4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
45 #include "hw/boards.h"
47 /* This check must be after config-host.h is included */
49 #include <sys/eventfd.h>
52 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
53 * need to use the real host PAGE_SIZE, as that's what KVM will use.
55 #define PAGE_SIZE getpagesize()
60 #define DPRINTF(fmt, ...) \
61 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
63 #define DPRINTF(fmt, ...) \
67 #define KVM_MSI_HASHTAB_SIZE 256
69 struct KVMParkedVcpu
{
70 unsigned long vcpu_id
;
72 QLIST_ENTRY(KVMParkedVcpu
) node
;
77 AccelState parent_obj
;
84 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
85 bool coalesced_flush_in_progress
;
87 int robust_singlestep
;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 QTAILQ_HEAD(, kvm_sw_breakpoint
) kvm_sw_breakpoints
;
92 int max_nested_state_len
;
96 bool manual_dirty_log_protect
;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl
;
101 unsigned int sigmask_len
;
103 #ifdef KVM_CAP_IRQ_ROUTING
104 struct kvm_irq_routing
*irq_routes
;
105 int nr_allocated_irq_routes
;
106 unsigned long *used_gsi_bitmap
;
107 unsigned int gsi_count
;
108 QTAILQ_HEAD(, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
110 KVMMemoryListener memory_listener
;
111 QLIST_HEAD(, KVMParkedVcpu
) kvm_parked_vcpus
;
113 /* memory encryption */
114 void *memcrypt_handle
;
115 int (*memcrypt_encrypt_data
)(void *handle
, uint8_t *ptr
, uint64_t len
);
117 /* For "info mtree -f" to tell if an MR is registered in KVM */
120 KVMMemoryListener
*ml
;
126 bool kvm_kernel_irqchip
;
127 bool kvm_split_irqchip
;
128 bool kvm_async_interrupts_allowed
;
129 bool kvm_halt_in_kernel_allowed
;
130 bool kvm_eventfds_allowed
;
131 bool kvm_irqfds_allowed
;
132 bool kvm_resamplefds_allowed
;
133 bool kvm_msi_via_irqfd_allowed
;
134 bool kvm_gsi_routing_allowed
;
135 bool kvm_gsi_direct_mapping
;
137 bool kvm_readonly_mem_allowed
;
138 bool kvm_vm_attributes_allowed
;
139 bool kvm_direct_msi_allowed
;
140 bool kvm_ioeventfd_any_length_allowed
;
141 bool kvm_msi_use_devid
;
142 static bool kvm_immediate_exit
;
144 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
145 KVM_CAP_INFO(USER_MEMORY
),
146 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
147 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS
),
151 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
152 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
154 int kvm_get_max_memslots(void)
156 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
161 bool kvm_memcrypt_enabled(void)
163 if (kvm_state
&& kvm_state
->memcrypt_handle
) {
170 int kvm_memcrypt_encrypt_data(uint8_t *ptr
, uint64_t len
)
172 if (kvm_state
->memcrypt_handle
&&
173 kvm_state
->memcrypt_encrypt_data
) {
174 return kvm_state
->memcrypt_encrypt_data(kvm_state
->memcrypt_handle
,
181 /* Called with KVMMemoryListener.slots_lock held */
182 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
184 KVMState
*s
= kvm_state
;
187 for (i
= 0; i
< s
->nr_slots
; i
++) {
188 if (kml
->slots
[i
].memory_size
== 0) {
189 return &kml
->slots
[i
];
196 bool kvm_has_free_slot(MachineState
*ms
)
198 KVMState
*s
= KVM_STATE(ms
->accelerator
);
200 KVMMemoryListener
*kml
= &s
->memory_listener
;
203 result
= !!kvm_get_free_slot(kml
);
204 kvm_slots_unlock(kml
);
209 /* Called with KVMMemoryListener.slots_lock held */
210 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
212 KVMSlot
*slot
= kvm_get_free_slot(kml
);
218 fprintf(stderr
, "%s: no free slot available\n", __func__
);
222 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
226 KVMState
*s
= kvm_state
;
229 for (i
= 0; i
< s
->nr_slots
; i
++) {
230 KVMSlot
*mem
= &kml
->slots
[i
];
232 if (start_addr
== mem
->start_addr
&& size
== mem
->memory_size
) {
241 * Calculate and align the start address and the size of the section.
242 * Return the size. If the size is 0, the aligned section is empty.
244 static hwaddr
kvm_align_section(MemoryRegionSection
*section
,
247 hwaddr size
= int128_get64(section
->size
);
248 hwaddr delta
, aligned
;
250 /* kvm works in page size chunks, but the function may be called
251 with sub-page size and unaligned start address. Pad the start
252 address to next and truncate size to previous page boundary. */
253 aligned
= ROUND_UP(section
->offset_within_address_space
,
254 qemu_real_host_page_size
);
255 delta
= aligned
- section
->offset_within_address_space
;
261 return (size
- delta
) & qemu_real_host_page_mask
;
264 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
267 KVMMemoryListener
*kml
= &s
->memory_listener
;
271 for (i
= 0; i
< s
->nr_slots
; i
++) {
272 KVMSlot
*mem
= &kml
->slots
[i
];
274 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
275 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
280 kvm_slots_unlock(kml
);
285 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
, bool new)
287 KVMState
*s
= kvm_state
;
288 struct kvm_userspace_memory_region mem
;
291 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
292 mem
.guest_phys_addr
= slot
->start_addr
;
293 mem
.userspace_addr
= (unsigned long)slot
->ram
;
294 mem
.flags
= slot
->flags
;
296 if (slot
->memory_size
&& !new && (mem
.flags
^ slot
->old_flags
) & KVM_MEM_READONLY
) {
297 /* Set the slot size to 0 before setting the slot to the desired
298 * value. This is needed based on KVM commit 75d61fbc. */
300 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
302 mem
.memory_size
= slot
->memory_size
;
303 ret
= kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
304 slot
->old_flags
= mem
.flags
;
305 trace_kvm_set_user_memory(mem
.slot
, mem
.flags
, mem
.guest_phys_addr
,
306 mem
.memory_size
, mem
.userspace_addr
, ret
);
310 int kvm_destroy_vcpu(CPUState
*cpu
)
312 KVMState
*s
= kvm_state
;
314 struct KVMParkedVcpu
*vcpu
= NULL
;
317 DPRINTF("kvm_destroy_vcpu\n");
319 ret
= kvm_arch_destroy_vcpu(cpu
);
324 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
327 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
331 ret
= munmap(cpu
->kvm_run
, mmap_size
);
336 vcpu
= g_malloc0(sizeof(*vcpu
));
337 vcpu
->vcpu_id
= kvm_arch_vcpu_id(cpu
);
338 vcpu
->kvm_fd
= cpu
->kvm_fd
;
339 QLIST_INSERT_HEAD(&kvm_state
->kvm_parked_vcpus
, vcpu
, node
);
344 static int kvm_get_vcpu(KVMState
*s
, unsigned long vcpu_id
)
346 struct KVMParkedVcpu
*cpu
;
348 QLIST_FOREACH(cpu
, &s
->kvm_parked_vcpus
, node
) {
349 if (cpu
->vcpu_id
== vcpu_id
) {
352 QLIST_REMOVE(cpu
, node
);
353 kvm_fd
= cpu
->kvm_fd
;
359 return kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)vcpu_id
);
362 int kvm_init_vcpu(CPUState
*cpu
)
364 KVMState
*s
= kvm_state
;
368 DPRINTF("kvm_init_vcpu\n");
370 ret
= kvm_get_vcpu(s
, kvm_arch_vcpu_id(cpu
));
372 DPRINTF("kvm_create_vcpu failed\n");
