2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/char/parallel.h"
30 #include "hw/i386/apic.h"
31 #include "hw/i386/topology.h"
32 #include "hw/i386/fw_cfg.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
43 #include "migration/vmstate.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
50 #include "hw/audio/pcspk.h"
51 #include "hw/pci/msi.h"
52 #include "hw/sysbus.h"
53 #include "sysemu/sysemu.h"
54 #include "sysemu/tcg.h"
55 #include "sysemu/numa.h"
56 #include "sysemu/kvm.h"
57 #include "sysemu/qtest.h"
58 #include "sysemu/reset.h"
59 #include "sysemu/runstate.h"
61 #include "hw/xen/xen.h"
62 #include "hw/xen/start_info.h"
63 #include "ui/qemu-spice.h"
64 #include "exec/memory.h"
65 #include "exec/address-spaces.h"
66 #include "sysemu/arch_init.h"
67 #include "qemu/bitmap.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "qemu/option.h"
71 #include "hw/acpi/acpi.h"
72 #include "hw/acpi/cpu_hotplug.h"
73 #include "hw/boards.h"
74 #include "acpi-build.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "qapi/error.h"
77 #include "qapi/qapi-visit-common.h"
78 #include "qapi/visitor.h"
82 #include "hw/i386/intel_iommu.h"
83 #include "hw/net/ne2000-isa.h"
84 #include "standard-headers/asm-x86/bootparam.h"
85 #include "hw/virtio/virtio-pmem-pci.h"
86 #include "hw/mem/memory-device.h"
87 #include "sysemu/replay.h"
88 #include "qapi/qmp/qerror.h"
89 #include "config-devices.h"
91 /* debug PC/ISA interrupts */
95 #define DPRINTF(fmt, ...) \
96 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
98 #define DPRINTF(fmt, ...)
101 #define E820_NR_ENTRIES 16
107 } QEMU_PACKED
__attribute((__aligned__(4)));
111 struct e820_entry entry
[E820_NR_ENTRIES
];
112 } QEMU_PACKED
__attribute((__aligned__(4)));
114 static struct e820_table e820_reserve
;
115 static struct e820_entry
*e820_table
;
116 static unsigned e820_entries
;
117 struct hpet_fw_config hpet_cfg
= {.count
= UINT8_MAX
};
119 /* Physical Address of PVH entry point read from kernel ELF NOTE */
120 static size_t pvh_start_addr
;
122 GlobalProperty pc_compat_4_0
[] = {};
123 const size_t pc_compat_4_0_len
= G_N_ELEMENTS(pc_compat_4_0
);
125 GlobalProperty pc_compat_3_1
[] = {
126 { "intel-iommu", "dma-drain", "off" },
127 { "Opteron_G3" "-" TYPE_X86_CPU
, "rdtscp", "off" },
128 { "Opteron_G4" "-" TYPE_X86_CPU
, "rdtscp", "off" },
129 { "Opteron_G4" "-" TYPE_X86_CPU
, "npt", "off" },
130 { "Opteron_G4" "-" TYPE_X86_CPU
, "nrip-save", "off" },
131 { "Opteron_G5" "-" TYPE_X86_CPU
, "rdtscp", "off" },
132 { "Opteron_G5" "-" TYPE_X86_CPU
, "npt", "off" },
133 { "Opteron_G5" "-" TYPE_X86_CPU
, "nrip-save", "off" },
134 { "EPYC" "-" TYPE_X86_CPU
, "npt", "off" },
135 { "EPYC" "-" TYPE_X86_CPU
, "nrip-save", "off" },
136 { "EPYC-IBPB" "-" TYPE_X86_CPU
, "npt", "off" },
137 { "EPYC-IBPB" "-" TYPE_X86_CPU
, "nrip-save", "off" },
138 { "Skylake-Client" "-" TYPE_X86_CPU
, "mpx", "on" },
139 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU
, "mpx", "on" },
140 { "Skylake-Server" "-" TYPE_X86_CPU
, "mpx", "on" },
141 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU
, "mpx", "on" },
142 { "Cascadelake-Server" "-" TYPE_X86_CPU
, "mpx", "on" },
143 { "Icelake-Client" "-" TYPE_X86_CPU
, "mpx", "on" },
144 { "Icelake-Server" "-" TYPE_X86_CPU
, "mpx", "on" },
145 { "Cascadelake-Server" "-" TYPE_X86_CPU
, "stepping", "5" },
146 { TYPE_X86_CPU
, "x-intel-pt-auto-level", "off" },
148 const size_t pc_compat_3_1_len
= G_N_ELEMENTS(pc_compat_3_1
);
150 GlobalProperty pc_compat_3_0
[] = {
151 { TYPE_X86_CPU
, "x-hv-synic-kvm-only", "on" },
152 { "Skylake-Server" "-" TYPE_X86_CPU
, "pku", "off" },
153 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU
, "pku", "off" },
155 const size_t pc_compat_3_0_len
= G_N_ELEMENTS(pc_compat_3_0
);
157 GlobalProperty pc_compat_2_12
[] = {
158 { TYPE_X86_CPU
, "legacy-cache", "on" },
159 { TYPE_X86_CPU
, "topoext", "off" },
160 { "EPYC-" TYPE_X86_CPU
, "xlevel", "0x8000000a" },
161 { "EPYC-IBPB-" TYPE_X86_CPU
, "xlevel", "0x8000000a" },
163 const size_t pc_compat_2_12_len
= G_N_ELEMENTS(pc_compat_2_12
);
165 GlobalProperty pc_compat_2_11
[] = {
166 { TYPE_X86_CPU
, "x-migrate-smi-count", "off" },
167 { "Skylake-Server" "-" TYPE_X86_CPU
, "clflushopt", "off" },
169 const size_t pc_compat_2_11_len
= G_N_ELEMENTS(pc_compat_2_11
);
171 GlobalProperty pc_compat_2_10
[] = {
172 { TYPE_X86_CPU
, "x-hv-max-vps", "0x40" },
173 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
174 { "q35-pcihost", "x-pci-hole64-fix", "off" },
176 const size_t pc_compat_2_10_len
= G_N_ELEMENTS(pc_compat_2_10
);
178 GlobalProperty pc_compat_2_9
[] = {
179 { "mch", "extended-tseg-mbytes", "0" },
181 const size_t pc_compat_2_9_len
= G_N_ELEMENTS(pc_compat_2_9
);
183 GlobalProperty pc_compat_2_8
[] = {
184 { TYPE_X86_CPU
, "tcg-cpuid", "off" },
185 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
186 { "ICH9-LPC", "x-smi-broadcast", "off" },
187 { TYPE_X86_CPU
, "vmware-cpuid-freq", "off" },
188 { "Haswell-" TYPE_X86_CPU
, "stepping", "1" },
190 const size_t pc_compat_2_8_len
= G_N_ELEMENTS(pc_compat_2_8
);
192 GlobalProperty pc_compat_2_7
[] = {
193 { TYPE_X86_CPU
, "l3-cache", "off" },
194 { TYPE_X86_CPU
, "full-cpuid-auto-level", "off" },
195 { "Opteron_G3" "-" TYPE_X86_CPU
, "family", "15" },
196 { "Opteron_G3" "-" TYPE_X86_CPU
, "model", "6" },
197 { "Opteron_G3" "-" TYPE_X86_CPU
, "stepping", "1" },
198 { "isa-pcspk", "migrate", "off" },
200 const size_t pc_compat_2_7_len
= G_N_ELEMENTS(pc_compat_2_7
);
202 GlobalProperty pc_compat_2_6
[] = {
203 { TYPE_X86_CPU
, "cpuid-0xb", "off" },
204 { "vmxnet3", "romfile", "" },
205 { TYPE_X86_CPU
, "fill-mtrr-mask", "off" },
206 { "apic-common", "legacy-instance-id", "on", }
208 const size_t pc_compat_2_6_len
= G_N_ELEMENTS(pc_compat_2_6
);
210 GlobalProperty pc_compat_2_5
[] = {};
211 const size_t pc_compat_2_5_len
= G_N_ELEMENTS(pc_compat_2_5
);
213 GlobalProperty pc_compat_2_4
[] = {
214 PC_CPU_MODEL_IDS("2.4.0")
215 { "Haswell-" TYPE_X86_CPU
, "abm", "off" },
216 { "Haswell-noTSX-" TYPE_X86_CPU
, "abm", "off" },
217 { "Broadwell-" TYPE_X86_CPU
, "abm", "off" },
218 { "Broadwell-noTSX-" TYPE_X86_CPU
, "abm", "off" },
219 { "host" "-" TYPE_X86_CPU
, "host-cache-info", "on" },
220 { TYPE_X86_CPU
, "check", "off" },
221 { "qemu64" "-" TYPE_X86_CPU
, "sse4a", "on" },
222 { "qemu64" "-" TYPE_X86_CPU
, "abm", "on" },
223 { "qemu64" "-" TYPE_X86_CPU
, "popcnt", "on" },
224 { "qemu32" "-" TYPE_X86_CPU
, "popcnt", "on" },
225 { "Opteron_G2" "-" TYPE_X86_CPU
, "rdtscp", "on" },
226 { "Opteron_G3" "-" TYPE_X86_CPU
, "rdtscp", "on" },
227 { "Opteron_G4" "-" TYPE_X86_CPU
, "rdtscp", "on" },
228 { "Opteron_G5" "-" TYPE_X86_CPU
, "rdtscp", "on", }
230 const size_t pc_compat_2_4_len
= G_N_ELEMENTS(pc_compat_2_4
);
232 GlobalProperty pc_compat_2_3
[] = {
233 PC_CPU_MODEL_IDS("2.3.0")
234 { TYPE_X86_CPU
, "arat", "off" },
235 { "qemu64" "-" TYPE_X86_CPU
, "min-level", "4" },
236 { "kvm64" "-" TYPE_X86_CPU
, "min-level", "5" },
237 { "pentium3" "-" TYPE_X86_CPU
, "min-level", "2" },
238 { "n270" "-" TYPE_X86_CPU
, "min-level", "5" },
239 { "Conroe" "-" TYPE_X86_CPU
, "min-level", "4" },
240 { "Penryn" "-" TYPE_X86_CPU
, "min-level", "4" },
241 { "Nehalem" "-" TYPE_X86_CPU
, "min-level", "4" },
242 { "n270" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
243 { "Penryn" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
244 { "Conroe" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
