_OP3(0x1a))
247 #define LDUWA (INSN_OP(3) | INSN_OP3(0x10))
248 #define LDSWA (INSN_OP(3) | INSN_OP3(0x18))
249 #define LDXA (INSN_OP(3) | INSN_OP3(0x1b))
250 #define STBA (INSN_OP(3) | INSN_OP3(0x15))
251 #define STHA (INSN_OP(3) | INSN_OP3(0x16))
252 #define STWA (INSN_OP(3) | INSN_OP3(0x14))
253 #define STXA (INSN_OP(3) | INSN_OP3(0x1e))
255 #define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13))
257 #define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0)
259 #ifndef ASI_PRIMARY_LITTLE
260 #define ASI_PRIMARY_LITTLE 0x88
261 #endif
263 #define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
264 #define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
265 #define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
266 #define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
267 #define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE))
269 #define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE))
270 #define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE))
271 #define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE))
273 #ifndef use_vis3_instructions
274 bool use_vis3_instructions;
275 #endif
277 static inline int check_fit_i64(int64_t val, unsigned int bits)
279 return val == sextract64(val, 0, bits);
282 static inline int check_fit_i32(int32_t val, unsigned int bits)
284 return val == sextract32(val, 0, bits);
287 #define check_fit_tl check_fit_i64
288 #if SPARC64
289 # define check_fit_ptr check_fit_i64
290 #else
291 # define check_fit_ptr check_fit_i32
292 #endif
294 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
295 intptr_t value, intptr_t addend)
297 uint32_t insn = *code_ptr;
298 intptr_t pcrel;
300 value += addend;
301 pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, code_ptr);
303 switch (type) {
304 case R_SPARC_WDISP16:
305 assert(check_fit_ptr(pcrel >> 2, 16));
306 insn &= ~INSN_OFF16(-1);
307 insn |= INSN_OFF16(pcrel);
308 break;
309 case R_SPARC_WDISP19:
310 assert(check_fit_ptr(pcrel >> 2, 19));
311 insn &= ~INSN_OFF19(-1);
312 insn |= INSN_OFF19(pcrel);
313 break;
314 default:
315 g_assert_not_reached();
318 *code_ptr = insn;
319 return true;
322 /* parse target specific constraints */
323 static const char *target_parse_constraint(TCGArgConstraint *ct,
324 const char *ct_str, TCGType type)
326 switch (*ct_str++) {
327 case 'r':
328 ct->ct |= TCG_CT_REG;
329 ct->u.regs = 0xffffffff;
330 break;
331 case 'R':
332 ct->ct |= TCG_CT_REG;
333 ct->u.regs = ALL_64;
334 break;
335 case 'A': /* qemu_ld/st address constraint */
336 ct->ct |= TCG_CT_REG;
337 ct->u.regs = TARGET_LONG_BITS == 64 ? ALL_64 : 0xffffffff;
338 reserve_helpers:
339 tcg_regset_reset_reg(ct->u.regs, TCG_REG_O0);
340 tcg_regset_reset_reg(ct->u.regs, TCG_REG_O1);
341 tcg_regset_reset_reg(ct->u.regs, TCG_REG_O2);
342 break;
343 case 's': /* qemu_st data 32-bit constraint */
344 ct->ct |= TCG_CT_REG;
345 ct->u.regs = 0xffffffff;
346 goto reserve_helpers;
347 case 'S': /* qemu_st data 64-bit constraint */
348 ct->ct |= TCG_CT_REG;
349 ct->u.regs = ALL_64;
350 goto reserve_helpers;
351 case 'I':
352 ct->ct |= TCG_CT_CONST_S11;
353 break;
354 case 'J':
355 ct->ct |= TCG_CT_CONST_S13;
356 break;
357 case 'Z':
358 ct->ct |= TCG_CT_CONST_ZERO;
359 break;
360 default:
361 return NULL;
363 return ct_str;
366 /* test if a constant matches the constraint */
367 static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
368 const TCGArgConstraint *arg_ct)
370 int ct = arg_ct->ct;
372 if (ct & TCG_CT_CONST) {
373 return 1;
376 if (type == TCG_TYPE_I32) {
377 val = (int32_t)val;
380 if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
381 return 1;
382 } else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
383 return 1;
384 } else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
385 return 1;
386 } else {
387 return 0;
391 static inline void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1,
392 TCGReg rs2, int op)
394 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2));
397 static inline void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1,
398 int32_t offset, int op)
400 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset));
403 static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1,
404 int32_t val2, int val2const, int op)
406 tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
407 | (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
410 static inline bool tcg_out_mov(TCGContext *s, TCGType type,
411 TCGReg ret, TCGReg arg)
413 if (ret != arg) {
414 tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
416 return true;
419 static inline void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg)
421 tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
424 static inline void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg)
426 tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
429 static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
430 tcg_target_long arg, bool in_prologue)
432 tcg_target_long hi, lo = (int32_t)arg;
433 tcg_target_long test, lsb;
435 /* Make sure we test 32-bit constants for imm13 properly. */
436 if (type == TCG_TYPE_I32) {
437 arg = lo;
440 /* A 13-bit constant sign-extended to 64-bits. */
441 if (check_fit_tl(arg, 13)) {
442 tcg_out_movi_imm13(s, ret, arg);
443 return;
446 /* A 13-bit constant relative to the TB. */
447 if (!in_prologue && USE_REG_TB) {
448 test = arg - (uintptr_t)s->code_gen_ptr;
449 if (check_fit_ptr(test, 13)) {
450 tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD);
451 return;
455 /* A 32-bit constant, or 32-bit zero-extended to 64-bits. */
456 if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) {
457 tcg_out_sethi(s, ret, arg);
458 if (arg & 0x3ff) {
459 tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
461 return;
464 /* A 32-bit constant sign-extended to 64-bits. */
465 if (arg == lo) {
466 tcg_out_sethi(s, ret, ~arg);
467 tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
468 return;
471 /* A 21-bit constant, shifted. */
472 lsb = ctz64(arg);
473 test = (tcg_target_long)arg >> lsb;