378 cpu
->vcpu_dirty
= true;
380 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
383 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
387 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
389 if (cpu
->kvm_run
== MAP_FAILED
) {
391 DPRINTF("mmap'ing vcpu state failed\n");
395 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
396 s
->coalesced_mmio_ring
=
397 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
400 ret
= kvm_arch_init_vcpu(cpu
);
406 * dirty pages logging control
409 static int kvm_mem_flags(MemoryRegion
*mr
)
411 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
414 if (memory_region_get_dirty_log_mask(mr
) != 0) {
415 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
417 if (readonly
&& kvm_readonly_mem_allowed
) {
418 flags
|= KVM_MEM_READONLY
;
423 /* Called with KVMMemoryListener.slots_lock held */
424 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
427 mem
->flags
= kvm_mem_flags(mr
);
429 /* If nothing changed effectively, no need to issue ioctl */
430 if (mem
->flags
== mem
->old_flags
) {
434 return kvm_set_user_memory_region(kml
, mem
, false);
437 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
438 MemoryRegionSection
*section
)
440 hwaddr start_addr
, size
;
444 size
= kvm_align_section(section
, &start_addr
);
451 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
453 /* We don't have a slot if we want to trap every access. */
457 ret
= kvm_slot_update_flags(kml
, mem
, section
->mr
);
460 kvm_slots_unlock(kml
);
464 static void kvm_log_start(MemoryListener
*listener
,
465 MemoryRegionSection
*section
,
468 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
475 r
= kvm_section_update_flags(kml
, section
);
481 static void kvm_log_stop(MemoryListener
*listener
,
482 MemoryRegionSection
*section
,
485 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
492 r
= kvm_section_update_flags(kml
, section
);
498 /* get kvm's dirty pages bitmap and update qemu's */
499 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
500 unsigned long *bitmap
)
502 ram_addr_t start
= section
->offset_within_region
+
503 memory_region_get_ram_addr(section
->mr
);
504 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
506 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
510 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
513 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
515 * This function will first try to fetch dirty bitmap from the kernel,
516 * and then updates qemu's dirty bitmap.
518 * NOTE: caller must be with kml->slots_lock held.
520 * @kml: the KVM memory listener object
521 * @section: the memory section to sync the dirty bitmap with
523 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
524 MemoryRegionSection
*section
)
526 KVMState
*s
= kvm_state
;
527 struct kvm_dirty_log d
= {};
529 hwaddr start_addr
, size
;
532 size
= kvm_align_section(section
, &start_addr
);
534 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
536 /* We don't have a slot if we want to trap every access. */
540 /* XXX bad kernel interface alert
541 * For dirty bitmap, kernel allocates array of size aligned to
542 * bits-per-long. But for case when the kernel is 64bits and
543 * the userspace is 32bits, userspace can't align to the same
544 * bits-per-long, since sizeof(long) is different between kernel
545 * and user space. This way, userspace will provide buffer which
546 * may be 4 bytes less than the kernel will use, resulting in
547 * userspace memory corruption (which is not detectable by valgrind
548 * too, in most cases).
549 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
550 * a hope that sizeof(long) won't become >8 any time soon.
552 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
553 /*HOST_LONG_BITS*/ 64) / 8;
554 if (!mem
->dirty_bmap
) {
555 /* Allocate on the first log_sync, once and for all */
556 mem
->dirty_bmap
= g_malloc0(size
);
559 d
.dirty_bitmap
= mem
->dirty_bmap
;
560 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
561 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
562 DPRINTF("ioctl failed %d\n", errno
);
567 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
573 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
574 #define KVM_CLEAR_LOG_SHIFT 6
575 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
576 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
579 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
581 * NOTE: this will be a no-op if we haven't enabled manual dirty log
582 * protection in the host kernel because in that case this operation
583 * will be done within log_sync().
585 * @kml: the kvm memory listener
586 * @section: the memory range to clear dirty bitmap
588 static int kvm_physical_log_clear(KVMMemoryListener
*kml
,
589 MemoryRegionSection
*section
)
591 KVMState
*s
= kvm_state
;
592 struct kvm_clear_dirty_log d
;
593 uint64_t start
, end
, bmap_start
, start_delta
, bmap_npages
, size
;
594 unsigned long *bmap_clear
= NULL
, psize
= qemu_real_host_page_size
;
598 if (!s
->manual_dirty_log_protect
) {
599 /* No need to do explicit clear */
603 start
= section
->offset_within_address_space
;
604 size
= int128_get64(section
->size
);
607 /* Nothing more we can do... */
613 /* Find any possible slot that covers the section */
614 for (i
= 0; i
< s
->nr_slots
; i
++) {
615 mem
= &kml
->slots
[i
];
616 if (mem
->start_addr
<= start
&&
617 start
+ size
<= mem
->start_addr
+ mem
->memory_size
) {
623 * We should always find one memslot until this point, otherwise
624 * there could be something wrong from the upper layer
626 assert(mem
&& i
!= s
->nr_slots
);
629 * We need to extend either the start or the size or both to
630 * satisfy the KVM interface requirement. Firstly, do the start
631 * page alignment on 64 host pages
633 bmap_start
= (start
- mem
->start_addr
) & KVM_CLEAR_LOG_MASK
;
634 start_delta
= start
- mem
->start_addr
- bmap_start
;
638 * The kernel interface has restriction on the size too, that either:
640 * (1) the size is 64 host pages aligned (just like the start), or
641 * (2) the size fills up until the end of the KVM memslot.
643 bmap_npages
= DIV_ROUND_UP(size
+ start_delta
, KVM_CLEAR_LOG_ALIGN
)
644 << KVM_CLEAR_LOG_SHIFT
;
645 end
= mem
->memory_size
/ psize
;
646 if (bmap_npages
> end
- bmap_start
) {
647 bmap_npages
= end
- bmap_start
;
649 start_delta
/= psize
;
652 * Prepare the bitmap to clear dirty bits. Here we must guarantee
653 * that we won't clear any unknown dirty bits otherwise we might
654 * accidentally clear some set bits which are not yet synced from
655 * the kernel into QEMU's bitmap, then we'll lose track of the
656 * guest modifications upon those pages (which can directly lead
657 * to guest data loss or panic after migration).