245 { "Nehalem" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
246 { "Westmere" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
247 { "SandyBridge" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
248 { "IvyBridge" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
249 { "Haswell" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
250 { "Haswell-noTSX" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
251 { "Broadwell" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
252 { "Broadwell-noTSX" "-" TYPE_X86_CPU
, "min-xlevel", "0x8000000a" },
253 { TYPE_X86_CPU
, "kvm-no-smi-migration", "on" },
255 const size_t pc_compat_2_3_len
= G_N_ELEMENTS(pc_compat_2_3
);
257 GlobalProperty pc_compat_2_2
[] = {
258 PC_CPU_MODEL_IDS("2.2.0")
259 { "kvm64" "-" TYPE_X86_CPU
, "vme", "off" },
260 { "kvm32" "-" TYPE_X86_CPU
, "vme", "off" },
261 { "Conroe" "-" TYPE_X86_CPU
, "vme", "off" },
262 { "Penryn" "-" TYPE_X86_CPU
, "vme", "off" },
263 { "Nehalem" "-" TYPE_X86_CPU
, "vme", "off" },
264 { "Westmere" "-" TYPE_X86_CPU
, "vme", "off" },
265 { "SandyBridge" "-" TYPE_X86_CPU
, "vme", "off" },
266 { "Haswell" "-" TYPE_X86_CPU
, "vme", "off" },
267 { "Broadwell" "-" TYPE_X86_CPU
, "vme", "off" },
268 { "Opteron_G1" "-" TYPE_X86_CPU
, "vme", "off" },
269 { "Opteron_G2" "-" TYPE_X86_CPU
, "vme", "off" },
270 { "Opteron_G3" "-" TYPE_X86_CPU
, "vme", "off" },
271 { "Opteron_G4" "-" TYPE_X86_CPU
, "vme", "off" },
272 { "Opteron_G5" "-" TYPE_X86_CPU
, "vme", "off" },
273 { "Haswell" "-" TYPE_X86_CPU
, "f16c", "off" },
274 { "Haswell" "-" TYPE_X86_CPU
, "rdrand", "off" },
275 { "Broadwell" "-" TYPE_X86_CPU
, "f16c", "off" },
276 { "Broadwell" "-" TYPE_X86_CPU
, "rdrand", "off" },
278 const size_t pc_compat_2_2_len
= G_N_ELEMENTS(pc_compat_2_2
);
280 GlobalProperty pc_compat_2_1
[] = {
281 PC_CPU_MODEL_IDS("2.1.0")
282 { "coreduo" "-" TYPE_X86_CPU
, "vmx", "on" },
283 { "core2duo" "-" TYPE_X86_CPU
, "vmx", "on" },
285 const size_t pc_compat_2_1_len
= G_N_ELEMENTS(pc_compat_2_1
);
287 GlobalProperty pc_compat_2_0
[] = {
288 PC_CPU_MODEL_IDS("2.0.0")
289 { "virtio-scsi-pci", "any_layout", "off" },
290 { "PIIX4_PM", "memory-hotplug-support", "off" },
291 { "apic", "version", "0x11" },
292 { "nec-usb-xhci", "superspeed-ports-first", "off" },
293 { "nec-usb-xhci", "force-pcie-endcap", "on" },
294 { "pci-serial", "prog_if", "0" },
295 { "pci-serial-2x", "prog_if", "0" },
296 { "pci-serial-4x", "prog_if", "0" },
297 { "virtio-net-pci", "guest_announce", "off" },
298 { "ICH9-LPC", "memory-hotplug-support", "off" },
299 { "xio3130-downstream", COMPAT_PROP_PCP
, "off" },
300 { "ioh3420", COMPAT_PROP_PCP
, "off" },
302 const size_t pc_compat_2_0_len
= G_N_ELEMENTS(pc_compat_2_0
);
304 GlobalProperty pc_compat_1_7
[] = {
305 PC_CPU_MODEL_IDS("1.7.0")
306 { TYPE_USB_DEVICE
, "msos-desc", "no" },
307 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
308 { "hpet", HPET_INTCAP
, "4" },
310 const size_t pc_compat_1_7_len
= G_N_ELEMENTS(pc_compat_1_7
);
312 GlobalProperty pc_compat_1_6
[] = {
313 PC_CPU_MODEL_IDS("1.6.0")
314 { "e1000", "mitigation", "off" },
315 { "qemu64-" TYPE_X86_CPU
, "model", "2" },
316 { "qemu32-" TYPE_X86_CPU
, "model", "3" },
317 { "i440FX-pcihost", "short_root_bus", "1" },
318 { "q35-pcihost", "short_root_bus", "1" },
320 const size_t pc_compat_1_6_len
= G_N_ELEMENTS(pc_compat_1_6
);
322 GlobalProperty pc_compat_1_5
[] = {
323 PC_CPU_MODEL_IDS("1.5.0")
324 { "Conroe-" TYPE_X86_CPU
, "model", "2" },
325 { "Conroe-" TYPE_X86_CPU
, "min-level", "2" },
326 { "Penryn-" TYPE_X86_CPU
, "model", "2" },
327 { "Penryn-" TYPE_X86_CPU
, "min-level", "2" },
328 { "Nehalem-" TYPE_X86_CPU
, "model", "2" },
329 { "Nehalem-" TYPE_X86_CPU
, "min-level", "2" },
330 { "virtio-net-pci", "any_layout", "off" },
331 { TYPE_X86_CPU
, "pmu", "on" },
332 { "i440FX-pcihost", "short_root_bus", "0" },
333 { "q35-pcihost", "short_root_bus", "0" },
335 const size_t pc_compat_1_5_len
= G_N_ELEMENTS(pc_compat_1_5
);
337 GlobalProperty pc_compat_1_4
[] = {
338 PC_CPU_MODEL_IDS("1.4.0")
339 { "scsi-hd", "discard_granularity", "0" },
340 { "scsi-cd", "discard_granularity", "0" },
341 { "scsi-disk", "discard_granularity", "0" },
342 { "ide-hd", "discard_granularity", "0" },
343 { "ide-cd", "discard_granularity", "0" },
344 { "ide-drive", "discard_granularity", "0" },
345 { "virtio-blk-pci", "discard_granularity", "0" },
346 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
347 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
348 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
349 { "e1000", "romfile", "pxe-e1000.rom" },
350 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
351 { "pcnet", "romfile", "pxe-pcnet.rom" },
352 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
353 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
354 { "486-" TYPE_X86_CPU
, "model", "0" },
355 { "n270" "-" TYPE_X86_CPU
, "movbe", "off" },
356 { "Westmere" "-" TYPE_X86_CPU
, "pclmulqdq", "off" },
358 const size_t pc_compat_1_4_len
= G_N_ELEMENTS(pc_compat_1_4
);
360 void gsi_handler(void *opaque
, int n
, int level
)
362 GSIState
*s
= opaque
;
364 DPRINTF("pc: %s GSI %d\n", level
? "raising" : "lowering", n
);
365 if (n
< ISA_NUM_IRQS
) {
366 qemu_set_irq(s
->i8259_irq
[n
], level
);
368 qemu_set_irq(s
->ioapic_irq
[n
], level
);
371 static void ioport80_write(void *opaque
, hwaddr addr
, uint64_t data
,
376 static uint64_t ioport80_read(void *opaque
, hwaddr addr
, unsigned size
)
378 return 0xffffffffffffffffULL
;
381 /* MSDOS compatibility mode FPU exception support */
382 static qemu_irq ferr_irq
;
384 void pc_register_ferr_irq(qemu_irq irq
)
389 /* XXX: add IGNNE support */
390 void cpu_set_ferr(CPUX86State
*s
)
392 qemu_irq_raise(ferr_irq
);
395 static void ioportF0_write(void *opaque
, hwaddr addr
, uint64_t data
,
398 qemu_irq_lower(ferr_irq
);
401 static uint64_t ioportF0_read(void *opaque
, hwaddr addr
, unsigned size
)
403 return 0xffffffffffffffffULL
;
407 uint64_t cpu_get_tsc(CPUX86State
*env
)
409 return cpu_get_ticks();
413 int cpu_get_pic_interrupt(CPUX86State
*env
)
415 X86CPU
*cpu
= env_archcpu(env
);
418 if (!kvm_irqchip_in_kernel()) {
419 intno
= apic_get_interrupt(cpu
->apic_state
);
423 /* read the irq from the PIC */
424 if (!apic_accept_pic_intr(cpu
->apic_state
)) {
429 intno
= pic_read_irq(isa_pic
);
433 static void pic_irq_request(void *opaque
, int irq
, int level
)
435 CPUState
*cs
= first_cpu
;
436 X86CPU
*cpu
= X86_CPU(cs
);
438 DPRINTF("pic_irqs: %s irq %d\n", level
? "raise" : "lower", irq
);
439 if (cpu
->apic_state
&& !kvm_irqchip_in_kernel()) {
442 if (apic_accept_pic_intr(cpu
->apic_state
)) {
443 apic_deliver_pic_intr(cpu
->apic_state
, level
);
448 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
450 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
455 /* PC cmos mappings */
457 #define REG_EQUIPMENT_BYTE 0x14
459 int cmos_get_fd_drive_type(FloppyDriveType fd0
)
464 case FLOPPY_DRIVE_TYPE_144
:
465 /* 1.44 Mb 3"5 drive */
468 case FLOPPY_DRIVE_TYPE_288
:
469 /* 2.88 Mb 3"5 drive */
472 case FLOPPY_DRIVE_TYPE_120
:
473 /* 1.2 Mb 5"5 drive */
476 case FLOPPY_DRIVE_TYPE_NONE
:
484 static void cmos_init_hd(ISADevice
*s
, int type_ofs
, int info_ofs
,
485 int16_t cylinders
, int8_t heads
, int8_t sectors
)
487 rtc_set_memory(s
, type_ofs
, 47);
488 rtc_set_memory(s
, info_ofs
, cylinders
);
489 rtc_set_memory(s
, info_ofs
+ 1, cylinders
>> 8);
490 rtc_set_memory(s
, info_ofs
+ 2, heads
);
491 rtc_set_memory(s