474 if (check_fit_tl(test, 13)) {
475 tcg_out_movi_imm13(s, ret, test);
476 tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX);
477 return;
478 } else if (lsb > 10 && test == extract64(test, 0, 21)) {
479 tcg_out_sethi(s, ret, test << 10);
480 tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX);
481 return;
484 /* A 64-bit constant decomposed into 2 32-bit pieces. */
485 if (check_fit_i32(lo, 13)) {
486 hi = (arg - lo) >> 32;
487 tcg_out_movi(s, TCG_TYPE_I32, ret, hi);
488 tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
489 tcg_out_arithi(s, ret, ret, lo, ARITH_ADD);
490 } else {
491 hi = arg >> 32;
492 tcg_out_movi(s, TCG_TYPE_I32, ret, hi);
493 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_T2, lo);
494 tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
495 tcg_out_arith(s, ret, ret, TCG_REG_T2, ARITH_OR);
499 static inline void tcg_out_movi(TCGContext *s, TCGType type,
500 TCGReg ret, tcg_target_long arg)
502 tcg_out_movi_int(s, type, ret, arg, false);
505 static inline void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1,
506 TCGReg a2, int op)
508 tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
511 static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
512 intptr_t offset, int op)
514 if (check_fit_ptr(offset, 13)) {
515 tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
516 INSN_IMM13(offset));
517 } else {
518 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
519 tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
523 static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
524 TCGReg arg1, intptr_t arg2)
526 tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
529 static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
530 TCGReg arg1, intptr_t arg2)
532 tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
535 static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
536 TCGReg base, intptr_t ofs)
538 if (val == 0) {
539 tcg_out_st(s, type, TCG_REG_G0, base, ofs);
540 return true;
542 return false;
545 static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, uintptr_t arg)
547 intptr_t diff = arg - (uintptr_t)s->code_gen_ptr;
548 if (USE_REG_TB && check_fit_ptr(diff, 13)) {
549 tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff);
550 return;
552 tcg_out_movi(s, TCG_TYPE_PTR, ret, arg & ~0x3ff);
553 tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, arg & 0x3ff);
556 static inline void tcg_out_sety(TCGContext *s, TCGReg rs)
558 tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
561 static inline void tcg_out_rdy(TCGContext *s, TCGReg rd)
563 tcg_out32(s, RDY | INSN_RD(rd));
566 static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1,
567 int32_t val2, int val2const, int uns)
569 /* Load Y with the sign/zero extension of RS1 to 64-bits. */
570 if (uns) {
571 tcg_out_sety(s, TCG_REG_G0);
572 } else {
573 tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
574 tcg_out_sety(s, TCG_REG_T1);
577 tcg_out_arithc(s, rd, rs1, val2, val2const,
578 uns ? ARITH_UDIV : ARITH_SDIV);
581 static inline void tcg_out_nop(TCGContext *s)
583 tcg_out32(s, NOP);
586 static const uint8_t tcg_cond_to_bcond[] = {
587 [TCG_COND_EQ] = COND_E,
588 [TCG_COND_NE] = COND_NE,
589 [TCG_COND_LT] = COND_L,
590 [TCG_COND_GE] = COND_GE,
591 [TCG_COND_LE] = COND_LE,
592 [TCG_COND_GT] = COND_G,
593 [TCG_COND_LTU] = COND_CS,
594 [TCG_COND_GEU] = COND_CC,
595 [TCG_COND_LEU] = COND_LEU,
596 [TCG_COND_GTU] = COND_GU,
599 static const uint8_t tcg_cond_to_rcond[] = {
600 [TCG_COND_EQ] = RCOND_Z,
601 [TCG_COND_NE] = RCOND_NZ,
602 [TCG_COND_LT] = RCOND_LZ,
603 [TCG_COND_GT] = RCOND_GZ,
604 [TCG_COND_LE] = RCOND_LEZ,
605 [TCG_COND_GE] = RCOND_GEZ
608 static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
610 tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
613 static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l)
615 int off19 = 0;
617 if (l->has_value) {
618 off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr));
619 } else {
620 tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0);
622 tcg_out_bpcc0(s, scond, flags, off19);
625 static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const)
627 tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
630 static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1,
631 int32_t arg2, int const_arg2, TCGLabel *l)
633 tcg_out_cmp(s, arg1, arg2, const_arg2);
634 tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l);
635 tcg_out_nop(s);
638 static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret,
639 int32_t v1, int v1const)
641 tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
642 | INSN_RS1(tcg_cond_to_bcond[cond])
643 | (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
646 static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
647 TCGReg c1, int32_t c2, int c2const,
648 int32_t v1, int v1const)
650 tcg_out_cmp(s, c1, c2, c2const);
651 tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
654 static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1,
655 int32_t arg2, int const_arg2, TCGLabel *l)
657 /* For 64-bit signed comparisons vs zero, we can avoid the compare. */
658 if (arg2 == 0 && !is_unsigned_cond(cond)) {
659 int off16 = 0;
661 if (l->has_value) {
662 off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr));
663 } else {
664 tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0);
666 tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
667 | INSN_COND(tcg_cond_to_rcond[cond]) | off16);
668 } else {
669 tcg_out_cmp(s, arg1, arg2, const_arg2);
670 tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l);
672 tcg_out_nop(s);
675 static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1,
676 int32_t v1, int v1const)
678 tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
679 | (tcg_cond_to_rcond[cond] << 10)
680 | (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
683 static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
684 TCGReg c1, int32_t c2, int c2const,
685 int32_t v1, int v1const)
687 /* For 64-bit signed comparisons vs zero, we can avoid the compare.