659 * Layout of the KVMSlot.dirty_bmap:
661 * |<-------- bmap_npages -----------..>|
664 * |----------------|-------------|------------------|------------|
667 * start bmap_start (start) end
668 * of memslot of memslot
670 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
673 assert(bmap_start
% BITS_PER_LONG
== 0);
674 /* We should never do log_clear before log_sync */
675 assert(mem
->dirty_bmap
);
677 /* Slow path - we need to manipulate a temp bitmap */
678 bmap_clear
= bitmap_new(bmap_npages
);
679 bitmap_copy_with_src_offset(bmap_clear
, mem
->dirty_bmap
,
680 bmap_start
, start_delta
+ size
/ psize
);
682 * We need to fill the holes at start because that was not
683 * specified by the caller and we extended the bitmap only for
686 bitmap_clear(bmap_clear
, 0, start_delta
);
687 d
.dirty_bitmap
= bmap_clear
;
689 /* Fast path - start address aligns well with BITS_PER_LONG */
690 d
.dirty_bitmap
= mem
->dirty_bmap
+ BIT_WORD(bmap_start
);
693 d
.first_page
= bmap_start
;
694 /* It should never overflow. If it happens, say something */
695 assert(bmap_npages
<= UINT32_MAX
);
696 d
.num_pages
= bmap_npages
;
697 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
699 if (kvm_vm_ioctl(s
, KVM_CLEAR_DIRTY_LOG
, &d
) == -1) {
701 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
702 "start=0x%"PRIx64
", size=0x%"PRIx32
", errno=%d",
703 __func__
, d
.slot
, (uint64_t)d
.first_page
,
704 (uint32_t)d
.num_pages
, ret
);
707 trace_kvm_clear_dirty_log(d
.slot
, d
.first_page
, d
.num_pages
);
711 * After we have updated the remote dirty bitmap, we update the
712 * cached bitmap as well for the memslot, then if another user
713 * clears the same region we know we shouldn't clear it again on
714 * the remote otherwise it's data loss as well.
716 bitmap_clear(mem
->dirty_bmap
, bmap_start
+ start_delta
,
718 /* This handles the NULL case well */
721 kvm_slots_unlock(kml
);
726 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
727 MemoryRegionSection
*secion
,
728 hwaddr start
, hwaddr size
)
730 KVMState
*s
= kvm_state
;
732 if (s
->coalesced_mmio
) {
733 struct kvm_coalesced_mmio_zone zone
;
739 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
743 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
744 MemoryRegionSection
*secion
,
745 hwaddr start
, hwaddr size
)
747 KVMState
*s
= kvm_state
;
749 if (s
->coalesced_mmio
) {
750 struct kvm_coalesced_mmio_zone zone
;
756 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
760 static void kvm_coalesce_pio_add(MemoryListener
*listener
,
761 MemoryRegionSection
*section
,
762 hwaddr start
, hwaddr size
)
764 KVMState
*s
= kvm_state
;
766 if (s
->coalesced_pio
) {
767 struct kvm_coalesced_mmio_zone zone
;
773 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
777 static void kvm_coalesce_pio_del(MemoryListener
*listener
,
778 MemoryRegionSection
*section
,
779 hwaddr start
, hwaddr size
)
781 KVMState
*s
= kvm_state
;
783 if (s
->coalesced_pio
) {
784 struct kvm_coalesced_mmio_zone zone
;
790 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
794 static MemoryListener kvm_coalesced_pio_listener
= {
795 .coalesced_io_add
= kvm_coalesce_pio_add
,
796 .coalesced_io_del
= kvm_coalesce_pio_del
,
799 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
803 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
811 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
815 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
817 /* VM wide version not implemented, use global one instead */
818 ret
= kvm_check_extension(s
, extension
);
824 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
826 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
827 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
828 * endianness, but the memory core hands them in target endianness.
829 * For example, PPC is always treated as big-endian even if running
830 * on KVM and on PPC64LE. Correct here.
844 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
845 bool assign
, uint32_t size
, bool datamatch
)
848 struct kvm_ioeventfd iofd
= {
849 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
856 trace_kvm_set_ioeventfd_mmio(fd
, (uint64_t)addr
, val
, assign
, size
,
858 if (!kvm_enabled()) {
863 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
866 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
869 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
878 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
879 bool assign
, uint32_t size
, bool datamatch
)
881 struct kvm_ioeventfd kick
= {
882 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
884 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
889 trace_kvm_set_ioeventfd_pio(fd
, addr
, val
, assign
, size
, datamatch
);
890 if (!kvm_enabled()) {
894 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
897 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
899 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
907 static int kvm_check_many_ioeventfds(void)
909 /* Userspace can use ioeventfd for io notification. This requires a host
910 * that supports eventfd(2) and an I/O thread; since eventfd does not
911 * support SIGIO it cannot interrupt the vcpu.
913 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
914 * can avoid creating too many ioeventfds.
916 #if defined(CONFIG_EVENTFD)
919 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
920 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
921 if (ioeventfds
[i
] < 0) {
924 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
926 close(ioeventfds
[i
]);
931 /* Decide whether many devices are supported or not */
932 ret
= i
== ARRAY_SIZE(ioeventfds
);
935 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
936 close(ioeventfds
[i
]);
944 static const KVMCapabilityInfo
*
945 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
948 if (!kvm_check_extension(s
, list
->value
)) {
956 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
957 MemoryRegionSection
*section
, bool add
)
961 MemoryRegion
*mr
= section
->mr
;
962 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
963 hwaddr start_addr
, size
;
966 if (!memory_region_is_ram(mr
)) {
967 if (writeable
|| !kvm_readonly_mem_allowed
) {
969 } else if (!mr
->romd_mode
) {
970 /* If the memory device is not in romd_mode, then we actually want
971 * to remove the kvm memory slot so all accesses will trap. */
976 size
= kvm_align_section(section
, &start_addr
);
981 /* use aligned delta to align the ram address */
982 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+
983 (start_addr
- section
->offset_within_address_space
);
988 mem
= kvm_lookup_matching_slot(kml
, start_addr
, size
);
992 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
993 kvm_physical_sync_dirty_bitmap(kml
, section
);
996 /* unregister the slot */
997 g_free(mem
->dirty_bmap
);
998 mem
->dirty_bmap
= NULL
;
999 mem
->memory_size
= 0;
1001 err
= kvm_set_user_memory_region(kml
, mem
, false);
1003 fprintf(stderr
, "%s: error unregistering slot: %s\n",
1004 __func__
, strerror(-err
));
1010 /* register the new slot */
1011 mem
= kvm_alloc_slot(kml
);
1012 mem
->memory_size
= size
;
1013 mem
->start_addr
= start_addr
;
1015 mem
->flags
= kvm_mem_flags(mr
);
1017 err
= kvm_set_user_memory_region(kml
, mem
, true);
1019 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
1025 kvm_slots_unlock(kml
);