, info_ofs
+ 3, 0xff);
492 rtc_set_memory(s
, info_ofs
+ 4, 0xff);
493 rtc_set_memory(s
, info_ofs
+ 5, 0xc0 | ((heads
> 8) << 3));
494 rtc_set_memory(s
, info_ofs
+ 6, cylinders
);
495 rtc_set_memory(s
, info_ofs
+ 7, cylinders
>> 8);
496 rtc_set_memory(s
, info_ofs
+ 8, sectors
);
499 /* convert boot_device letter to something recognizable by the bios */
500 static int boot_device2nibble(char boot_device
)
502 switch(boot_device
) {
505 return 0x01; /* floppy boot */
507 return 0x02; /* hard drive boot */
509 return 0x03; /* CD-ROM boot */
511 return 0x04; /* Network boot */
516 static void set_boot_dev(ISADevice
*s
, const char *boot_device
, Error
**errp
)
518 #define PC_MAX_BOOT_DEVICES 3
519 int nbds
, bds
[3] = { 0, };
522 nbds
= strlen(boot_device
);
523 if (nbds
> PC_MAX_BOOT_DEVICES
) {
524 error_setg(errp
, "Too many boot devices for PC");
527 for (i
= 0; i
< nbds
; i
++) {
528 bds
[i
] = boot_device2nibble(boot_device
[i
]);
530 error_setg(errp
, "Invalid boot device for PC: '%c'",
535 rtc_set_memory(s
, 0x3d, (bds
[1] << 4) | bds
[0]);
536 rtc_set_memory(s
, 0x38, (bds
[2] << 4) | (fd_bootchk
? 0x0 : 0x1));
539 static void pc_boot_set(void *opaque
, const char *boot_device
, Error
**errp
)
541 set_boot_dev(opaque
, boot_device
, errp
);
544 static void pc_cmos_init_floppy(ISADevice
*rtc_state
, ISADevice
*floppy
)
547 FloppyDriveType fd_type
[2] = { FLOPPY_DRIVE_TYPE_NONE
,
548 FLOPPY_DRIVE_TYPE_NONE
};
552 for (i
= 0; i
< 2; i
++) {
553 fd_type
[i
] = isa_fdc_get_drive_type(floppy
, i
);
556 val
= (cmos_get_fd_drive_type(fd_type
[0]) << 4) |
557 cmos_get_fd_drive_type(fd_type
[1]);
558 rtc_set_memory(rtc_state
, 0x10, val
);
560 val
= rtc_get_memory(rtc_state
, REG_EQUIPMENT_BYTE
);
562 if (fd_type
[0] != FLOPPY_DRIVE_TYPE_NONE
) {
565 if (fd_type
[1] != FLOPPY_DRIVE_TYPE_NONE
) {
572 val
|= 0x01; /* 1 drive, ready for boot */
575 val
|= 0x41; /* 2 drives, ready for boot */
578 rtc_set_memory(rtc_state
, REG_EQUIPMENT_BYTE
, val
);
581 typedef struct pc_cmos_init_late_arg
{
582 ISADevice
*rtc_state
;
584 } pc_cmos_init_late_arg
;
586 typedef struct check_fdc_state
{
591 static int check_fdc(Object
*obj
, void *opaque
)
593 CheckFdcState
*state
= opaque
;
596 Error
*local_err
= NULL
;
598 fdc
= object_dynamic_cast(obj
, TYPE_ISA_FDC
);
603 iobase
= object_property_get_uint(obj
, "iobase", &local_err
);
604 if (local_err
|| iobase
!= 0x3f0) {
605 error_free(local_err
);
610 state
->multiple
= true;
612 state
->floppy
= ISA_DEVICE(obj
);
617 static const char * const fdc_container_path
[] = {
618 "/unattached", "/peripheral", "/peripheral-anon"
622 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
625 ISADevice
*pc_find_fdc0(void)
629 CheckFdcState state
= { 0 };
631 for (i
= 0; i
< ARRAY_SIZE(fdc_container_path
); i
++) {
632 container
= container_get(qdev_get_machine(), fdc_container_path
[i
]);
633 object_child_foreach(container
, check_fdc
, &state
);
636 if (state
.multiple
) {
637 warn_report("multiple floppy disk controllers with "
638 "iobase=0x3f0 have been found");
639 error_printf("the one being picked for CMOS setup might not reflect "
646 static void pc_cmos_init_late(void *opaque
)
648 pc_cmos_init_late_arg
*arg
= opaque
;
649 ISADevice
*s
= arg
->rtc_state
;
651 int8_t heads
, sectors
;
656 if (arg
->idebus
[0] && ide_get_geometry(arg
->idebus
[0], 0,
657 &cylinders
, &heads
, §ors
) >= 0) {
658 cmos_init_hd(s
, 0x19, 0x1b, cylinders
, heads
, sectors
);
661 if (arg
->idebus
[0] && ide_get_geometry(arg
->idebus
[0], 1,
662 &cylinders
, &heads
, §ors
) >= 0) {
663 cmos_init_hd(s
, 0x1a, 0x24, cylinders
, heads
, sectors
);
666 rtc_set_memory(s
, 0x12, val
);
669 for (i
= 0; i
< 4; i
++) {
670 /* NOTE: ide_get_geometry() returns the physical
671 geometry. It is always such that: 1 <= sects <= 63, 1
672 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
673 geometry can be different if a translation is done. */
674 if (arg
->idebus
[i
/ 2] &&
675 ide_get_geometry(arg
->idebus
[i
/ 2], i
% 2,
676 &cylinders
, &heads
, §ors
) >= 0) {
677 trans
= ide_get_bios_chs_trans(arg
->idebus
[i
/ 2], i
% 2) - 1;
678 assert((trans
& ~3) == 0);
679 val
|= trans
<< (i
* 2);
682 rtc_set_memory(s
, 0x39, val
);
684 pc_cmos_init_floppy(s
, pc_find_fdc0());
686 qemu_unregister_reset(pc_cmos_init_late
, opaque
);
689 void pc_cmos_init(PCMachineState
*pcms
,
690 BusState
*idebus0
, BusState
*idebus1
,
694 static pc_cmos_init_late_arg arg
;
696 /* various important CMOS locations needed by PC/Bochs bios */
699 /* base memory (first MiB) */
700 val
= MIN(pcms
->below_4g_mem_size
/ KiB
, 640);
701 rtc_set_memory(s
, 0x15, val
);
702 rtc_set_memory(s
, 0x16, val
>> 8);
703 /* extended memory (next 64MiB) */
704 if (pcms
->below_4g_mem_size
> 1 * MiB
) {
705 val
= (pcms
->below_4g_mem_size
- 1 * MiB
) / KiB
;
711 rtc_set_memory(s
, 0x17, val
);
712 rtc_set_memory(s
, 0x18, val
>> 8);
713 rtc_set_memory(s
, 0x30, val
);
714 rtc_set_memory(s
, 0x31, val
>> 8);
715 /* memory between 16MiB and 4GiB */
716 if (pcms
->below_4g_mem_size
> 16 * MiB
) {
717 val
= (pcms
->below_4g_mem_size
- 16 * MiB
) / (64 * KiB
);
723 rtc_set_memory(s
, 0x34, val
);
724 rtc_set_memory(s
, 0x35, val
>> 8);
725 /* memory above 4GiB */
726 val
= pcms
->above_4g_mem_size
/ 65536;
727 rtc_set_memory(s
, 0x5b, val
);
728 rtc_set_memory(s
, 0x5c, val
>> 8);
729 rtc_set_memory(s
, 0x5d, val
>> 16);
731 object_property_add_link(OBJECT(pcms
), "rtc_state",
733 (Object
**)&pcms
->rtc
,
734 object_property_allow_set_link
,
735 OBJ_PROP_LINK_STRONG
, &error_abort
);
736 object_property_set_link(OBJECT(pcms
), OBJECT(s
),
737 "rtc_state", &error_abort
);
739 set_boot_dev(s
, MACHINE(pcms
)->boot_order
, &error_fatal
);
742 val
|= 0x02; /* FPU is there */
743 val
|= 0x04; /* PS/2 mouse installed */
744 rtc_set_memory(s
, REG_EQUIPMENT_BYTE
, val
);
746 /* hard drives and FDC */
748 arg
.idebus
[0] = idebus0
;
749 arg
.idebus
[1] = idebus1
;
750 qemu_register_reset(pc_cmos_init_late
, &arg
);
753 #define TYPE_PORT92 "port92"
754 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
756 /* port 92 stuff: could be split off */
757 typedef struct Port92State
{
758 ISADevice parent_obj
;
765 static void port92_write(void *opaque
, hwaddr addr
, uint64_t val
,
768 Port92State
*s
= opaque
;
769 int oldval
= s
->outport
;
771 DPRINTF("port92: write 0x%02" PRIx64
"\n", val
);
773 qemu_set_irq(s
->a20_out
, (val
>> 1) & 1);
774 if ((val
& 1) && !(oldval
& 1)) {
775 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
779 static uint64_t port92_read(void *opaque
, hwaddr addr
,
782 Port92State
*s
= opaque
;
786 DPRINTF("port92: read 0x%02x\n", ret
);
790 static void port92_init(ISADevice
*dev
, qemu_irq a20_out
)
792 qdev_connect_gpio_out_named(DEVICE(dev
), PORT92_A20_LINE
, 0, a20_out
);
795 static const VMStateDescription vmstate_port92_isa
= {
798 .minimum_version_id
= 1,
799 .fields
= (VMStateField
[]) {
800 VMSTATE_UINT8(outport
, Port92State
),
801 VMSTATE_END_OF_LIST()
805 static void port92_reset(DeviceState
*d
)
807 Port92State
*s
= PORT92(d
);
812 static const MemoryRegionOps port92_ops
= {
814 .write
= port92_write
,
816 .min_access_size
= 1,
817 .max_access_size
= 1,
819 .endianness
= DEVICE_LITTLE_ENDIAN
,
822 static void port92_initfn(Object
*obj
)
824 Port92State
*s
= PORT92(obj
);
826 memory_region_init_io(&s
->io
, OBJECT(s
), &port92_ops
, s
, "port92", 1);
830 qdev_init_gpio_out_named(DEVICE(obj
), &s
->a20_out
, PORT92_A20_LINE