688 Note that the immediate range is one bit smaller, so we must check
689 for that as well. */
690 if (c2 == 0 && !is_unsigned_cond(cond)
691 && (!v1const || check_fit_i32(v1, 10))) {
692 tcg_out_movr(s, cond, ret, c1, v1, v1const);
693 } else {
694 tcg_out_cmp(s, c1, c2, c2const);
695 tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
699 static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
700 TCGReg c1, int32_t c2, int c2const)
702 /* For 32-bit comparisons, we can play games with ADDC/SUBC. */
703 switch (cond) {
704 case TCG_COND_LTU:
705 case TCG_COND_GEU:
706 /* The result of the comparison is in the carry bit. */
707 break;
709 case TCG_COND_EQ:
710 case TCG_COND_NE:
711 /* For equality, we can transform to inequality vs zero. */
712 if (c2 != 0) {
713 tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR);
714 c2 = TCG_REG_T1;
715 } else {
716 c2 = c1;
718 c1 = TCG_REG_G0, c2const = 0;
719 cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
720 break;
722 case TCG_COND_GTU:
723 case TCG_COND_LEU:
724 /* If we don't need to load a constant into a register, we can
725 swap the operands on GTU/LEU. There's no benefit to loading
726 the constant into a temporary register. */
727 if (!c2const || c2 == 0) {
728 TCGReg t = c1;
729 c1 = c2;
730 c2 = t;
731 c2const = 0;
732 cond = tcg_swap_cond(cond);
733 break;
735 /* FALLTHRU */
737 default:
738 tcg_out_cmp(s, c1, c2, c2const);
739 tcg_out_movi_imm13(s, ret, 0);
740 tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
741 return;
744 tcg_out_cmp(s, c1, c2, c2const);
745 if (cond == TCG_COND_LTU) {
746 tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC);
747 } else {
748 tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC);
752 static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
753 TCGReg c1, int32_t c2, int c2const)
755 if (use_vis3_instructions) {
756 switch (cond) {
757 case TCG_COND_NE:
758 if (c2 != 0) {
759 break;
761 c2 = c1, c2const = 0, c1 = TCG_REG_G0;
762 /* FALLTHRU */
763 case TCG_COND_LTU:
764 tcg_out_cmp(s, c1, c2, c2const);
765 tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC);
766 return;
767 default:
768 break;
772 /* For 64-bit signed comparisons vs zero, we can avoid the compare
773 if the input does not overlap the output. */
774 if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
775 tcg_out_movi_imm13(s, ret, 0);
776 tcg_out_movr(s, cond, ret, c1, 1, 1);
777 } else {
778 tcg_out_cmp(s, c1, c2, c2const);
779 tcg_out_movi_imm13(s, ret, 0);
780 tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
784 static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh,
785 TCGReg al, TCGReg ah, int32_t bl, int blconst,
786 int32_t bh, int bhconst, int opl, int oph)
788 TCGReg tmp = TCG_REG_T1;
790 /* Note that the low parts are fully consumed before tmp is set. */
791 if (rl != ah && (bhconst || rl != bh)) {
792 tmp = rl;
795 tcg_out_arithc(s, tmp, al, bl, blconst, opl);
796 tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
797 tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
800 static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh,
801 TCGReg al, TCGReg ah, int32_t bl, int blconst,
802 int32_t bh, int bhconst, bool is_sub)
804 TCGReg tmp = TCG_REG_T1;
806 /* Note that the low parts are fully consumed before tmp is set. */
807 if (rl != ah && (bhconst || rl != bh)) {
808 tmp = rl;
811 tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC);
813 if (use_vis3_instructions && !is_sub) {
814 /* Note that ADDXC doesn't accept immediates. */
815 if (bhconst && bh != 0) {
816 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh);
817 bh = TCG_REG_T2;
819 tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC);
820 } else if (bh == TCG_REG_G0) {
821 /* If we have a zero, we can perform the operation in two insns,
822 with the arithmetic first, and a conditional move into place. */
823 if (rh == ah) {
824 tcg_out_arithi(s, TCG_REG_T2, ah, 1,
825 is_sub ? ARITH_SUB : ARITH_ADD);
826 tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0);
827 } else {
828 tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD);
829 tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0);
831 } else {
832 /* Otherwise adjust BH as if there is carry into T2 ... */
833 if (bhconst) {
834 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_T2, bh + (is_sub ? -1 : 1));
835 } else {
836 tcg_out_arithi(s, TCG_REG_T2, bh, 1,
837 is_sub ? ARITH_SUB : ARITH_ADD);
839 /* ... smoosh T2 back to original BH if carry is clear ... */
840 tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst);
841 /* ... and finally perform the arithmetic with the new operand. */
842 tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD);
845 tcg_out_mov(s, TCG_TYPE_I64, rl, tmp);
848 static void tcg_out_call_nodelay(TCGContext *s, tcg_insn_unit *dest,
849 bool in_prologue)
851 ptrdiff_t disp = tcg_pcrel_diff(s, dest);
853 if (disp == (int32_t)disp) {
854 tcg_out32(s, CALL | (uint32_t)disp >> 2);
855 } else {
856 uintptr_t desti = (uintptr_t)dest;
857 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1,
858 desti & ~0xfff, in_prologue);
859 tcg_out_arithi(s, TCG_REG_O7, TCG_REG_T1, desti & 0xfff, JMPL);
863 static void tcg_out_call(TCGContext *s, tcg_insn_unit *dest)
865 tcg_out_call_nodelay(s, dest, false);
866 tcg_out_nop(s);
869 static void tcg_out_mb(TCGContext *s, TCGArg a0)
871 /* Note that the TCG memory order constants mirror the Sparc MEMBAR. */
872 tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL));
875 #ifdef CONFIG_SOFTMMU
876 static tcg_insn_unit *qemu_ld_trampoline[16];
877 static tcg_insn_unit *qemu_st_trampoline[16];
879 static void emit_extend(TCGContext *s, TCGReg r, int op)
881 /* Emit zero extend of 8, 16 or 32 bit data as
882 * required by the MO_* value op; do nothing for 64 bit.