1028 static void kvm_region_add(MemoryListener
*listener
,
1029 MemoryRegionSection
*section
)
1031 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1033 memory_region_ref(section
->mr
);
1034 kvm_set_phys_mem(kml
, section
, true);
1037 static void kvm_region_del(MemoryListener
*listener
,
1038 MemoryRegionSection
*section
)
1040 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1042 kvm_set_phys_mem(kml
, section
, false);
1043 memory_region_unref(section
->mr
);
1046 static void kvm_log_sync(MemoryListener
*listener
,
1047 MemoryRegionSection
*section
)
1049 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1052 kvm_slots_lock(kml
);
1053 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
1054 kvm_slots_unlock(kml
);
1060 static void kvm_log_clear(MemoryListener
*listener
,
1061 MemoryRegionSection
*section
)
1063 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
1066 r
= kvm_physical_log_clear(kml
, section
);
1068 error_report_once("%s: kvm log clear failed: mr=%s "
1069 "offset=%"HWADDR_PRIx
" size=%"PRIx64
, __func__
,
1070 section
->mr
->name
, section
->offset_within_region
,
1071 int128_get64(section
->size
));
1076 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
1077 MemoryRegionSection
*section
,
1078 bool match_data
, uint64_t data
,
1081 int fd
= event_notifier_get_fd(e
);
1084 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1085 data
, true, int128_get64(section
->size
),
1088 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1089 __func__
, strerror(-r
), -r
);
1094 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
1095 MemoryRegionSection
*section
,
1096 bool match_data
, uint64_t data
,
1099 int fd
= event_notifier_get_fd(e
);
1102 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
1103 data
, false, int128_get64(section
->size
),
1106 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1107 __func__
, strerror(-r
), -r
);
1112 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
1113 MemoryRegionSection
*section
,
1114 bool match_data
, uint64_t data
,
1117 int fd
= event_notifier_get_fd(e
);
1120 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1121 data
, true, int128_get64(section
->size
),
1124 fprintf(stderr
, "%s: error adding ioeventfd: %s (%d)\n",
1125 __func__
, strerror(-r
), -r
);
1130 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
1131 MemoryRegionSection
*section
,
1132 bool match_data
, uint64_t data
,
1136 int fd
= event_notifier_get_fd(e
);
1139 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
1140 data
, false, int128_get64(section
->size
),
1143 fprintf(stderr
, "%s: error deleting ioeventfd: %s (%d)\n",
1144 __func__
, strerror(-r
), -r
);
1149 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
1150 AddressSpace
*as
, int as_id
)
1154 qemu_mutex_init(&kml
->slots_lock
);
1155 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1158 for (i
= 0; i
< s
->nr_slots
; i
++) {
1159 kml
->slots
[i
].slot
= i
;
1162 kml
->listener
.region_add
= kvm_region_add
;
1163 kml
->listener
.region_del
= kvm_region_del
;
1164 kml
->listener
.log_start
= kvm_log_start
;
1165 kml
->listener
.log_stop
= kvm_log_stop
;
1166 kml
->listener
.log_sync
= kvm_log_sync
;
1167 kml
->listener
.log_clear
= kvm_log_clear
;
1168 kml
->listener
.priority
= 10;
1170 memory_listener_register(&kml
->listener
, as
);
1172 for (i
= 0; i
< s
->nr_as
; ++i
) {
1181 static MemoryListener kvm_io_listener
= {
1182 .eventfd_add
= kvm_io_ioeventfd_add
,
1183 .eventfd_del
= kvm_io_ioeventfd_del
,
1187 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
1189 struct kvm_irq_level event
;
1192 assert(kvm_async_interrupts_enabled());
1194 event
.level
= level
;
1196 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
1198 perror("kvm_set_irq");
1202 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
1205 #ifdef KVM_CAP_IRQ_ROUTING
1206 typedef struct KVMMSIRoute
{
1207 struct kvm_irq_routing_entry kroute
;
1208 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
1211 static void set_gsi(KVMState
*s
, unsigned int gsi
)
1213 set_bit(gsi
, s
->used_gsi_bitmap
);
1216 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
1218 clear_bit(gsi
, s
->used_gsi_bitmap
);
1221 void kvm_init_irq_routing(KVMState
*s
)
1225 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
1226 if (gsi_count
> 0) {
1227 /* Round up so we can search ints using ffs */
1228 s
->used_gsi_bitmap
= bitmap_new(gsi_count
);
1229 s
->gsi_count
= gsi_count
;
1232 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
1233 s
->nr_allocated_irq_routes
= 0;
1235 if (!kvm_direct_msi_allowed
) {
1236 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
1237 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
1241 kvm_arch_init_irq_routing(s
);
1244 void kvm_irqchip_commit_routes(KVMState
*s
)
1248 if (kvm_gsi_direct_mapping()) {
1252 if (!kvm_gsi_routing_enabled()) {
1256 s
->irq_routes
->flags
= 0;
1257 trace_kvm_irqchip_commit_routes();
1258 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1262 static void kvm_add_routing_entry(KVMState
*s
,
1263 struct kvm_irq_routing_entry
*entry
)
1265 struct kvm_irq_routing_entry
*new;
1268 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1269 n
= s
->nr_allocated_irq_routes
* 2;
1273 size
= sizeof(struct kvm_irq_routing
);
1274 size
+= n
* sizeof(*new);
1275 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1276 s
->nr_allocated_irq_routes
= n
;
1278 n
= s
->irq_routes
->nr
++;
1279 new = &s
->irq_routes
->entries
[n
];
1283 set_gsi(s
, entry
->gsi
);
1286 static int kvm_update_routing_entry(KVMState
*s
,
1287 struct kvm_irq_routing_entry
*new_entry
)
1289 struct kvm_irq_routing_entry
*entry
;
1292 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1293 entry
= &s
->irq_routes
->entries
[n
];
1294 if (entry
->gsi
!= new_entry
->gsi
) {
1298 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1302 *entry
= *new_entry
;
1310 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1312 struct kvm_irq_routing_entry e
= {};
1314 assert(pin
< s
->gsi_count
);
1317 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1319 e
.u
.irqchip
.irqchip
= irqchip
;
1320 e
.u
.irqchip
.pin
= pin
;
1321 kvm_add_routing_entry(s
, &e
);
1324 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1326 struct kvm_irq_routing_entry
*e
;
1329 if (kvm_gsi_direct_mapping()) {
1333 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1334 e
= &s
->irq_routes
->entries
[i
];
1335 if (e
->gsi
== virq
) {
1336 s
->irq_routes
->nr
--;
1337 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1341 kvm_arch_release_virq_post(virq
);
1342 trace_kvm_irqchip_release_virq(virq
);
1345 static unsigned int kvm_hash_msi(uint32_t data
)
1347 /* This is optimized for IA32 MSI layout. However, no other arch shall
1348 * repeat the mistake of not providing a direct MSI injection API. */
1352 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1354 KVMMSIRoute
*route
, *next
;
1357 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1358 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1359 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1360 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1366 static int kvm_irqchip_get_virq(KVMState
*s
)
1371 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1372 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1373 * number can succeed even though a new route entry cannot be added.