, 1);
833 static void port92_realizefn(DeviceState
*dev
, Error
**errp
)
835 ISADevice
*isadev
= ISA_DEVICE(dev
);
836 Port92State
*s
= PORT92(dev
);
838 isa_register_ioport(isadev
, &s
->io
, 0x92);
841 static void port92_class_initfn(ObjectClass
*klass
, void *data
)
843 DeviceClass
*dc
= DEVICE_CLASS(klass
);
845 dc
->realize
= port92_realizefn
;
846 dc
->reset
= port92_reset
;
847 dc
->vmsd
= &vmstate_port92_isa
;
849 * Reason: unlike ordinary ISA devices, this one needs additional
850 * wiring: its A20 output line needs to be wired up by
853 dc
->user_creatable
= false;
856 static const TypeInfo port92_info
= {
858 .parent
= TYPE_ISA_DEVICE
,
859 .instance_size
= sizeof(Port92State
),
860 .instance_init
= port92_initfn
,
861 .class_init
= port92_class_initfn
,
864 static void port92_register_types(void)
866 type_register_static(&port92_info
);
869 type_init(port92_register_types
)
871 static void handle_a20_line_change(void *opaque
, int irq
, int level
)
873 X86CPU
*cpu
= opaque
;
875 /* XXX: send to all CPUs ? */
876 /* XXX: add logic to handle multiple A20 line sources */
877 x86_cpu_set_a20(cpu
, level
);
880 int e820_add_entry(uint64_t address
, uint64_t length
, uint32_t type
)
882 int index
= le32_to_cpu(e820_reserve
.count
);
883 struct e820_entry
*entry
;
885 if (type
!= E820_RAM
) {
886 /* old FW_CFG_E820_TABLE entry -- reservations only */
887 if (index
>= E820_NR_ENTRIES
) {
890 entry
= &e820_reserve
.entry
[index
++];
892 entry
->address
= cpu_to_le64(address
);
893 entry
->length
= cpu_to_le64(length
);
894 entry
->type
= cpu_to_le32(type
);
896 e820_reserve
.count
= cpu_to_le32(index
);
899 /* new "etc/e820" file -- include ram too */
900 e820_table
= g_renew(struct e820_entry
, e820_table
, e820_entries
+ 1);
901 e820_table
[e820_entries
].address
= cpu_to_le64(address
);
902 e820_table
[e820_entries
].length
= cpu_to_le64(length
);
903 e820_table
[e820_entries
].type
= cpu_to_le32(type
);
909 int e820_get_num_entries(void)
914 bool e820_get_entry(int idx
, uint32_t type
, uint64_t *address
, uint64_t *length
)
916 if (idx
< e820_entries
&& e820_table
[idx
].type
== cpu_to_le32(type
)) {
917 *address
= le64_to_cpu(e820_table
[idx
].address
);
918 *length
= le64_to_cpu(e820_table
[idx
].length
);
924 /* Calculates initial APIC ID for a specific CPU index
926 * Currently we need to be able to calculate the APIC ID from the CPU index
927 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
928 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
929 * all CPUs up to max_cpus.
931 static uint32_t x86_cpu_apic_id_from_index(PCMachineState
*pcms
,
932 unsigned int cpu_index
)
934 MachineState
*ms
= MACHINE(pcms
);
935 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
939 correct_id
= x86_apicid_from_cpu_idx(pcms
->smp_dies
, ms
->smp
.cores
,
940 ms
->smp
.threads
, cpu_index
);
941 if (pcmc
->compat_apic_id_mode
) {
942 if (cpu_index
!= correct_id
&& !warned
&& !qtest_enabled()) {
943 error_report("APIC IDs set in compatibility mode, "
944 "CPU topology won't match the configuration");
953 static void pc_build_smbios(PCMachineState
*pcms
)
955 uint8_t *smbios_tables
, *smbios_anchor
;
956 size_t smbios_tables_len
, smbios_anchor_len
;
957 struct smbios_phys_mem_area
*mem_array
;
958 unsigned i
, array_count
;
959 MachineState
*ms
= MACHINE(pcms
);
960 X86CPU
*cpu
= X86_CPU(ms
->possible_cpus
->cpus
[0].cpu
);
962 /* tell smbios about cpuid version and features */
963 smbios_set_cpuid(cpu
->env
.cpuid_version
, cpu
->env
.features
[FEAT_1_EDX
]);
965 smbios_tables
= smbios_get_table_legacy(ms
, &smbios_tables_len
);
967 fw_cfg_add_bytes(pcms
->fw_cfg
, FW_CFG_SMBIOS_ENTRIES
,
968 smbios_tables
, smbios_tables_len
);
971 /* build the array of physical mem area from e820 table */
972 mem_array
= g_malloc0(sizeof(*mem_array
) * e820_get_num_entries());
973 for (i
= 0, array_count
= 0; i
< e820_get_num_entries(); i
++) {
976 if (e820_get_entry(i
, E820_RAM
, &addr
, &len
)) {
977 mem_array
[array_count
].address
= addr
;
978 mem_array
[array_count
].length
= len
;
982 smbios_get_tables(ms
, mem_array
, array_count
,
983 &smbios_tables
, &smbios_tables_len
,
984 &smbios_anchor
, &smbios_anchor_len
);
988 fw_cfg_add_file(pcms
->fw_cfg
, "etc/smbios/smbios-tables",
989 smbios_tables
, smbios_tables_len
);
990 fw_cfg_add_file(pcms
->fw_cfg
, "etc/smbios/smbios-anchor",
991 smbios_anchor
, smbios_anchor_len
);
995 static FWCfgState
*bochs_bios_init(AddressSpace
*as
, PCMachineState
*pcms
)
998 uint64_t *numa_fw_cfg
;
1000 const CPUArchIdList
*cpus
;
1001 MachineClass
*mc
= MACHINE_GET_CLASS(pcms
);
1003 fw_cfg
= fw_cfg_init_io_dma(FW_CFG_IO_BASE
, FW_CFG_IO_BASE
+ 4, as
);
1004 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, pcms
->boot_cpus
);
1006 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1008 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1009 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1010 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1011 * for CPU hotplug also uses APIC ID and not "CPU index".
1012 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1013 * but the "limit to the APIC ID values SeaBIOS may see".
1015 * So for compatibility reasons with old BIOSes we are stuck with
1016 * "etc/max-cpus" actually being apic_id_limit
1018 fw_cfg_add_i16(fw_cfg
, FW_CFG_MAX_CPUS
, (uint16_t)pcms
->apic_id_limit
);
1019 fw_cfg_add_i64(fw_cfg
, FW_CFG_RAM_SIZE
, (uint64_t)ram_size
);
1020 fw_cfg_add_bytes(fw_cfg
, FW_CFG_ACPI_TABLES
,
1021 acpi_tables
, acpi_tables_len
);
1022 fw_cfg_add_i32(fw_cfg
, FW_CFG_IRQ0_OVERRIDE
, kvm_allows_irq0_override());
1024 fw_cfg_add_bytes(fw_cfg
, FW_CFG_E820_TABLE
,
1025 &e820_reserve
, sizeof(e820_reserve
));
1026 fw_cfg_add_file(fw_cfg
, "etc/e820", e820_table
,
1027 sizeof(struct e820_entry
) * e820_entries
);
1029 fw_cfg_add_bytes(fw_cfg
, FW_CFG_HPET
, &hpet_cfg
, sizeof(hpet_cfg
));
1030 /* allocate memory for the NUMA channel: one (64bit) word for the number
1031 * of nodes, one word for each VCPU->node and one word for each node to
1032 * hold the amount of memory.
1034 numa_fw_cfg
= g_new0(uint64_t, 1 + pcms
->apic_id_limit
+ nb_numa_nodes
);
1035 numa_fw_cfg
[0] = cpu_to_le64(nb_numa_nodes
);
1036 cpus
= mc
->possible_cpu_arch_ids(MACHINE(pcms
));
1037 for (i
= 0; i
< cpus
->len
; i
++) {
1038 unsigned int apic_id
= cpus
->cpus
[i
].arch_id
;
1039 assert(apic_id
< pcms
->apic_id_limit
);
1040 numa_fw_cfg
[apic_id
+ 1] = cpu_to_le64(cpus
->cpus
[i
].props
.node_id
);
1042 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1043 numa_fw_cfg
[pcms
->apic_id_limit
+ 1 + i
] =
1044 cpu_to_le64(numa_info
[i
].node_mem
);
1046 fw_cfg_add_bytes(fw_cfg
, FW_CFG_NUMA
, numa_fw_cfg
,
1047 (1 + pcms
->apic_id_limit
+ nb_numa_nodes
) *
1048 sizeof(*numa_fw_cfg
));
1053 static long get_file_size(FILE *f
)
1057 /* XXX: on Unix systems, using fstat() probably makes more sense */
1060 fseek(f
, 0, SEEK_END
);
1062 fseek(f
, where
, SEEK_SET
);
1072 } __attribute__((packed
));
1076 * The entry point into the kernel for PVH boot is different from
1077 * the native entry point. The PVH entry is defined by the x86/HVM
1078 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1080 * This function is passed to load_elf() when it is called from
1081 * load_elfboot() which then additionally checks for an ELF Note of
1082 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1083 * parse the PVH entry address from the ELF Note.