884 switch (op & MO_SIZE) {
885 case MO_8:
886 tcg_out_arithi(s, r, r, 0xff, ARITH_AND);
887 break;
888 case MO_16:
889 tcg_out_arithi(s, r, r, 16, SHIFT_SLL);
890 tcg_out_arithi(s, r, r, 16, SHIFT_SRL);
891 break;
892 case MO_32:
893 if (SPARC64) {
894 tcg_out_arith(s, r, r, 0, SHIFT_SRL);
896 break;
897 case MO_64:
898 break;
902 static void build_trampolines(TCGContext *s)
904 static void * const qemu_ld_helpers[16] = {
905 [MO_UB] = helper_ret_ldub_mmu,
906 [MO_SB] = helper_ret_ldsb_mmu,
907 [MO_LEUW] = helper_le_lduw_mmu,
908 [MO_LESW] = helper_le_ldsw_mmu,
909 [MO_LEUL] = helper_le_ldul_mmu,
910 [MO_LEQ] = helper_le_ldq_mmu,
911 [MO_BEUW] = helper_be_lduw_mmu,
912 [MO_BESW] = helper_be_ldsw_mmu,
913 [MO_BEUL] = helper_be_ldul_mmu,
914 [MO_BEQ] = helper_be_ldq_mmu,
916 static void * const qemu_st_helpers[16] = {
917 [MO_UB] = helper_ret_stb_mmu,
918 [MO_LEUW] = helper_le_stw_mmu,
919 [MO_LEUL] = helper_le_stl_mmu,
920 [MO_LEQ] = helper_le_stq_mmu,
921 [MO_BEUW] = helper_be_stw_mmu,
922 [MO_BEUL] = helper_be_stl_mmu,
923 [MO_BEQ] = helper_be_stq_mmu,
926 int i;
927 TCGReg ra;
929 for (i = 0; i < 16; ++i) {
930 if (qemu_ld_helpers[i] == NULL) {
931 continue;
934 /* May as well align the trampoline. */
935 while ((uintptr_t)s->code_ptr & 15) {
936 tcg_out_nop(s);
938 qemu_ld_trampoline[i] = s->code_ptr;
940 if (SPARC64 || TARGET_LONG_BITS == 32) {
941 ra = TCG_REG_O3;
942 } else {
943 /* Install the high part of the address. */
944 tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O2, 32, SHIFT_SRLX);
945 ra = TCG_REG_O4;
948 /* Set the retaddr operand. */
949 tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
950 /* Set the env operand. */
951 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0);
952 /* Tail call. */
953 tcg_out_call_nodelay(s, qemu_ld_helpers[i], true);
954 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra);
957 for (i = 0; i < 16; ++i) {
958 if (qemu_st_helpers[i] == NULL) {
959 continue;
962 /* May as well align the trampoline. */
963 while ((uintptr_t)s->code_ptr & 15) {
964 tcg_out_nop(s);
966 qemu_st_trampoline[i] = s->code_ptr;
968 if (SPARC64) {
969 emit_extend(s, TCG_REG_O2, i);
970 ra = TCG_REG_O4;
971 } else {
972 ra = TCG_REG_O1;
973 if (TARGET_LONG_BITS == 64) {
974 /* Install the high part of the address. */
975 tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
976 ra += 2;
977 } else {
978 ra += 1;
980 if ((i & MO_SIZE) == MO_64) {
981 /* Install the high part of the data. */
982 tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
983 ra += 2;
984 } else {
985 emit_extend(s, ra, i);
986 ra += 1;
988 /* Skip the oi argument. */
989 ra += 1;
992 /* Set the retaddr operand. */
993 if (ra >= TCG_REG_O6) {
994 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_O7, TCG_REG_CALL_STACK,
995 TCG_TARGET_CALL_STACK_OFFSET);
996 ra = TCG_REG_G1;
998 tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
999 /* Set the env operand. */
1000 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O0, TCG_AREG0);
1001 /* Tail call. */
1002 tcg_out_call_nodelay(s, qemu_st_helpers[i], true);
1003 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_O7, ra);
1006 #endif
1008 /* Generate global QEMU prologue and epilogue code */
1009 static void tcg_target_qemu_prologue(TCGContext *s)
1011 int tmp_buf_size, frame_size;
1013 /* The TCG temp buffer is at the top of the frame, immediately
1014 below the frame pointer. */
1015 tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
1016 tcg_set_frame(s, TCG_REG_I6, TCG_TARGET_STACK_BIAS - tmp_buf_size,
1017 tmp_buf_size);
1019 /* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
1020 otherwise the minimal frame usable by callees. */
1021 frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
1022 frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
1023 frame_size += TCG_TARGET_STACK_ALIGN - 1;
1024 frame_size &= -TCG_TARGET_STACK_ALIGN;
1025 tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
1026 INSN_IMM13(-frame_size));
1028 #ifndef CONFIG_SOFTMMU
1029 if (guest_base != 0) {
1030 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
1031 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
1033 #endif
1035 /* We choose TCG_REG_TB such that no move is required. */
1036 if (USE_REG_TB) {
1037 QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1);
1038 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
1041 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL);
1042 /* delay slot */
1043 tcg_out_nop(s);
1045 /* Epilogue for goto_ptr. */
1046 s->code_gen_epilogue = s->code_ptr;
1047 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1048 /* delay slot */
1049 tcg_out_movi_imm13(s, TCG_REG_O0, 0);
1051 #ifdef CONFIG_SOFTMMU
1052 build_trampolines(s);
1053 #endif
1056 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
1058 int i;
1059 for (i = 0; i < count; ++i) {
1060 p[i] = NOP;
1064 #if defined(CONFIG_SOFTMMU)
1066 /* We expect to use a 13-bit negative offset from ENV. */
1067 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
1068 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12));
1070 /* Perform the TLB load and compare.
1072 Inputs:
1073 ADDRLO and ADDRHI contain the possible two parts of the address.
1075 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1077 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1078 This should be offsetof addr_read or addr_write.
1080 The result of the TLB comparison is in %[ix]cc. The sanitized address
1081 is in the returned register, maybe %o0. The TLB addend is in %o1. */
1083 static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index,
1084 MemOp opc, int which)
1086 int fast_off = TLB_MASK_TABLE_OFS(mem_index);
1087 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
1088 int table_off = fast_off + offsetof(CPUTLBDescFast, table);
1089 const TCGReg r0 = TCG_REG_O0;
1090 const TCGReg r1 = TCG_REG_O1;
1091 const TCGReg r2 = TCG_REG_O2;
1092 unsigned s_bits = opc & MO_SIZE;
1093 unsigned a_bits = get_alignment_bits(opc);
1094 tcg_target_long compare_mask;
1096 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
1097 tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off);
1098 tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off);
1100 /* Extract the page index, shifted into place for tlb index. */
1101 tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS,
1102 SHIFT_SRL);
1103 tcg_out_arith(s, r2, r2, r0, ARITH_AND);
1105 /* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */
1106 tcg_out_arith(s, r2, r2, r1, ARITH_ADD);
1108 /* Load the tlb comparator and the addend. */
1109 tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which);
1110 tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend));
1112 /* Mask out the page offset, except for the required alignment.