1374 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1376 if (!kvm_direct_msi_allowed
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1377 kvm_flush_dynamic_msi_routes(s
);
1380 /* Return the lowest unused GSI in the bitmap */
1381 next_virq
= find_first_zero_bit(s
->used_gsi_bitmap
, s
->gsi_count
);
1382 if (next_virq
>= s
->gsi_count
) {
1389 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1391 unsigned int hash
= kvm_hash_msi(msg
.data
);
1394 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1395 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1396 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1397 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1404 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1409 if (kvm_direct_msi_allowed
) {
1410 msi
.address_lo
= (uint32_t)msg
.address
;
1411 msi
.address_hi
= msg
.address
>> 32;
1412 msi
.data
= le32_to_cpu(msg
.data
);
1414 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1416 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1419 route
= kvm_lookup_msi_route(s
, msg
);
1423 virq
= kvm_irqchip_get_virq(s
);
1428 route
= g_malloc0(sizeof(KVMMSIRoute
));
1429 route
->kroute
.gsi
= virq
;
1430 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1431 route
->kroute
.flags
= 0;
1432 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1433 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1434 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1436 kvm_add_routing_entry(s
, &route
->kroute
);
1437 kvm_irqchip_commit_routes(s
);
1439 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1443 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1445 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1448 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1450 struct kvm_irq_routing_entry kroute
= {};
1452 MSIMessage msg
= {0, 0};
1454 if (pci_available
&& dev
) {
1455 msg
= pci_get_msi_message(dev
, vector
);
1458 if (kvm_gsi_direct_mapping()) {
1459 return kvm_arch_msi_data_to_gsi(msg
.data
);
1462 if (!kvm_gsi_routing_enabled()) {
1466 virq
= kvm_irqchip_get_virq(s
);
1472 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1474 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1475 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1476 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1477 if (pci_available
&& kvm_msi_devid_required()) {
1478 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1479 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1481 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1482 kvm_irqchip_release_virq(s
, virq
);
1486 trace_kvm_irqchip_add_msi_route(dev
? dev
->name
: (char *)"N/A",
1489 kvm_add_routing_entry(s
, &kroute
);
1490 kvm_arch_add_msi_route_post(&kroute
, vector
, dev
);
1491 kvm_irqchip_commit_routes(s
);
1496 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
,
1499 struct kvm_irq_routing_entry kroute
= {};
1501 if (kvm_gsi_direct_mapping()) {
1505 if (!kvm_irqchip_in_kernel()) {
1510 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1512 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1513 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1514 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1515 if (pci_available
&& kvm_msi_devid_required()) {
1516 kroute
.flags
= KVM_MSI_VALID_DEVID
;
1517 kroute
.u
.msi
.devid
= pci_requester_id(dev
);
1519 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
, dev
)) {
1523 trace_kvm_irqchip_update_msi_route(virq
);
1525 return kvm_update_routing_entry(s
, &kroute
);
1528 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1531 struct kvm_irqfd irqfd
= {
1534 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1538 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1539 irqfd
.resamplefd
= rfd
;
1542 if (!kvm_irqfds_enabled()) {
1546 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1549 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1551 struct kvm_irq_routing_entry kroute
= {};
1554 if (!kvm_gsi_routing_enabled()) {
1558 virq
= kvm_irqchip_get_virq(s
);
1564 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1566 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1567 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1568 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1569 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1570 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1572 kvm_add_routing_entry(s
, &kroute
);
1577 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1579 struct kvm_irq_routing_entry kroute
= {};
1582 if (!kvm_gsi_routing_enabled()) {
1585 if (!kvm_check_extension(s
, KVM_CAP_HYPERV_SYNIC
)) {
1588 virq
= kvm_irqchip_get_virq(s
);
1594 kroute
.type
= KVM_IRQ_ROUTING_HV_SINT
;
1596 kroute
.u
.hv_sint
.vcpu
= vcpu
;
1597 kroute
.u
.hv_sint
.sint
= sint
;
1599 kvm_add_routing_entry(s
, &kroute
);
1600 kvm_irqchip_commit_routes(s
);
1605 #else /* !KVM_CAP_IRQ_ROUTING */
1607 void kvm_init_irq_routing(KVMState
*s
)
1611 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1615 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1620 int kvm_irqchip_add_msi_route(KVMState
*s
, int vector
, PCIDevice
*dev
)
1625 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1630 int kvm_irqchip_add_hv_sint_route(KVMState
*s
, uint32_t vcpu
, uint32_t sint
)
1635 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1640 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1644 #endif /* !KVM_CAP_IRQ_ROUTING */
1646 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1647 EventNotifier
*rn
, int virq
)
1649 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1650 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1653 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1656 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1660 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1661 EventNotifier
*rn
, qemu_irq irq
)
1664 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1669 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1672 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1676 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1681 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1684 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1686 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1689 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1693 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1695 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1696 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1698 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1705 /* First probe and see if there's a arch-specific hook to create the
1706 * in-kernel irqchip for us */
1707 ret
= kvm_arch_irqchip_create(machine
, s
);
1709 if (machine_kernel_irqchip_split(machine
)) {
1710 perror("Split IRQ chip mode not supported.");
1713 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1717 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1721 kvm_kernel_irqchip
= true;
1722 /* If we have an in-kernel IRQ chip then we must have asynchronous
1723 * interrupt delivery (though the reverse is not necessarily true)
1725 kvm_async_interrupts_allowed
= true;
1726 kvm_halt_in_kernel_allowed
= true;
1728 kvm_init_irq_routing(s
);
1730 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1733 /* Find number of supported CPUs using the recommended
1734 * procedure from the kernel API documentation to cope with
1735 * older kernels that may be missing capabilities.
1737 static int kvm_recommended_vcpus(KVMState
*s
)
1739 int ret
= kvm_vm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1740 return (ret
) ? ret
: 4;
1743 static int kvm_max_vcpus(KVMState
*s
)
1745 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1746 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1749 static int kvm_max_vcpu_id(KVMState
*s
)
1751 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPU_ID
);
1752 return (ret
) ? ret
: kvm_max_vcpus(s
);
1755 bool kvm_vcpu_id_is_valid(int vcpu_id
)
1757 KVMState
*s
= KVM_STATE(current_machine
->accelerator
);
1758 return vcpu_id
>= 0 && vcpu_id
< kvm_max_vcpu_id(s
);
1761 static int kvm_init(MachineState
*ms
)
1763 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1764 static const char upgrade_note
[] =
1765 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1766 "(see http://sourceforge.net/projects/kvm).\n";
1771 { "SMP", ms
->smp
.cpus
},
1772 { "hotpluggable", ms
->smp
.max_cpus
},
1775 int soft_vcpus_limit
, hard_vcpus_limit
;
1777 const KVMCapabilityInfo
*missing_cap
;
1780 const char *kvm_type
;
1782 s
= KVM_STATE(ms
->accelerator
);
1785 * On systems where the kernel can support different base page
1786 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1787 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1788 * page size for the system though.