1085 * Due to trickery in elf_opts.h, load_elf() is actually available as
1086 * load_elf32() or load_elf64() and this routine needs to be able
1087 * to deal with being called as 32 or 64 bit.
1089 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1090 * global variable. (although the entry point is 32-bit, the kernel
1091 * binary can be either 32-bit or 64-bit).
1093 static uint64_t read_pvh_start_addr(void *arg1
, void *arg2
, bool is64
)
1095 size_t *elf_note_data_addr
;
1097 /* Check if ELF Note header passed in is valid */
1103 struct elf64_note
*nhdr64
= (struct elf64_note
*)arg1
;
1104 uint64_t nhdr_size64
= sizeof(struct elf64_note
);
1105 uint64_t phdr_align
= *(uint64_t *)arg2
;
1106 uint64_t nhdr_namesz
= nhdr64
->n_namesz
;
1108 elf_note_data_addr
=
1109 ((void *)nhdr64
) + nhdr_size64
+
1110 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
1112 struct elf32_note
*nhdr32
= (struct elf32_note
*)arg1
;
1113 uint32_t nhdr_size32
= sizeof(struct elf32_note
);
1114 uint32_t phdr_align
= *(uint32_t *)arg2
;
1115 uint32_t nhdr_namesz
= nhdr32
->n_namesz
;
1117 elf_note_data_addr
=
1118 ((void *)nhdr32
) + nhdr_size32
+
1119 QEMU_ALIGN_UP(nhdr_namesz
, phdr_align
);
1122 pvh_start_addr
= *elf_note_data_addr
;
1124 return pvh_start_addr
;
1127 static bool load_elfboot(const char *kernel_filename
,
1128 int kernel_file_size
,
1130 size_t pvh_xen_start_addr
,
1134 uint32_t mh_load_addr
= 0;
1135 uint32_t elf_kernel_size
= 0;
1137 uint64_t elf_low
, elf_high
;
1140 if (ldl_p(header
) != 0x464c457f) {
1141 return false; /* no elfboot */
1144 bool elf_is64
= header
[EI_CLASS
] == ELFCLASS64
;
1146 ((Elf64_Ehdr
*)header
)->e_flags
: ((Elf32_Ehdr
*)header
)->e_flags
;
1148 if (flags
& 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1149 error_report("elfboot unsupported flags = %x", flags
);
1153 uint64_t elf_note_type
= XEN_ELFNOTE_PHYS32_ENTRY
;
1154 kernel_size
= load_elf(kernel_filename
, read_pvh_start_addr
,
1155 NULL
, &elf_note_type
, &elf_entry
,
1156 &elf_low
, &elf_high
, 0, I386_ELF_MACHINE
,
1159 if (kernel_size
< 0) {
1160 error_report("Error while loading elf kernel");
1163 mh_load_addr
= elf_low
;
1164 elf_kernel_size
= elf_high
- elf_low
;
1166 if (pvh_start_addr
== 0) {
1167 error_report("Error loading uncompressed kernel without PVH ELF Note");
1170 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ENTRY
, pvh_start_addr
);
1171 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, mh_load_addr
);
1172 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, elf_kernel_size
);
1177 static void load_linux(PCMachineState
*pcms
,
1181 int setup_size
, kernel_size
, cmdline_size
;
1182 int dtb_size
, setup_data_offset
;
1183 uint32_t initrd_max
;
1184 uint8_t header
[8192], *setup
, *kernel
;
1185 hwaddr real_addr
, prot_addr
, cmdline_addr
, initrd_addr
= 0;
1188 MachineState
*machine
= MACHINE(pcms
);
1189 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
1190 struct setup_data
*setup_data
;
1191 const char *kernel_filename
= machine
->kernel_filename
;
1192 const char *initrd_filename
= machine
->initrd_filename
;
1193 const char *dtb_filename
= machine
->dtb
;
1194 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1196 /* Align to 16 bytes as a paranoia measure */
1197 cmdline_size
= (strlen(kernel_cmdline
)+16) & ~15;
1199 /* load the kernel header */
1200 f
= fopen(kernel_filename
, "rb");
1201 if (!f
|| !(kernel_size
= get_file_size(f
)) ||
1202 fread(header
, 1, MIN(ARRAY_SIZE(header
), kernel_size
), f
) !=
1203 MIN(ARRAY_SIZE(header
), kernel_size
)) {
1204 fprintf(stderr
, "qemu: could not load kernel '%s': %s\n",
1205 kernel_filename
, strerror(errno
));
1209 /* kernel protocol version */
1211 fprintf(stderr
, "header magic: %#x\n", ldl_p(header
+0x202));
1213 if (ldl_p(header
+0x202) == 0x53726448) {
1214 protocol
= lduw_p(header
+0x206);
1217 * This could be a multiboot kernel. If it is, let's stop treating it
1218 * like a Linux kernel.
1219 * Note: some multiboot images could be in the ELF format (the same of
1220 * PVH), so we try multiboot first since we check the multiboot magic
1221 * header before to load it.
1223 if (load_multiboot(fw_cfg
, f
, kernel_filename
, initrd_filename
,
1224 kernel_cmdline
, kernel_size
, header
)) {
1228 * Check if the file is an uncompressed kernel file (ELF) and load it,
1229 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1230 * If load_elfboot() is successful, populate the fw_cfg info.
1232 if (pcmc
->pvh_enabled
&&
1233 load_elfboot(kernel_filename
, kernel_size
,
1234 header
, pvh_start_addr
, fw_cfg
)) {
1237 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1238 strlen(kernel_cmdline
) + 1);
1239 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
1241 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, sizeof(header
));
1242 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
,
1243 header
, sizeof(header
));
1246 if (initrd_filename
) {
1249 GError
*gerr
= NULL
;
1251 if (!g_file_get_contents(initrd_filename
, &initrd_data
,
1252 &initrd_size
, &gerr
)) {
1253 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
1254 initrd_filename
, gerr
->message
);
1258 initrd_max
= pcms
->below_4g_mem_size
- pcmc
->acpi_data_size
- 1;
1259 if (initrd_size
>= initrd_max
) {
1260 fprintf(stderr
, "qemu: initrd is too large, cannot support."
1261 "(max: %"PRIu32
", need %"PRId64
")\n",
1262 initrd_max
, (uint64_t)initrd_size
);
1266 initrd_addr
= (initrd_max
- initrd_size
) & ~4095;
1268 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
1269 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
1270 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
,
1274 option_rom
[nb_option_roms
].bootindex
= 0;
1275 option_rom
[nb_option_roms
].name
= "pvh.bin";
1283 if (protocol
< 0x200 || !(header
[0x211] & 0x01)) {
1285 real_addr
= 0x90000;
1286 cmdline_addr
= 0x9a000 - cmdline_size
;
1287 prot_addr
= 0x10000;
1288 } else if (protocol
< 0x202) {
1289 /* High but ancient kernel */
1290 real_addr
= 0x90000;
1291 cmdline_addr
= 0x9a000 - cmdline_size
;
1292 prot_addr
= 0x100000;
1294 /* High and recent kernel */
1295 real_addr
= 0x10000;
1296 cmdline_addr
= 0x20000;
1297 prot_addr
= 0x100000;
1302 "qemu: real_addr = 0x" TARGET_FMT_plx
"\n"
1303 "qemu: cmdline_addr = 0x" TARGET_FMT_plx
"\n"
1304 "qemu: prot_addr = 0x" TARGET_FMT_plx
"\n",
1310 /* highest address for loading the initrd */
1311 if (protocol
>= 0x20c &&
1312 lduw_p(header
+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G
) {
1314 * Linux has supported initrd up to 4 GB for a very long time (2007,
1315 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1316 * though it only sets initrd_max to 2 GB to "work around bootloader
1317 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1318 * has supported this.
1320 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1321 * be loaded into any address.
1323 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1324 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1327 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1329 initrd_max
= UINT32_MAX
;
1330 } else if (protocol
>= 0x203) {
1331 initrd_max
= ldl_p(header
+0x22c);
1333 initrd_max
= 0x37ffffff;
1336 if (initrd_max
>= pcms
->below_4g_mem_size
- pcmc
->acpi_data_size
) {
1337 initrd_max
= pcms
->below_4g_mem_size
- pcmc
->acpi_data_size
- 1;
1340 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_ADDR
, cmdline_addr
);
1341 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
, strlen(kernel_cmdline
)+1);
1342 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
, kernel_cmdline
);
1344 if (protocol
>= 0x202) {
1345 stl_p(header
+0x228, cmdline_addr
);
1347 stw_p(header
+0x20, 0xA33F);
1348 stw_p(header
+0x22, cmdline_addr
-real_addr
);
1351 /* handle vga= parameter */
1352 vmode
= strstr(kernel_cmdline
, "vga=");
1354 unsigned int video_mode
;
1357 if (!strncmp(vmode
, "normal", 6)) {
1358 video_mode
= 0xffff;
1359 } else if (!strncmp(vmode
, "ext", 3)) {
1360 video_mode
= 0xfffe;
1361 } else if (!strncmp(vmode
, "ask", 3)) {
1362 video_mode
= 0xfffd;
1364 video_mode
= strtol(vmode
, NULL
, 0);
1366 stw_p(header
+0x1fa, video_mode
);
1370 /* High nybble = B reserved for QEMU; low nybble is revision number.
1371 If this code is substantially changed, you may want to consider
1372 incrementing the revision. */
1373 if (protocol
>= 0x200) {
1374 header
[0x210] = 0xB0;
1377 if (protocol
>= 0x201) {
1378 header
[0x211] |= 0x80; /* CAN_USE_HEAP */
1379 stw_p(header
+0x224, cmdline_addr
-real_addr
-0x200);
1383 if (initrd_filename
) {
1386 GError
*gerr
= NULL
;
1388 if (protocol
< 0x200) {
1389 fprintf(stderr
, "qemu: linux kernel too old to load a ram disk\n");
1393 if (!g_file_get_contents(initrd_filename
, &initrd_data
,
1394 &initrd_size
, &gerr
)) {
1395 fprintf(stderr
, "qemu: error reading initrd %s: %s\n",
1396 initrd_filename
, gerr
->message
);
1399 if (initrd_size
>= initrd_max
) {
1400 fprintf(stderr
, "qemu: initrd is too large, cannot support."