1113 We don't support unaligned accesses. */
1114 if (a_bits < s_bits) {
1115 a_bits = s_bits;
1117 compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1);
1118 if (check_fit_tl(compare_mask, 13)) {
1119 tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND);
1120 } else {
1121 tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask);
1122 tcg_out_arith(s, r2, addr, r2, ARITH_AND);
1124 tcg_out_cmp(s, r0, r2, 0);
1126 /* If the guest address must be zero-extended, do so now. */
1127 if (SPARC64 && TARGET_LONG_BITS == 32) {
1128 tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL);
1129 return r0;
1131 return addr;
1133 #endif /* CONFIG_SOFTMMU */
1135 static const int qemu_ld_opc[16] = {
1136 [MO_UB] = LDUB,
1137 [MO_SB] = LDSB,
1139 [MO_BEUW] = LDUH,
1140 [MO_BESW] = LDSH,
1141 [MO_BEUL] = LDUW,
1142 [MO_BESL] = LDSW,
1143 [MO_BEQ] = LDX,
1145 [MO_LEUW] = LDUH_LE,
1146 [MO_LESW] = LDSH_LE,
1147 [MO_LEUL] = LDUW_LE,
1148 [MO_LESL] = LDSW_LE,
1149 [MO_LEQ] = LDX_LE,
1152 static const int qemu_st_opc[16] = {
1153 [MO_UB] = STB,
1155 [MO_BEUW] = STH,
1156 [MO_BEUL] = STW,
1157 [MO_BEQ] = STX,
1159 [MO_LEUW] = STH_LE,
1160 [MO_LEUL] = STW_LE,
1161 [MO_LEQ] = STX_LE,
1164 static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr,
1165 TCGMemOpIdx oi, bool is_64)
1167 MemOp memop = get_memop(oi);
1168 #ifdef CONFIG_SOFTMMU
1169 unsigned memi = get_mmuidx(oi);
1170 TCGReg addrz, param;
1171 tcg_insn_unit *func;
1172 tcg_insn_unit *label_ptr;
1174 addrz = tcg_out_tlb_load(s, addr, memi, memop,
1175 offsetof(CPUTLBEntry, addr_read));
1177 /* The fast path is exactly one insn. Thus we can perform the
1178 entire TLB Hit in the (annulled) delay slot of the branch
1179 over the TLB Miss case. */
1181 /* beq,a,pt %[xi]cc, label0 */
1182 label_ptr = s->code_ptr;
1183 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1184 | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1185 /* delay slot */
1186 tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1187 qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1189 /* TLB Miss. */
1191 param = TCG_REG_O1;
1192 if (!SPARC64 && TARGET_LONG_BITS == 64) {
1193 /* Skip the high-part; we'll perform the extract in the trampoline. */
1194 param++;
1196 tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
1198 /* We use the helpers to extend SB and SW data, leaving the case
1199 of SL needing explicit extending below. */
1200 if ((memop & MO_SSIZE) == MO_SL) {
1201 func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1202 } else {
1203 func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)];
1205 tcg_debug_assert(func != NULL);
1206 tcg_out_call_nodelay(s, func, false);
1207 /* delay slot */
1208 tcg_out_movi(s, TCG_TYPE_I32, param, oi);
1210 /* Recall that all of the helpers return 64-bit results.
1211 Which complicates things for sparcv8plus. */
1212 if (SPARC64) {
1213 /* We let the helper sign-extend SB and SW, but leave SL for here. */
1214 if (is_64 && (memop & MO_SSIZE) == MO_SL) {
1215 tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA);
1216 } else {
1217 tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0);
1219 } else {
1220 if ((memop & MO_SIZE) == MO_64) {
1221 tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, 32, SHIFT_SLLX);
1222 tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O1, 0, SHIFT_SRL);
1223 tcg_out_arith(s, data, TCG_REG_O0, TCG_REG_O1, ARITH_OR);
1224 } else if (is_64) {
1225 /* Re-extend from 32-bit rather than reassembling when we
1226 know the high register must be an extension. */
1227 tcg_out_arithi(s, data, TCG_REG_O1, 0,
1228 memop & MO_SIGN ? SHIFT_SRA : SHIFT_SRL);
1229 } else {
1230 tcg_out_mov(s, TCG_TYPE_I32, data, TCG_REG_O1);
1234 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1235 #else
1236 if (SPARC64 && TARGET_LONG_BITS == 32) {
1237 tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1238 addr = TCG_REG_T1;
1240 tcg_out_ldst_rr(s, data, addr,
1241 (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0),
1242 qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
1243 #endif /* CONFIG_SOFTMMU */
1246 static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr,
1247 TCGMemOpIdx oi)
1249 MemOp memop = get_memop(oi);
1250 #ifdef CONFIG_SOFTMMU
1251 unsigned memi = get_mmuidx(oi);
1252 TCGReg addrz, param;
1253 tcg_insn_unit *func;
1254 tcg_insn_unit *label_ptr;
1256 addrz = tcg_out_tlb_load(s, addr, memi, memop,
1257 offsetof(CPUTLBEntry, addr_write));
1259 /* The fast path is exactly one insn. Thus we can perform the entire
1260 TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */
1261 /* beq,a,pt %[xi]cc, label0 */
1262 label_ptr = s->code_ptr;
1263 tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
1264 | (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
1265 /* delay slot */
1266 tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
1267 qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1269 /* TLB Miss. */
1271 param = TCG_REG_O1;
1272 if (!SPARC64 && TARGET_LONG_BITS == 64) {
1273 /* Skip the high-part; we'll perform the extract in the trampoline. */
1274 param++;
1276 tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
1277 if (!SPARC64 && (memop & MO_SIZE) == MO_64) {
1278 /* Skip the high-part; we'll perform the extract in the trampoline. */
1279 param++;
1281 tcg_out_mov(s, TCG_TYPE_REG, param++, data);
1283 func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)];
1284 tcg_debug_assert(func != NULL);
1285 tcg_out_call_nodelay(s, func, false);
1286 /* delay slot */
1287 tcg_out_movi(s, TCG_TYPE_I32, param, oi);
1289 *label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
1290 #else
1291 if (SPARC64 && TARGET_LONG_BITS == 32) {
1292 tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
1293 addr = TCG_REG_T1;
1295 tcg_out_ldst_rr(s, data, addr,
1296 (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0),