1790 assert(TARGET_PAGE_SIZE
<= getpagesize());
1794 #ifdef KVM_CAP_SET_GUEST_DEBUG
1795 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1797 QLIST_INIT(&s
->kvm_parked_vcpus
);
1799 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1801 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1806 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1807 if (ret
< KVM_API_VERSION
) {
1811 fprintf(stderr
, "kvm version too old\n");
1815 if (ret
> KVM_API_VERSION
) {
1817 fprintf(stderr
, "kvm version not supported\n");
1821 kvm_immediate_exit
= kvm_check_extension(s
, KVM_CAP_IMMEDIATE_EXIT
);
1822 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1824 /* If unspecified, use the default value */
1829 s
->nr_as
= kvm_check_extension(s
, KVM_CAP_MULTI_ADDRESS_SPACE
);
1830 if (s
->nr_as
<= 1) {
1833 s
->as
= g_new0(struct KVMAs
, s
->nr_as
);
1835 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1837 type
= mc
->kvm_type(ms
, kvm_type
);
1838 } else if (kvm_type
) {
1840 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1845 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1846 } while (ret
== -EINTR
);
1849 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1853 if (ret
== -EINVAL
) {
1855 "Host kernel setup problem detected. Please verify:\n");
1856 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1857 " user_mode parameters, whether\n");
1859 " user space is running in primary address space\n");
1861 "- for kernels supporting the vm.allocate_pgste sysctl, "
1862 "whether it is enabled\n");
1870 /* check the vcpu limits */
1871 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1872 hard_vcpus_limit
= kvm_max_vcpus(s
);
1875 if (nc
->num
> soft_vcpus_limit
) {
1876 warn_report("Number of %s cpus requested (%d) exceeds "
1877 "the recommended cpus supported by KVM (%d)",
1878 nc
->name
, nc
->num
, soft_vcpus_limit
);
1880 if (nc
->num
> hard_vcpus_limit
) {
1881 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1882 "the maximum cpus supported by KVM (%d)\n",
1883 nc
->name
, nc
->num
, hard_vcpus_limit
);
1890 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1893 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1897 fprintf(stderr
, "kvm does not support %s\n%s",
1898 missing_cap
->name
, upgrade_note
);
1902 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1903 s
->coalesced_pio
= s
->coalesced_mmio
&&
1904 kvm_check_extension(s
, KVM_CAP_COALESCED_PIO
);
1906 s
->manual_dirty_log_protect
=
1907 kvm_check_extension(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
);
1908 if (s
->manual_dirty_log_protect
) {
1909 ret
= kvm_vm_enable_cap(s
, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
, 0, 1);
1911 warn_report("Trying to enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 "
1912 "but failed. Falling back to the legacy mode. ");
1913 s
->manual_dirty_log_protect
= false;
1917 #ifdef KVM_CAP_VCPU_EVENTS
1918 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1921 s
->robust_singlestep
=
1922 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1924 #ifdef KVM_CAP_DEBUGREGS
1925 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1928 s
->max_nested_state_len
= kvm_check_extension(s
, KVM_CAP_NESTED_STATE
);
1930 #ifdef KVM_CAP_IRQ_ROUTING
1931 kvm_direct_msi_allowed
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1934 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1936 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1937 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1938 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1941 kvm_readonly_mem_allowed
=
1942 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1944 kvm_eventfds_allowed
=
1945 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1947 kvm_irqfds_allowed
=
1948 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1950 kvm_resamplefds_allowed
=
1951 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1953 kvm_vm_attributes_allowed
=
1954 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1956 kvm_ioeventfd_any_length_allowed
=
1957 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD_ANY_LENGTH
) > 0);
1962 * if memory encryption object is specified then initialize the memory
1963 * encryption context.
1965 if (ms
->memory_encryption
) {
1966 kvm_state
->memcrypt_handle
= sev_guest_init(ms
->memory_encryption
);
1967 if (!kvm_state
->memcrypt_handle
) {
1972 kvm_state
->memcrypt_encrypt_data
= sev_encrypt_data
;
1975 ret
= kvm_arch_init(ms
, s
);
1980 if (machine_kernel_irqchip_allowed(ms
)) {
1981 kvm_irqchip_create(ms
, s
);
1984 if (kvm_eventfds_allowed
) {
1985 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1986 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1988 s
->memory_listener
.listener
.coalesced_io_add
= kvm_coalesce_mmio_region
;
1989 s
->memory_listener
.listener
.coalesced_io_del
= kvm_uncoalesce_mmio_region
;
1991 kvm_memory_listener_register(s
, &s
->memory_listener
,
1992 &address_space_memory
, 0);
1993 memory_listener_register(&kvm_io_listener
,
1995 memory_listener_register(&kvm_coalesced_pio_listener
,
1998 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
2000 s
->sync_mmu
= !!kvm_vm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2002 qemu_balloon_inhibit(true);
2015 g_free(s
->memory_listener
.slots
);
2020 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
2022 s
->sigmask_len
= sigmask_len
;
2025 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
2026 int size
, uint32_t count
)
2029 uint8_t *ptr
= data
;
2031 for (i
= 0; i
< count
; i
++) {
2032 address_space_rw(&address_space_io
, port
, attrs
,
2034 direction
== KVM_EXIT_IO_OUT
);
2039 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
2041 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
2042 run
->internal
.suberror
);
2044 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
2047 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
2048 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
2049 i
, (uint64_t)run
->internal
.data
[i
]);
2052 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
2053 fprintf(stderr
, "emulation failure\n");
2054 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
2055 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2056 return EXCP_INTERRUPT
;
2059 /* FIXME: Should trigger a qmp message to let management know
2060 * something went wrong.
2065 void kvm_flush_coalesced_mmio_buffer(void)
2067 KVMState
*s
= kvm_state
;
2069 if (s
->coalesced_flush_in_progress
) {
2073 s
->coalesced_flush_in_progress
= true;
2075 if (s
->coalesced_mmio_ring
) {
2076 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
2077 while (ring
->first
!= ring
->last
) {
2078 struct kvm_coalesced_mmio
*ent
;
2080 ent
= &ring
->coalesced_mmio
[ring
->first
];
2082 if (ent
->pio
== 1) {
2083 address_space_rw(&address_space_io
, ent
->phys_addr
,
2084 MEMTXATTRS_UNSPECIFIED
, ent
->data
,
2087 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
2090 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
2094 s
->coalesced_flush_in_progress
= false;
2097 static void do_kvm_cpu_synchronize_state(CPUState
*cpu
, run_on_cpu_data arg
)
2099 if (!cpu
->vcpu_dirty
) {
2100 kvm_arch_get_registers(cpu
);
2101 cpu
->vcpu_dirty
= true;
2105 void kvm_cpu_synchronize_state(CPUState
*cpu
)
2107 if (!cpu
->vcpu_dirty
) {
2108 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, RUN_ON_CPU_NULL
);
2112 static void do_kvm_cpu_synchronize_post_reset(CPUState
*cpu
, run_on_cpu_data arg
)
2114 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
2115 cpu
->vcpu_dirty
= false;
2118 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
2120 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, RUN_ON_CPU_NULL
);
2123 static void do_kvm_cpu_synchronize_post_init(CPUState
*cpu
, run_on_cpu_data arg
)
2125 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
2126 cpu
->vcpu_dirty
= false;
2129 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
2131 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, RUN_ON_CPU_NULL
);
2134 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
, run_on_cpu_data arg
)
2136 cpu
->vcpu_dirty
= true;
2139 void kvm_cpu_synchronize_pre_loadvm(CPUState
*cpu
)
2141 run_on_cpu(cpu
, do_kvm_cpu_synchronize_pre_loadvm
, RUN_ON_CPU_NULL
);
2144 #ifdef KVM_HAVE_MCE_INJECTION
2145 static __thread
void *pending_sigbus_addr
;
2146 static __thread
int pending_sigbus_code
;
2147 static __thread
bool have_sigbus_pending
;
2150 static void kvm_cpu_kick(CPUState
*cpu
)
2152 atomic_set(&cpu
->kvm_run
->immediate_exit
, 1);
2155 static void kvm_cpu_kick_self(void)
2157 if (kvm_immediate_exit
) {
2158 kvm_cpu_kick(current_cpu
);
2160 qemu_cpu_kick_self();
2164 static void kvm_eat_signals(CPUState
*cpu
)
2166 struct timespec ts
= { 0, 0 };
2172 if (kvm_immediate_exit
) {
2173 atomic_set(&cpu
->kvm_run
->immediate_exit
, 0);
2174 /* Write kvm_run->immediate_exit before the cpu->exit_request
2175 * write in kvm_cpu_exec.