1401 "(max: %"PRIu32
", need %"PRId64
")\n",
1402 initrd_max
, (uint64_t)initrd_size
);
1406 initrd_addr
= (initrd_max
-initrd_size
) & ~4095;
1408 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_ADDR
, initrd_addr
);
1409 fw_cfg_add_i32(fw_cfg
, FW_CFG_INITRD_SIZE
, initrd_size
);
1410 fw_cfg_add_bytes(fw_cfg
, FW_CFG_INITRD_DATA
, initrd_data
, initrd_size
);
1412 stl_p(header
+0x218, initrd_addr
);
1413 stl_p(header
+0x21c, initrd_size
);
1416 /* load kernel and setup */
1417 setup_size
= header
[0x1f1];
1418 if (setup_size
== 0) {
1421 setup_size
= (setup_size
+1)*512;
1422 if (setup_size
> kernel_size
) {
1423 fprintf(stderr
, "qemu: invalid kernel header\n");
1426 kernel_size
-= setup_size
;
1428 setup
= g_malloc(setup_size
);
1429 kernel
= g_malloc(kernel_size
);
1430 fseek(f
, 0, SEEK_SET
);
1431 if (fread(setup
, 1, setup_size
, f
) != setup_size
) {
1432 fprintf(stderr
, "fread() failed\n");
1435 if (fread(kernel
, 1, kernel_size
, f
) != kernel_size
) {
1436 fprintf(stderr
, "fread() failed\n");
1441 /* append dtb to kernel */
1443 if (protocol
< 0x209) {
1444 fprintf(stderr
, "qemu: Linux kernel too old to load a dtb\n");
1448 dtb_size
= get_image_size(dtb_filename
);
1449 if (dtb_size
<= 0) {
1450 fprintf(stderr
, "qemu: error reading dtb %s: %s\n",
1451 dtb_filename
, strerror(errno
));
1455 setup_data_offset
= QEMU_ALIGN_UP(kernel_size
, 16);
1456 kernel_size
= setup_data_offset
+ sizeof(struct setup_data
) + dtb_size
;
1457 kernel
= g_realloc(kernel
, kernel_size
);
1459 stq_p(header
+0x250, prot_addr
+ setup_data_offset
);
1461 setup_data
= (struct setup_data
*)(kernel
+ setup_data_offset
);
1462 setup_data
->next
= 0;
1463 setup_data
->type
= cpu_to_le32(SETUP_DTB
);
1464 setup_data
->len
= cpu_to_le32(dtb_size
);
1466 load_image_size(dtb_filename
, setup_data
->data
, dtb_size
);
1469 memcpy(setup
, header
, MIN(sizeof(header
), setup_size
));
1471 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_ADDR
, prot_addr
);
1472 fw_cfg_add_i32(fw_cfg
, FW_CFG_KERNEL_SIZE
, kernel_size
);
1473 fw_cfg_add_bytes(fw_cfg
, FW_CFG_KERNEL_DATA
, kernel
, kernel_size
);
1475 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_ADDR
, real_addr
);
1476 fw_cfg_add_i32(fw_cfg
, FW_CFG_SETUP_SIZE
, setup_size
);
1477 fw_cfg_add_bytes(fw_cfg
, FW_CFG_SETUP_DATA
, setup
, setup_size
);
1479 option_rom
[nb_option_roms
].bootindex
= 0;
1480 option_rom
[nb_option_roms
].name
= "linuxboot.bin";
1481 if (pcmc
->linuxboot_dma_enabled
&& fw_cfg_dma_enabled(fw_cfg
)) {
1482 option_rom
[nb_option_roms
].name
= "linuxboot_dma.bin";
1487 #define NE2000_NB_MAX 6
1489 static const int ne2000_io
[NE2000_NB_MAX
] = { 0x300, 0x320, 0x340, 0x360,
1491 static const int ne2000_irq
[NE2000_NB_MAX
] = { 9, 10, 11, 3, 4, 5 };
1493 void pc_init_ne2k_isa(ISABus
*bus
, NICInfo
*nd
)
1495 static int nb_ne2k
= 0;
1497 if (nb_ne2k
== NE2000_NB_MAX
)
1499 isa_ne2000_init(bus
, ne2000_io
[nb_ne2k
],
1500 ne2000_irq
[nb_ne2k
], nd
);
1504 DeviceState
*cpu_get_current_apic(void)
1507 X86CPU
*cpu
= X86_CPU(current_cpu
);
1508 return cpu
->apic_state
;
1514 void pc_acpi_smi_interrupt(void *opaque
, int irq
, int level
)
1516 X86CPU
*cpu
= opaque
;
1519 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
1523 static void pc_new_cpu(PCMachineState
*pcms
, int64_t apic_id
, Error
**errp
)
1526 Error
*local_err
= NULL
;
1527 CPUX86State
*env
= NULL
;
1529 cpu
= object_new(MACHINE(pcms
)->cpu_type
);
1531 env
= &X86_CPU(cpu
)->env
;
1532 env
->nr_dies
= pcms
->smp_dies
;
1534 object_property_set_uint(cpu
, apic_id
, "apic-id", &local_err
);
1535 object_property_set_bool(cpu
, true, "realized", &local_err
);
1538 error_propagate(errp
, local_err
);
1542 * This function is very similar to smp_parse()
1543 * in hw/core/machine.c but includes CPU die support.
1545 void pc_smp_parse(MachineState
*ms
, QemuOpts
*opts
)
1547 PCMachineState
*pcms
= PC_MACHINE(ms
);
1550 unsigned cpus
= qemu_opt_get_number(opts
, "cpus", 0);
1551 unsigned sockets
= qemu_opt_get_number(opts
, "sockets", 0);
1552 unsigned dies
= qemu_opt_get_number(opts
, "dies", 1);
1553 unsigned cores
= qemu_opt_get_number(opts
, "cores", 0);
1554 unsigned threads
= qemu_opt_get_number(opts
, "threads", 0);
1556 /* compute missing values, prefer sockets over cores over threads */
1557 if (cpus
== 0 || sockets
== 0) {
1558 cores
= cores
> 0 ? cores
: 1;
1559 threads
= threads
> 0 ? threads
: 1;
1561 sockets
= sockets
> 0 ? sockets
: 1;
1562 cpus
= cores
* threads
* dies
* sockets
;
1565 qemu_opt_get_number(opts
, "maxcpus", cpus
);
1566 sockets
= ms
->smp
.max_cpus
/ (cores
* threads
* dies
);
1568 } else if (cores
== 0) {
1569 threads
= threads
> 0 ? threads
: 1;
1570 cores
= cpus
/ (sockets
* dies
* threads
);
1571 cores
= cores
> 0 ? cores
: 1;
1572 } else if (threads
== 0) {
1573 threads
= cpus
/ (cores
* dies
* sockets
);
1574 threads
= threads
> 0 ? threads
: 1;
1575 } else if (sockets
* dies
* cores
* threads
< cpus
) {
1576 error_report("cpu topology: "
1577 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1579 sockets
, dies
, cores
, threads
, cpus
);
1584 qemu_opt_get_number(opts
, "maxcpus", cpus
);
1586 if (ms
->smp
.max_cpus
< cpus
) {
1587 error_report("maxcpus must be equal to or greater than smp");
1591 if (sockets
* dies
* cores
* threads
> ms
->smp
.max_cpus
) {
1592 error_report("cpu topology: "
1593 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1595 sockets
, dies
, cores
, threads
,
1600 if (sockets
* dies
* cores
* threads
!= ms
->smp
.max_cpus
) {
1601 warn_report("Invalid CPU topology deprecated: "
1602 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1604 sockets
, dies
, cores
, threads
,
1608 ms
->smp
.cpus
= cpus
;
1609 ms
->smp
.cores
= cores
;
1610 ms
->smp
.threads
= threads
;
1611 pcms
->smp_dies
= dies
;
1614 if (ms
->smp
.cpus
> 1) {
1615 Error
*blocker
= NULL
;
1616 error_setg(&blocker
, QERR_REPLAY_NOT_SUPPORTED
, "smp");
1617 replay_add_blocker(blocker
);
1621 void pc_hot_add_cpu(MachineState
*ms
, const int64_t id
, Error
**errp
)
1623 PCMachineState
*pcms
= PC_MACHINE(ms
);
1624 int64_t apic_id
= x86_cpu_apic_id_from_index(pcms
, id
);
1625 Error
*local_err
= NULL
;
1628 error_setg(errp
, "Invalid CPU id: %" PRIi64
, id
);
1632 if (apic_id
>= ACPI_CPU_HOTPLUG_ID_LIMIT
) {
1633 error_setg(errp
, "Unable to add CPU: %" PRIi64
1634 ", resulting APIC ID (%" PRIi64
") is too large",
1639 pc_new_cpu(PC_MACHINE(ms
), apic_id
, &local_err
);
1641 error_propagate(errp
, local_err
);
1646 void pc_cpus_init(PCMachineState
*pcms
)
1649 const CPUArchIdList
*possible_cpus
;
1650 MachineState
*ms
= MACHINE(pcms
);
1651 MachineClass
*mc
= MACHINE_GET_CLASS(pcms
);
1652 PCMachineClass
*pcmc
= PC_MACHINE_CLASS(mc
);
1654 x86_cpu_set_default_version(pcmc
->default_cpu_version
);
1656 /* Calculates the limit to CPU APIC ID values
1658 * Limit for the APIC ID value, so that all
1659 * CPU APIC IDs are < pcms->apic_id_limit.