1297 qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
1298 #endif /* CONFIG_SOFTMMU */
1301 static void tcg_out_op(TCGContext *s, TCGOpcode opc,
1302 const TCGArg args[TCG_MAX_OP_ARGS],
1303 const int const_args[TCG_MAX_OP_ARGS])
1305 TCGArg a0, a1, a2;
1306 int c, c2;
1308 /* Hoist the loads of the most common arguments. */
1309 a0 = args[0];
1310 a1 = args[1];
1311 a2 = args[2];
1312 c2 = const_args[2];
1314 switch (opc) {
1315 case INDEX_op_exit_tb:
1316 if (check_fit_ptr(a0, 13)) {
1317 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1318 tcg_out_movi_imm13(s, TCG_REG_O0, a0);
1319 break;
1320 } else if (USE_REG_TB) {
1321 intptr_t tb_diff = a0 - (uintptr_t)s->code_gen_ptr;
1322 if (check_fit_ptr(tb_diff, 13)) {
1323 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1324 /* Note that TCG_REG_TB has been unwound to O1. */
1325 tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD);
1326 break;
1329 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff);
1330 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
1331 tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR);
1332 break;
1333 case INDEX_op_goto_tb:
1334 if (s->tb_jmp_insn_offset) {
1335 /* direct jump method */
1336 if (USE_REG_TB) {
1337 /* make sure the patch is 8-byte aligned. */
1338 if ((intptr_t)s->code_ptr & 4) {
1339 tcg_out_nop(s);
1341 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1342 tcg_out_sethi(s, TCG_REG_T1, 0);
1343 tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR);
1344 tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL);
1345 tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD);
1346 } else {
1347 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1348 tcg_out32(s, CALL);
1349 tcg_out_nop(s);
1351 } else {
1352 /* indirect jump method */
1353 tcg_out_ld_ptr(s, TCG_REG_TB,
1354 (uintptr_t)(s->tb_jmp_target_addr + a0));
1355 tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL);
1356 tcg_out_nop(s);
1358 set_jmp_reset_offset(s, a0);
1360 /* For the unlinked path of goto_tb, we need to reset
1361 TCG_REG_TB to the beginning of this TB. */
1362 if (USE_REG_TB) {
1363 c = -tcg_current_code_size(s);
1364 if (check_fit_i32(c, 13)) {
1365 tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD);
1366 } else {
1367 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c);
1368 tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB,
1369 TCG_REG_T1, ARITH_ADD);
1372 break;
1373 case INDEX_op_goto_ptr:
1374 tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL);
1375 if (USE_REG_TB) {
1376 tcg_out_arith(s, TCG_REG_TB, a0, TCG_REG_G0, ARITH_OR);
1377 } else {
1378 tcg_out_nop(s);
1380 break;
1381 case INDEX_op_br:
1382 tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0));
1383 tcg_out_nop(s);
1384 break;
1386 #define OP_32_64(x) \
1387 glue(glue(case INDEX_op_, x), _i32): \
1388 glue(glue(case INDEX_op_, x), _i64)
1390 OP_32_64(ld8u):
1391 tcg_out_ldst(s, a0, a1, a2, LDUB);
1392 break;
1393 OP_32_64(ld8s):
1394 tcg_out_ldst(s, a0, a1, a2, LDSB);
1395 break;
1396 OP_32_64(ld16u):
1397 tcg_out_ldst(s, a0, a1, a2, LDUH);
1398 break;
1399 OP_32_64(ld16s):
1400 tcg_out_ldst(s, a0, a1, a2, LDSH);
1401 break;
1402 case INDEX_op_ld_i32:
1403 case INDEX_op_ld32u_i64:
1404 tcg_out_ldst(s, a0, a1, a2, LDUW);
1405 break;
1406 OP_32_64(st8):
1407 tcg_out_ldst(s, a0, a1, a2, STB);
1408 break;
1409 OP_32_64(st16):
1410 tcg_out_ldst(s, a0, a1, a2, STH);
1411 break;
1412 case INDEX_op_st_i32:
1413 case INDEX_op_st32_i64:
1414 tcg_out_ldst(s, a0, a1, a2, STW);
1415 break;
1416 OP_32_64(add):
1417 c = ARITH_ADD;
1418 goto gen_arith;
1419 OP_32_64(sub):
1420 c = ARITH_SUB;
1421 goto gen_arith;
1422 OP_32_64(and):
1423 c = ARITH_AND;
1424 goto gen_arith;
1425 OP_32_64(andc):
1426 c = ARITH_ANDN;
1427 goto gen_arith;
1428 OP_32_64(or):
1429 c = ARITH_OR;
1430 goto gen_arith;
1431 OP_32_64(orc):
1432 c = ARITH_ORN;
1433 goto gen_arith;
1434 OP_32_64(xor):
1435 c = ARITH_XOR;
1436 goto gen_arith;
1437 case INDEX_op_shl_i32:
1438 c = SHIFT_SLL;
1439 do_shift32:
1440 /* Limit immediate shift count lest we create an illegal insn. */
1441 tcg_out_arithc(s, a0, a1, a2 & 31, c2, c);
1442 break;
1443 case INDEX_op_shr_i32:
1444 c = SHIFT_SRL;
1445 goto do_shift32;
1446 case INDEX_op_sar_i32:
1447 c = SHIFT_SRA;
1448 goto do_shift32;
1449 case INDEX_op_mul_i32:
1450 c = ARITH_UMUL;
1451 goto gen_arith;
1453 OP_32_64(neg):
1454 c = ARITH_SUB;
1455 goto gen_arith1;
1456 OP_32_64(not):
1457 c = ARITH_ORN;
1458 goto gen_arith1;
1460 case INDEX_op_div_i32:
1461 tcg_out_div32(s, a0, a1, a2, c2, 0);
1462 break;
1463 case INDEX_op_divu_i32:
1464 tcg_out_div32(s, a0, a1, a2, c2, 1);
1465 break;
1467 case INDEX_op_brcond_i32:
1468 tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1469 break;
1470 case INDEX_op_setcond_i32:
1471 tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2);
1472 break;
1473 case INDEX_op_movcond_i32:
1474 tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1475 break;
1477 case INDEX_op_add2_i32:
1478 tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1479 args[4], const_args[4], args[5], const_args[5],
1480 ARITH_ADDCC, ARITH_ADDC);
1481 break;
1482 case INDEX_op_sub2_i32:
1483 tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
1484 args[4], const_args[4], args[5], const_args[5],
1485 ARITH_SUBCC, ARITH_SUBC);
1486 break;
1487 case INDEX_op_mulu2_i32:
1488 c = ARITH_UMUL;
1489 goto do_mul2;
1490 case INDEX_op_muls2_i32:
1491 c = ARITH_SMUL;
1492 do_mul2:
1493 /* The 32-bit multiply insns produce a full 64-bit result. If the
1494 destination register can hold it, we can avoid the slower RDY. */
1495 tcg_out_arithc(s, a0, a2, args[3], const_args[3], c);
1496 if (SPARC64 || a0 <= TCG_REG_O7) {
1497 tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX);
1498 } else {
1499 tcg_out_rdy(s, a1);
1501 break;
1503 case INDEX_op_qemu_ld_i32:
1504 tcg_out_qemu_ld(s, a0, a1, a2, false);
1505 break;
1506 case INDEX_op_qemu_ld_i64:
1507 tcg_out_qemu_ld(s, a0, a1, a2, true);
1508 break;
1509 case INDEX_op_qemu_st_i32:
1510 case INDEX_op_qemu_st_i64:
1511 tcg_out_qemu_st(s, a0, a1, a2);
1512 break;
1514 case INDEX_op_ld32s_i64:
1515 tcg_out_ldst(s, a0, a1, a2, LDSW);
1516 break;
1517 case INDEX_op_ld_i64:
1518 tcg_out_ldst(s, a0, a1, a2, LDX);
1519 break;
1520 case INDEX_op_st_i64:
1521 tcg_out_ldst(s, a0, a1, a2, STX);
1522 break;
1523 case INDEX_op_shl_i64:
1524 c = SHIFT_SLLX;
1525 do_shift64:
1526 /* Limit immediate shift count lest we create an illegal insn. */
1527 tcg_out_arithc(s, a0, a1, a2 & 63, c2, c);
1528 break;
1529 case INDEX_op_shr_i64:
1530 c = SHIFT_SRLX;
1531 goto do_shift64;
1532 case INDEX_op_sar_i64:
1533 c = SHIFT_SRAX;
1534 goto do_shift64;
1535 case INDEX_op_mul_i64:
1536 c = ARITH_MULX;
1537 goto gen_arith;
1538 case INDEX_op_div_i64:
1539 c = ARITH_SDIVX;
1540 goto gen_arith;
1541 case INDEX_op_divu_i64:
1542 c = ARITH_UDIVX;
1543 goto gen_arith;
1544 case INDEX_op_ext_i32_i64:
1545 case INDEX_op_ext32s_i64:
1546 tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA);
1547 break;
1548 case INDEX_op_extu_i32_i64:
1549 case INDEX_op_ext32u_i64:
1550 tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL);
1551 break;
1552 case INDEX_op_extrl_i64_i32:
1553 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
1554 break;
1555 case INDEX_op_extrh_i64_i32:
1556 tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX);
1557 break;
1559 case INDEX_op_brcond_i64:
1560 tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3]));
1561 break;
1562 case INDEX_op_setcond_i64:
1563 tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2);
1564 break;
1565 case INDEX_op_movcond_i64:
1566 tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
1567 break;
1568 case INDEX_op_add2_i64:
1569 tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1570 const_args[4], args[5], const_args[5], false);
1571 break;
1572 case INDEX_op_sub2_i64:
1573 tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
1574 const_args[4], args[5], const_args[5], true);
1575 break;
1576 case INDEX_op_muluh_i64:
1577 tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI);
1578 break;
1580 gen_arith:
1581 tcg_out_arithc(s, a0, a1, a2, c2, c);
1582 break;
1584 gen_arith1:
1585 tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c);
1586 break;
1588 case INDEX_op_mb:
1589 tcg_out_mb(s, a0);
1590 break;
1592 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
1593 case INDEX_op_mov_i64:
1594 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
1595 case INDEX_op_movi_i64:
1596 case INDEX_op_call: /* Always emitted via tcg_out_call. */
1597 default:
1598 tcg_abort();
1602 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
1604 static const TCGTargetOpDef r = { .args_ct_str = { "r" } };
1605 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
1606 static const TCGTargetOpDef R_r = { .args_ct_str = { "R", "r" } };
1607 static const TCGTargetOpDef r_R = { .args_ct_str = { "r", "R" } };
1608 static const TCGTargetOpDef R_R = { .args_ct_str = { "R", "R" } };
1609 static const TCGTargetOpDef r_A = { .args_ct_str = { "r", "A" } };
1610 static const TCGTargetOpDef R_A = { .args_ct_str = { "R", "A" } };
1611 static const TCGTargetOpDef rZ_r = { .args_ct_str = { "rZ", "r" } };
1612 static const TCGTargetOpDef RZ_r = { .args_ct_str = { "RZ", "r" } };
1613 static const TCGTargetOpDef sZ_A = { .args_ct_str = { "sZ", "A" } };
1614 static const TCGTargetOpDef SZ_A = { .args_ct_str = { "SZ", "A" } };
1615 static const TCGTargetOpDef rZ_rJ = { .args_ct_str = { "rZ", "rJ" } };
1616 static const TCGTargetOpDef RZ_RJ = { .args_ct_str = { "RZ", "RJ" } };
1617 static const TCGTargetOpDef R_R_R = { .args_ct_str = { "R", "R", "R" } };
1618 static const TCGTargetOpDef r_rZ_rJ
1619 = { .args_ct_str = { "r", "rZ", "rJ" } };
1620 static const TCGTargetOpDef R_RZ_RJ
1621 = { .args_ct_str = { "R", "RZ", "RJ" } };
1622 static const TCGTargetOpDef r_r_rZ_rJ
1623 = { .args_ct_str = { "r", "r", "rZ", "rJ" } };
1624 static const TCGTargetOpDef movc_32
1625 = { .args_ct_str = { "r", "rZ", "rJ", "rI", "0" } };
1626 static const TCGTargetOpDef movc_64
1627 = { .args_ct_str = { "R", "RZ", "RJ", "RI", "0" } };
1628 static const TCGTargetOpDef add2_32
1629 = { .args_ct_str = { "r", "r", "rZ", "rZ", "rJ", "rJ" } };
1630 static const TCGTargetOpDef add2_64
1631 = { .args_ct_str = { "R", "R", "RZ", "RZ", "RJ", "RI" } };
1633 switch (op) {
1634 case INDEX_op_goto_ptr:
1635 return &r;
1637 case INDEX_op_ld8u_i32:
1638 case INDEX_op_ld8s_i32:
1639 case INDEX_op_ld16u_i32:
1640 case INDEX_op_ld16s_i32:
1641 case INDEX_op_ld_i32:
1642 case INDEX_op_neg_i32:
1643 case INDEX_op_not_i32:
1644 return &r_r;
1646 case INDEX_op_st8_i32:
1647 case INDEX_op_st16_i32:
1648 case INDEX_op_st_i32:
1649 return &rZ_r;
1651 case INDEX_op_add_i32:
1652 case INDEX_op_mul_i32:
1653 case INDEX_op_div_i32:
1654 case INDEX_op_divu_i32:
1655 case INDEX_op_sub_i32:
1656 case INDEX_op_and_i32:
1657 case INDEX_op_andc_i32:
1658 case INDEX_op_or_i32:
1659 case INDEX_op_orc_i32:
1660 case INDEX_op_xor_i32:
1661 case INDEX_op_shl_i32:
1662 case INDEX_op_shr_i32:
1663 case INDEX_op_sar_i32:
1664 case INDEX_op_setcond_i32:
1665 return &r_rZ_rJ;
1667 case INDEX_op_brcond_i32:
1668 return &rZ_rJ;
1669 case INDEX_op_movcond_i32:
1670 return &movc_32;
1671 case INDEX_op_add2_i32:
1672 case INDEX_op_sub2_i32:
1673 return &add2_32;
1674 case INDEX_op_mulu2_i32:
1675 case INDEX_op_muls2_i32:
1676 return &r_r_rZ_rJ;
1678 case INDEX_op_ld8u_i64:
1679 case INDEX_op_ld8s_i64:
1680 case INDEX_op_ld16u_i64:
1681 case INDEX_op_ld16s_i64:
1682 case INDEX_op_ld32u_i64:
1683 case INDEX_op_ld32s_i64:
1684 case INDEX_op_ld_i64:
1685 case INDEX_op_ext_i32_i64:
1686 case INDEX_op_extu_i32_i64:
1687 return &R_r;