2181 sigemptyset(&waitset
);
2182 sigaddset(&waitset
, SIG_IPI
);
2185 r
= sigtimedwait(&waitset
, &siginfo
, &ts
);
2186 if (r
== -1 && !(errno
== EAGAIN
|| errno
== EINTR
)) {
2187 perror("sigtimedwait");
2191 r
= sigpending(&chkset
);
2193 perror("sigpending");
2196 } while (sigismember(&chkset
, SIG_IPI
));
2199 int kvm_cpu_exec(CPUState
*cpu
)
2201 struct kvm_run
*run
= cpu
->kvm_run
;
2204 DPRINTF("kvm_cpu_exec()\n");
2206 if (kvm_arch_process_async_events(cpu
)) {
2207 atomic_set(&cpu
->exit_request
, 0);
2211 qemu_mutex_unlock_iothread();
2212 cpu_exec_start(cpu
);
2217 if (cpu
->vcpu_dirty
) {
2218 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
2219 cpu
->vcpu_dirty
= false;
2222 kvm_arch_pre_run(cpu
, run
);
2223 if (atomic_read(&cpu
->exit_request
)) {
2224 DPRINTF("interrupt exit requested\n");
2226 * KVM requires us to reenter the kernel after IO exits to complete
2227 * instruction emulation. This self-signal will ensure that we
2230 kvm_cpu_kick_self();
2233 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2234 * Matching barrier in kvm_eat_signals.
2238 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
2240 attrs
= kvm_arch_post_run(cpu
, run
);
2242 #ifdef KVM_HAVE_MCE_INJECTION
2243 if (unlikely(have_sigbus_pending
)) {
2244 qemu_mutex_lock_iothread();
2245 kvm_arch_on_sigbus_vcpu(cpu
, pending_sigbus_code
,
2246 pending_sigbus_addr
);
2247 have_sigbus_pending
= false;
2248 qemu_mutex_unlock_iothread();
2253 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
2254 DPRINTF("io window exit\n");
2255 kvm_eat_signals(cpu
);
2256 ret
= EXCP_INTERRUPT
;
2259 fprintf(stderr
, "error: kvm run failed %s\n",
2260 strerror(-run_ret
));
2262 if (run_ret
== -EBUSY
) {
2264 "This is probably because your SMT is enabled.\n"
2265 "VCPU can only run on primary threads with all "
2266 "secondary threads offline.\n");
2273 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
2274 switch (run
->exit_reason
) {
2276 DPRINTF("handle_io\n");
2277 /* Called outside BQL */
2278 kvm_handle_io(run
->io
.port
, attrs
,
2279 (uint8_t *)run
+ run
->io
.data_offset
,
2286 DPRINTF("handle_mmio\n");
2287 /* Called outside BQL */
2288 address_space_rw(&address_space_memory
,
2289 run
->mmio
.phys_addr
, attrs
,
2292 run
->mmio
.is_write
);
2295 case KVM_EXIT_IRQ_WINDOW_OPEN
:
2296 DPRINTF("irq_window_open\n");
2297 ret
= EXCP_INTERRUPT
;
2299 case KVM_EXIT_SHUTDOWN
:
2300 DPRINTF("shutdown\n");
2301 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2302 ret
= EXCP_INTERRUPT
;
2304 case KVM_EXIT_UNKNOWN
:
2305 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
2306 (uint64_t)run
->hw
.hardware_exit_reason
);
2309 case KVM_EXIT_INTERNAL_ERROR
:
2310 ret
= kvm_handle_internal_error(cpu
, run
);
2312 case KVM_EXIT_SYSTEM_EVENT
:
2313 switch (run
->system_event
.type
) {
2314 case KVM_SYSTEM_EVENT_SHUTDOWN
:
2315 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN
);
2316 ret
= EXCP_INTERRUPT
;
2318 case KVM_SYSTEM_EVENT_RESET
:
2319 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
2320 ret
= EXCP_INTERRUPT
;
2322 case KVM_SYSTEM_EVENT_CRASH
:
2323 kvm_cpu_synchronize_state(cpu
);
2324 qemu_mutex_lock_iothread();
2325 qemu_system_guest_panicked(cpu_get_crash_info(cpu
));
2326 qemu_mutex_unlock_iothread();
2330 DPRINTF("kvm_arch_handle_exit\n");
2331 ret
= kvm_arch_handle_exit(cpu
, run
);
2336 DPRINTF("kvm_arch_handle_exit\n");
2337 ret
= kvm_arch_handle_exit(cpu
, run
);
2343 qemu_mutex_lock_iothread();
2346 cpu_dump_state(cpu
, stderr
, CPU_DUMP_CODE
);
2347 vm_stop(RUN_STATE_INTERNAL_ERROR
);
2350 atomic_set(&cpu
->exit_request
, 0);
2354 int kvm_ioctl(KVMState
*s
, int type
, ...)
2361 arg
= va_arg(ap
, void *);
2364 trace_kvm_ioctl(type
, arg
);
2365 ret
= ioctl(s
->fd
, type
, arg
);
2372 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
2379 arg
= va_arg(ap
, void *);
2382 trace_kvm_vm_ioctl(type
, arg
);
2383 ret
= ioctl(s
->vmfd
, type
, arg
);
2390 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
2397 arg
= va_arg(ap
, void *);
2400 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
2401 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
2408 int kvm_device_ioctl(int fd
, int type
, ...)