1661 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1663 pcms
->apic_id_limit
= x86_cpu_apic_id_from_index(pcms
,
1664 ms
->smp
.max_cpus
- 1) + 1;
1665 possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
1666 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
1667 pc_new_cpu(pcms
, possible_cpus
->cpus
[i
].arch_id
, &error_fatal
);
1671 static void pc_build_feature_control_file(PCMachineState
*pcms
)
1673 MachineState
*ms
= MACHINE(pcms
);
1674 X86CPU
*cpu
= X86_CPU(ms
->possible_cpus
->cpus
[0].cpu
);
1675 CPUX86State
*env
= &cpu
->env
;
1676 uint32_t unused
, ecx
, edx
;
1677 uint64_t feature_control_bits
= 0;
1680 cpu_x86_cpuid(env
, 1, 0, &unused
, &unused
, &ecx
, &edx
);
1681 if (ecx
& CPUID_EXT_VMX
) {
1682 feature_control_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
1685 if ((edx
& (CPUID_EXT2_MCE
| CPUID_EXT2_MCA
)) ==
1686 (CPUID_EXT2_MCE
| CPUID_EXT2_MCA
) &&
1687 (env
->mcg_cap
& MCG_LMCE_P
)) {
1688 feature_control_bits
|= FEATURE_CONTROL_LMCE
;
1691 if (!feature_control_bits
) {
1695 val
= g_malloc(sizeof(*val
));
1696 *val
= cpu_to_le64(feature_control_bits
| FEATURE_CONTROL_LOCKED
);
1697 fw_cfg_add_file(pcms
->fw_cfg
, "etc/msr_feature_control", val
, sizeof(*val
));
1700 static void rtc_set_cpus_count(ISADevice
*rtc
, uint16_t cpus_count
)
1702 if (cpus_count
> 0xff) {
1703 /* If the number of CPUs can't be represented in 8 bits, the
1704 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1705 * to make old BIOSes fail more predictably.
1707 rtc_set_memory(rtc
, 0x5f, 0);
1709 rtc_set_memory(rtc
, 0x5f, cpus_count
- 1);
1714 void pc_machine_done(Notifier
*notifier
, void *data
)
1716 PCMachineState
*pcms
= container_of(notifier
,
1717 PCMachineState
, machine_done
);
1718 PCIBus
*bus
= pcms
->bus
;
1720 /* set the number of CPUs */
1721 rtc_set_cpus_count(pcms
->rtc
, pcms
->boot_cpus
);
1724 int extra_hosts
= 0;
1726 QLIST_FOREACH(bus
, &bus
->child
, sibling
) {
1727 /* look for expander root buses */
1728 if (pci_bus_is_root(bus
)) {
1732 if (extra_hosts
&& pcms
->fw_cfg
) {
1733 uint64_t *val
= g_malloc(sizeof(*val
));
1734 *val
= cpu_to_le64(extra_hosts
);
1735 fw_cfg_add_file(pcms
->fw_cfg
,
1736 "etc/extra-pci-roots", val
, sizeof(*val
));
1742 pc_build_smbios(pcms
);
1743 pc_build_feature_control_file(pcms
);
1744 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1745 fw_cfg_modify_i16(pcms
->fw_cfg
, FW_CFG_NB_CPUS
, pcms
->boot_cpus
);
1748 if (pcms
->apic_id_limit
> 255 && !xen_enabled()) {
1749 IntelIOMMUState
*iommu
= INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1751 if (!iommu
|| !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu
)) ||
1752 iommu
->intr_eim
!= ON_OFF_AUTO_ON
) {
1753 error_report("current -smp configuration requires "
1754 "Extended Interrupt Mode enabled. "
1755 "You can add an IOMMU using: "
1756 "-device intel-iommu,intremap=on,eim=on");
1762 void pc_guest_info_init(PCMachineState
*pcms
)
1766 pcms
->apic_xrupt_override
= kvm_allows_irq0_override();
1767 pcms
->numa_nodes
= nb_numa_nodes
;
1768 pcms
->node_mem
= g_malloc0(pcms
->numa_nodes
*
1769 sizeof *pcms
->node_mem
);
1770 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1771 pcms
->node_mem
[i
] = numa_info
[i
].node_mem
;
1774 pcms
->machine_done
.notify
= pc_machine_done
;
1775 qemu_add_machine_init_done_notifier(&pcms
->machine_done
);
1778 /* setup pci memory address space mapping into system address space */
1779 void pc_pci_as_mapping_init(Object
*owner
, MemoryRegion
*system_memory
,
1780 MemoryRegion
*pci_address_space
)
1782 /* Set to lower priority than RAM */
1783 memory_region_add_subregion_overlap(system_memory
, 0x0,
1784 pci_address_space
, -1);
1787 void xen_load_linux(PCMachineState
*pcms
)
1792 assert(MACHINE(pcms
)->kernel_filename
!= NULL
);
1794 fw_cfg
= fw_cfg_init_io(FW_CFG_IO_BASE
);
1795 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, pcms
->boot_cpus
);
1798 load_linux(pcms
, fw_cfg
);
1799 for (i
= 0; i
< nb_option_roms
; i
++) {
1800 assert(!strcmp(option_rom
[i
].name
, "linuxboot.bin") ||
1801 !strcmp(option_rom
[i
].name
, "linuxboot_dma.bin") ||
1802 !strcmp(option_rom
[i
].name
, "pvh.bin") ||
1803 !strcmp(option_rom
[i
].name
, "multiboot.bin"));
1804 rom_add_option(option_rom
[i
].name
, option_rom
[i
].bootindex
);
1806 pcms
->fw_cfg
= fw_cfg
;
1809 void pc_memory_init(PCMachineState
*pcms
,
1810 MemoryRegion
*system_memory
,
1811 MemoryRegion
*rom_memory
,
1812 MemoryRegion
**ram_memory
)
1815 MemoryRegion
*ram
, *option_rom_mr
;
1816 MemoryRegion
*ram_below_4g
, *ram_above_4g
;
1818 MachineState
*machine
= MACHINE(pcms
);
1819 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
1821 assert(machine
->ram_size
== pcms
->below_4g_mem_size
+
1822 pcms
->above_4g_mem_size
);
1824 linux_boot
= (machine
->kernel_filename
!= NULL
);
1826 /* Allocate RAM. We allocate it as a single memory region and use
1827 * aliases to address portions of it, mostly for backwards compatibility
1828 * with older qemus that used qemu_ram_alloc().
1830 ram
= g_malloc(sizeof(*ram
));
1831 memory_region_allocate_system_memory(ram
, NULL
, "pc.ram",
1834 ram_below_4g
= g_malloc(sizeof(*ram_below_4g
));
1835 memory_region_init_alias(ram_below_4g
, NULL
, "ram-below-4g", ram
,
1836 0, pcms
->below_4g_mem_size
);
1837 memory_region_add_subregion(system_memory
, 0, ram_below_4g
);
1838 e820_add_entry(0, pcms
->below_4g_mem_size
, E820_RAM
);
1839 if (pcms
->above_4g_mem_size
> 0) {
1840 ram_above_4g
= g_malloc(sizeof(*ram_above_4g
));
1841 memory_region_init_alias(ram_above_4g
, NULL
, "ram-above-4g", ram
,
1842 pcms
->below_4g_mem_size
,
1843 pcms
->above_4g_mem_size
);
1844 memory_region_add_subregion(system_memory
, 0x100000000ULL
,
1846 e820_add_entry(0x100000000ULL
, pcms
->above_4g_mem_size
, E820_RAM
);
1849 if (!pcmc
->has_reserved_memory
&&
1850 (machine
->ram_slots
||
1851 (machine
->maxram_size
> machine
->ram_size
))) {
1852 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1854 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1859 /* always allocate the device memory information */
1860 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
1862 /* initialize device memory address space */
1863 if (pcmc
->has_reserved_memory
&&
1864 (machine
->ram_size
< machine
->maxram_size
)) {
1865 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1867 if (machine
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1868 error_report("unsupported amount of memory slots: %"PRIu64
,
1869 machine
->ram_slots
);
1873 if (QEMU_ALIGN_UP(machine
->maxram_size
,
1874 TARGET_PAGE_SIZE
) != machine
->maxram_size
) {
1875 error_report("maximum memory size must by aligned to multiple of "
1876 "%d bytes", TARGET_PAGE_SIZE
);
1880 machine
->device_memory
->base
=
1881 ROUND_UP(0x100000000ULL
+ pcms
->above_4g_mem_size
, 1 * GiB
);
1883 if (pcmc
->enforce_aligned_dimm
) {
1884 /* size device region assuming 1G page max alignment per slot */
1885 device_mem_size
+= (1 * GiB
) * machine
->ram_slots
;
1888 if ((machine
->device_memory
->base
+ device_mem_size
) <
1890 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT
,
1891 machine
->maxram_size
);
1895 memory_region_init(&machine
->device_memory
->mr
, OBJECT(pcms
),
1896 "device-memory", device_mem_size
);
1897 memory_region_add_subregion(system_memory
, machine
->device_memory
->base
,
1898 &machine
->device_memory
->mr
);
1901 /* Initialize PC system firmware */
1902 pc_system_firmware_init(pcms
, rom_memory
);
1904 option_rom_mr
= g_malloc(sizeof(*option_rom_mr
));
1905 memory_region_init_ram(option_rom_mr
, NULL
, "pc.rom", PC_ROM_SIZE
,
1907 if (pcmc
->pci_enabled
) {
1908 memory_region_set_readonly(option_rom_mr
, true);
1910 memory_region_add_subregion_overlap(rom_memory
,
1915 fw_cfg
= bochs_bios_init(&address_space_memory
, pcms
);
1919 if (pcmc
->has_reserved_memory
&& machine
->device_memory
->base
) {
1920 uint64_t *val
= g_malloc(sizeof(*val
));
1921 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
1922 uint64_t res_mem_end
= machine
->device_memory
->base
;
1924 if (!pcmc
->broken_reserved_end
) {
1925 res_mem_end
+= memory_region_size(&machine
->device_memory
->mr
);
1927 *val
= cpu_to_le64(ROUND_UP(res_mem_end
, 1 * GiB
));
1928 fw_cfg_add_file(fw_cfg
, "etc/reserved-memory-end", val
, sizeof(*val
));
1932 load_linux(pcms
, fw_cfg
);
1935 for (i
= 0; i
< nb_option_roms
; i
++) {
1936 rom_add_option(option_rom
[i
].name
, option_rom
[i
].bootindex
);
1938 pcms
->fw_cfg
= fw_cfg
;
1940 /* Init default IOAPIC address space */
1941 pcms
->ioapic_as
= &address_space_memory
;
1945 * The 64bit pci hole starts after "above 4G RAM" and
1946 * potentially the space reserved for memory hotplug.