1689 case INDEX_op_st8_i64:
1690 case INDEX_op_st16_i64:
1691 case INDEX_op_st32_i64:
1692 case INDEX_op_st_i64:
1693 return &RZ_r;
1695 case INDEX_op_add_i64:
1696 case INDEX_op_mul_i64:
1697 case INDEX_op_div_i64:
1698 case INDEX_op_divu_i64:
1699 case INDEX_op_sub_i64:
1700 case INDEX_op_and_i64:
1701 case INDEX_op_andc_i64:
1702 case INDEX_op_or_i64:
1703 case INDEX_op_orc_i64:
1704 case INDEX_op_xor_i64:
1705 case INDEX_op_shl_i64:
1706 case INDEX_op_shr_i64:
1707 case INDEX_op_sar_i64:
1708 case INDEX_op_setcond_i64:
1709 return &R_RZ_RJ;
1711 case INDEX_op_neg_i64:
1712 case INDEX_op_not_i64:
1713 case INDEX_op_ext32s_i64:
1714 case INDEX_op_ext32u_i64:
1715 return &R_R;
1717 case INDEX_op_extrl_i64_i32:
1718 case INDEX_op_extrh_i64_i32:
1719 return &r_R;
1721 case INDEX_op_brcond_i64:
1722 return &RZ_RJ;
1723 case INDEX_op_movcond_i64:
1724 return &movc_64;
1725 case INDEX_op_add2_i64:
1726 case INDEX_op_sub2_i64:
1727 return &add2_64;
1728 case INDEX_op_muluh_i64:
1729 return &R_R_R;
1731 case INDEX_op_qemu_ld_i32:
1732 return &r_A;
1733 case INDEX_op_qemu_ld_i64:
1734 return &R_A;
1735 case INDEX_op_qemu_st_i32:
1736 return &sZ_A;
1737 case INDEX_op_qemu_st_i64:
1738 return &SZ_A;
1740 default:
1741 return NULL;
1745 static void tcg_target_init(TCGContext *s)
1747 /* Only probe for the platform and capabilities if we havn't already
1748 determined maximum values at compile time. */
1749 #ifndef use_vis3_instructions
1751 unsigned long hwcap = qemu_getauxval(AT_HWCAP);
1752 use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0;
1754 #endif
1756 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
1757 tcg_target_available_regs[TCG_TYPE_I64] = ALL_64;
1759 tcg_target_call_clobber_regs = 0;
1760 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1);
1761 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2);
1762 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3);
1763 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4);
1764 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5);
1765 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6);
1766 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7);
1767 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0);
1768 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1);
1769 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2);
1770 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3);
1771 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4);
1772 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5);
1773 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6);
1774 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7);
1776 s->reserved_regs = 0;
1777 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
1778 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
1779 tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
1780 tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
1781 tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
1782 tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
1783 tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
1784 tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
1787 #if SPARC64
1788 # define ELF_HOST_MACHINE EM_SPARCV9
1789 #else
1790 # define ELF_HOST_MACHINE EM_SPARC32PLUS
1791 # define ELF_HOST_FLAGS EF_SPARC_32PLUS
1792 #endif
1794 typedef struct {
1795 DebugFrameHeader h;
1796 uint8_t fde_def_cfa[SPARC64 ? 4 : 2];
1797 uint8_t fde_win_save;
1798 uint8_t fde_ret_save[3];
1799 } DebugFrame;
1801 static const DebugFrame debug_frame = {
1802 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
1803 .h.cie.id = -1,
1804 .h.cie.version = 1,
1805 .h.cie.code_align = 1,
1806 .h.cie.data_align = -sizeof(void *) & 0x7f,
1807 .h.cie.return_column = 15, /* o7 */
1809 /* Total FDE size does not include the "len" member. */
1810 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
1812 .fde_def_cfa = {
1813 #if SPARC64
1814 12, 30, /* DW_CFA_def_cfa i6, 2047 */
1815 (2047 & 0x7f) | 0x80, (2047 >> 7)
1816 #else
1817 13, 30 /* DW_CFA_def_cfa_register i6 */
1818 #endif
1820 .fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */
1821 .fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */
1824 void tcg_register_jit(void *buf, size_t buf_size)
1826 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
1829 void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_addr,
1830 uintptr_t addr)
1832 intptr_t tb_disp = addr - tc_ptr;
1833 intptr_t br_disp = addr - jmp_addr;
1834 tcg_insn_unit i1, i2;
1836 /* We can reach the entire address space for ILP32.
1837 For LP64, the code_gen_buffer can't be larger than 2GB. */
1838 tcg_debug_assert(tb_disp == (int32_t)tb_disp);
1839 tcg_debug_assert(br_disp == (int32_t)br_disp);
1841 if (!USE_REG_TB) {
1842 atomic_set((uint32_t *)jmp_addr, deposit32(CALL, 0, 30, br_disp >> 2));
1843 flush_icache_range(jmp_addr, jmp_addr + 4);
1844 return;
1847 /* This does not exercise the range of the branch, but we do
1848 still need to be able to load the new value of TCG_REG_TB.
1849 But this does still happen quite often. */
1850 if (check_fit_ptr(tb_disp, 13)) {
1851 /* ba,pt %icc, addr */
1852 i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A)
1853 | BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp));
1854 i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB)
1855 | INSN_IMM13(tb_disp));
1856 } else if (tb_disp >= 0) {
1857 i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10);
1858 i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1859 | INSN_IMM13(tb_disp & 0x3ff));
1860 } else {
1861 i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10);
1862 i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
1863 | INSN_IMM13((tb_disp & 0x3ff) | -0x400));
1866 atomic_set((uint64_t *)jmp_addr, deposit64(i2, 32, 32, i1));
1867 flush_icache_range(jmp_addr, jmp_addr + 8);