2415 arg
= va_arg(ap
, void *);
2418 trace_kvm_device_ioctl(fd
, type
, arg
);
2419 ret
= ioctl(fd
, type
, arg
);
2426 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
2429 struct kvm_device_attr attribute
= {
2434 if (!kvm_vm_attributes_allowed
) {
2438 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2439 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2443 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2445 struct kvm_device_attr attribute
= {
2451 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2454 int kvm_device_access(int fd
, int group
, uint64_t attr
,
2455 void *val
, bool write
, Error
**errp
)
2457 struct kvm_device_attr kvmattr
;
2461 kvmattr
.group
= group
;
2462 kvmattr
.attr
= attr
;
2463 kvmattr
.addr
= (uintptr_t)val
;
2465 err
= kvm_device_ioctl(fd
,
2466 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2469 error_setg_errno(errp
, -err
,
2470 "KVM_%s_DEVICE_ATTR failed: Group %d "
2471 "attr 0x%016" PRIx64
,
2472 write
? "SET" : "GET", group
, attr
);
2477 bool kvm_has_sync_mmu(void)
2479 return kvm_state
->sync_mmu
;
2482 int kvm_has_vcpu_events(void)
2484 return kvm_state
->vcpu_events
;
2487 int kvm_has_robust_singlestep(void)
2489 return kvm_state
->robust_singlestep
;
2492 int kvm_has_debugregs(void)
2494 return kvm_state
->debugregs
;
2497 int kvm_max_nested_state_length(void)
2499 return kvm_state
->max_nested_state_len
;
2502 int kvm_has_many_ioeventfds(void)
2504 if (!kvm_enabled()) {
2507 return kvm_state
->many_ioeventfds
;
2510 int kvm_has_gsi_routing(void)
2512 #ifdef KVM_CAP_IRQ_ROUTING
2513 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2519 int kvm_has_intx_set_mask(void)
2521 return kvm_state
->intx_set_mask
;
2524 bool kvm_arm_supports_user_irq(void)
2526 return kvm_check_extension(kvm_state
, KVM_CAP_ARM_USER_IRQ
);
2529 #ifdef KVM_CAP_SET_GUEST_DEBUG
2530 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2533 struct kvm_sw_breakpoint
*bp
;
2535 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2543 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2545 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2548 struct kvm_set_guest_debug_data
{
2549 struct kvm_guest_debug dbg
;
2553 static void kvm_invoke_set_guest_debug(CPUState
*cpu
, run_on_cpu_data data
)
2555 struct kvm_set_guest_debug_data
*dbg_data
=
2556 (struct kvm_set_guest_debug_data
*) data
.host_ptr
;
2558 dbg_data
->err
= kvm_vcpu_ioctl(cpu
, KVM_SET_GUEST_DEBUG
,
2562 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2564 struct kvm_set_guest_debug_data data
;
2566 data
.dbg
.control
= reinject_trap
;
2568 if (cpu
->singlestep_enabled
) {
2569 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2571 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2573 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
,
2574 RUN_ON_CPU_HOST_PTR(&data
));
2578 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2579 target_ulong len
, int type
)
2581 struct kvm_sw_breakpoint
*bp
;
2584 if (type
== GDB_BREAKPOINT_SW
) {
2585 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2591 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2594 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2600 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2602 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2609 err
= kvm_update_guest_debug(cpu
, 0);
2617 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2618 target_ulong len
, int type
)
2620 struct kvm_sw_breakpoint
*bp
;
2623 if (type
== GDB_BREAKPOINT_SW
) {
2624 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2629 if (bp
->use_count
> 1) {
2634 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2639 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2642 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2649 err
= kvm_update_guest_debug(cpu
, 0);
2657 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2659 struct kvm_sw_breakpoint
*bp
, *next
;
2660 KVMState
*s
= cpu
->kvm_state
;
2663 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2664 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2665 /* Try harder to find a CPU that currently sees the breakpoint. */
2666 CPU_FOREACH(tmpcpu
) {
2667 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2672 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2675 kvm_arch_remove_all_hw_breakpoints();
2678 kvm_update_guest_debug(cpu
, 0);
2682 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2684 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2689 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2690 target_ulong len
, int type
)
2695 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2696 target_ulong len
, int type
)
2701 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2704 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2706 static int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2708 KVMState
*s
= kvm_state
;
2709 struct kvm_signal_mask
*sigmask
;
2712 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2714 sigmask
->len
= s
->sigmask_len
;
2715 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2716 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2722 static void kvm_ipi_signal(int sig
)
2725 assert(kvm_immediate_exit
);
2726 kvm_cpu_kick(current_cpu
);
2730 void kvm_init_cpu_signals(CPUState
*cpu
)
2734 struct sigaction sigact
;
2736 memset(&sigact
, 0, sizeof(sigact
));
2737 sigact
.sa_handler
= kvm_ipi_signal
;
2738 sigaction(SIG_IPI
, &sigact
, NULL
);
2740 pthread_sigmask(SIG_BLOCK
, NULL
, &set
);
2741 #if defined KVM_HAVE_MCE_INJECTION
2742 sigdelset(&set
, SIGBUS
);
2743 pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2745 sigdelset(&set
, SIG_IPI
);
2746 if (kvm_immediate_exit
) {
2747 r
= pthread_sigmask(SIG_SETMASK
, &set
, NULL
);
2749 r
= kvm_set_signal_mask(cpu
, &set
);
2752 fprintf(stderr
, "kvm_set_signal_mask: %s\n", strerror(-r
));
2757 /* Called asynchronously in VCPU thread. */
2758 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2760 #ifdef KVM_HAVE_MCE_INJECTION
2761 if (have_sigbus_pending
) {
2764 have_sigbus_pending
= true;
2765 pending_sigbus_addr
= addr
;
2766 pending_sigbus_code
= code
;
2767 atomic_set(&cpu
->exit_request
, 1);
2774 /* Called synchronously (via signalfd) in main thread. */
2775 int kvm_on_sigbus(int code
, void *addr
)
2777 #ifdef KVM_HAVE_MCE_INJECTION
2778 /* Action required MCE kills the process if SIGBUS is blocked. Because
2779 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2780 * we can only get action optional here.
2782 assert(code
!= BUS_MCEERR_AR
);
2783 kvm_arch_on_sigbus_vcpu(first_cpu
, code
, addr
);
2790 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2793 struct kvm_create_device create_dev
;
2795 create_dev
.type
= type
;
2797 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2799 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2803 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2808 return test
? 0 : create_dev
.fd
;
2811 bool kvm_device_supported(int vmfd
, uint64_t type
)
2813 struct kvm_create_device create_dev
= {
2816 .flags
= KVM_CREATE_DEVICE_TEST
,
2819 if (ioctl(vmfd
, KVM_CHECK_EXTENSION
, KVM_CAP_DEVICE_CTRL
) <= 0) {
2823 return (ioctl(vmfd
, KVM_CREATE_DEVICE
, &create_dev
) >= 0);
2826 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2828 struct kvm_one_reg reg
;
2832 reg
.addr
= (uintptr_t) source
;
2833 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2835 trace_kvm_failed_reg_set(id
, strerror(-r
));
2840 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2842 struct kvm_one_reg reg
;
2846 reg
.addr
= (uintptr_t) target
;
2847 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2849 trace_kvm_failed_reg_get(id
, strerror(-r
));
2854 static bool kvm_accel_has_memory(MachineState
*ms
, AddressSpace
*as
,
2855 hwaddr start_addr
, hwaddr size
)
2857 KVMState
*kvm
= KVM_STATE(ms
->accelerator
);
2860 for (i
= 0; i
< kvm
->nr_as
; ++i
) {
2861 if (kvm
->as
[i
].as
== as
&& kvm
->as
[i
].ml
) {
2862 return NULL
!= kvm_lookup_matching_slot(kvm
->as
[i
].ml
,
2870 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2872 AccelClass
*ac
= ACCEL_CLASS(oc
);
2874 ac
->init_machine
= kvm_init
;
2875 ac
->has_memory
= kvm_accel_has_memory
;
2876 ac
->allowed
= &kvm_allowed
;
2879 static const TypeInfo kvm_accel_type
= {
2880 .name
= TYPE_KVM_ACCEL
,
2881 .parent
= TYPE_ACCEL
,
2882 .class_init
= kvm_accel_class_init
,
2883 .instance_size
= sizeof(KVMState
),
2886 static void kvm_type_init(void)
2888 type_register_static(&kvm_accel_type
);
2891 type_init(kvm_type_init
);