1948 uint64_t pc_pci_hole64_start(void)
1950 PCMachineState
*pcms
= PC_MACHINE(qdev_get_machine());
1951 PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
1952 MachineState
*ms
= MACHINE(pcms
);
1953 uint64_t hole64_start
= 0;
1955 if (pcmc
->has_reserved_memory
&& ms
->device_memory
->base
) {
1956 hole64_start
= ms
->device_memory
->base
;
1957 if (!pcmc
->broken_reserved_end
) {
1958 hole64_start
+= memory_region_size(&ms
->device_memory
->mr
);
1961 hole64_start
= 0x100000000ULL
+ pcms
->above_4g_mem_size
;
1964 return ROUND_UP(hole64_start
, 1 * GiB
);
1967 qemu_irq
pc_allocate_cpu_irq(void)
1969 return qemu_allocate_irq(pic_irq_request
, NULL
, 0);
1972 DeviceState
*pc_vga_init(ISABus
*isa_bus
, PCIBus
*pci_bus
)
1974 DeviceState
*dev
= NULL
;
1976 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA
);
1978 PCIDevice
*pcidev
= pci_vga_init(pci_bus
);
1979 dev
= pcidev
? &pcidev
->qdev
: NULL
;
1980 } else if (isa_bus
) {
1981 ISADevice
*isadev
= isa_vga_init(isa_bus
);
1982 dev
= isadev
? DEVICE(isadev
) : NULL
;
1984 rom_reset_order_override();
1988 static const MemoryRegionOps ioport80_io_ops
= {
1989 .write
= ioport80_write
,
1990 .read
= ioport80_read
,
1991 .endianness
= DEVICE_NATIVE_ENDIAN
,
1993 .min_access_size
= 1,
1994 .max_access_size
= 1,
1998 static const MemoryRegionOps ioportF0_io_ops
= {
1999 .write
= ioportF0_write
,
2000 .read
= ioportF0_read
,
2001 .endianness
= DEVICE_NATIVE_ENDIAN
,
2003 .min_access_size
= 1,
2004 .max_access_size
= 1,
2008 static void pc_superio_init(ISABus
*isa_bus
, bool create_fdctrl
, bool no_vmport
)
2011 DriveInfo
*fd
[MAX_FD
];
2013 ISADevice
*i8042
, *port92
, *vmmouse
;
2015 serial_hds_isa_init(isa_bus
, 0, MAX_ISA_SERIAL_PORTS
);
2016 parallel_hds_isa_init(isa_bus
, MAX_PARALLEL_PORTS
);
2018 for (i
= 0; i
< MAX_FD
; i
++) {
2019 fd
[i
] = drive_get(IF_FLOPPY
, 0, i
);
2020 create_fdctrl
|= !!fd
[i
];
2022 if (create_fdctrl
) {
2023 fdctrl_init_isa(isa_bus
, fd
);
2026 i8042
= isa_create_simple(isa_bus
, "i8042");
2028 vmport_init(isa_bus
);
2029 vmmouse
= isa_try_create(isa_bus
, "vmmouse");
2034 DeviceState
*dev
= DEVICE(vmmouse
);
2035 qdev_prop_set_ptr(dev
, "ps2_mouse", i8042
);
2036 qdev_init_nofail(dev
);
2038 port92
= isa_create_simple(isa_bus
, "port92");
2040 a20_line
= qemu_allocate_irqs(handle_a20_line_change
, first_cpu
, 2);
2041 i8042_setup_a20_line(i8042
, a20_line
[0]);
2042 port92_init(port92
, a20_line
[1]);
2046 void pc_basic_device_init(ISABus
*isa_bus
, qemu_irq
*gsi
,
2047 ISADevice
**rtc_state
,
2054 DeviceState
*hpet
= NULL
;
2055 int pit_isa_irq
= 0;
2056 qemu_irq pit_alt_irq
= NULL
;
2057 qemu_irq rtc_irq
= NULL
;
2058 ISADevice
*pit
= NULL
;
2059 MemoryRegion
*ioport80_io
= g_new(MemoryRegion
, 1);
2060 MemoryRegion
*ioportF0_io
= g_new(MemoryRegion
, 1);
2062 memory_region_init_io(ioport80_io
, NULL
, &ioport80_io_ops
, NULL
, "ioport80", 1);
2063 memory_region_add_subregion(isa_bus
->address_space_io
, 0x80, ioport80_io
);
2065 memory_region_init_io(ioportF0_io
, NULL
, &ioportF0_io_ops
, NULL
, "ioportF0", 1);
2066 memory_region_add_subregion(isa_bus
->address_space_io
, 0xf0, ioportF0_io
);
2069 * Check if an HPET shall be created.
2071 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2072 * when the HPET wants to take over. Thus we have to disable the latter.
2074 if (!no_hpet
&& (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2075 /* In order to set property, here not using sysbus_try_create_simple */
2076 hpet
= qdev_try_create(NULL
, TYPE_HPET
);
2078 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2079 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2082 uint8_t compat
= object_property_get_uint(OBJECT(hpet
),
2085 qdev_prop_set_uint32(hpet
, HPET_INTCAP
, hpet_irqs
);
2087 qdev_init_nofail(hpet
);
2088 sysbus_mmio_map(SYS_BUS_DEVICE(hpet
), 0, HPET_BASE
);
2090 for (i
= 0; i
< GSI_NUM_PINS
; i
++) {
2091 sysbus_connect_irq(SYS_BUS_DEVICE(hpet
), i
, gsi
[i
]);
2094 pit_alt_irq
= qdev_get_gpio_in(hpet
, HPET_LEGACY_PIT_INT
);
2095 rtc_irq
= qdev_get_gpio_in(hpet
, HPET_LEGACY_RTC_INT
);
2098 *rtc_state
= mc146818_rtc_init(isa_bus
, 2000, rtc_irq
);
2100 qemu_register_boot_set(pc_boot_set
, *rtc_state
);
2102 if (!xen_enabled() && has_pit
) {
2103 if (kvm_pit_in_kernel()) {
2104 pit
= kvm_pit_init(isa_bus
, 0x40);
2106 pit
= i8254_pit_init(isa_bus
, 0x40, pit_isa_irq
, pit_alt_irq
);
2109 /* connect PIT to output control line of the HPET */
2110 qdev_connect_gpio_out(hpet
, 0, qdev_get_gpio_in(DEVICE(pit
), 0));
2112 pcspk_init(isa_bus
, pit
);
2115 i8257_dma_init(isa_bus
, 0);
2118 pc_superio_init(isa_bus
, create_fdctrl
, no_vmport
);
2121 void pc_nic_init(PCMachineClass
*pcmc
, ISABus
*isa_bus
, PCIBus
*pci_bus
)
2125 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC
);
2126 for (i
= 0; i
< nb_nics
; i
++) {
2127 NICInfo
*nd
= &nd_table
[i
];
2128 const char *model
= nd
->model
? nd
->model
: pcmc
->default_nic_model
;
2130 if (g_str_equal(model
, "ne2k_isa")) {
2131 pc_init_ne2k_isa(isa_bus
, nd
);
2133 pci_nic_init_nofail(nd
, pci_bus
, model
, NULL
);
2136 rom_reset_order_override();
2139 void ioapic_init_gsi(GSIState
*gsi_state
, const char *parent_name
)
2145 if (kvm_ioapic_in_kernel()) {
2146 dev
= qdev_create(NULL
, TYPE_KVM_IOAPIC
);
2148 dev
= qdev_create(NULL
, TYPE_IOAPIC
);
2151 object_property_add_child(object_resolve_path(parent_name
, NULL
),
2152 "ioapic", OBJECT(dev
), NULL
);
2154 qdev_init_nofail(dev
);
2155 d
= SYS_BUS_DEVICE(dev
);
2156 sysbus_mmio_map(d
, 0, IO_APIC_DEFAULT_ADDRESS
);
2158 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
2159 gsi_state
->ioapic_irq
[i
] = qdev_get_gpio_in(dev
, i
);
2163 static void pc_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2166 const PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2167 const PCMachineClass
*pcmc
= PC_MACHINE_GET_CLASS(pcms
);
2168 const MachineState
*ms
= MACHINE(hotplug_dev
);
2169 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2170 const uint64_t legacy_align
= TARGET_PAGE_SIZE
;
2171 Error
*local_err
= NULL
;
2174 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2175 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2176 * addition to cover this case.
2178 if (!pcms
->acpi_dev
|| !acpi_enabled
) {
2180 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2184 if (is_nvdimm
&& !ms
->nvdimms_state
->is_enabled
) {
2185 error_setg(errp
, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2189 hotplug_handler_pre_plug(pcms
->acpi_dev
, dev
, &local_err
);
2191 error_propagate(errp
, local_err
);
2195 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
),
2196 pcmc
->enforce_aligned_dimm
? NULL
: &legacy_align
, errp
);
2199 static void pc_memory_plug(HotplugHandler
*hotplug_dev
,
2200 DeviceState
*dev
, Error
**errp
)
2202 Error
*local_err
= NULL
;
2203 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2204 MachineState
*ms
= MACHINE(hotplug_dev
);
2205 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2207 pc_dimm_plug(PC_DIMM(dev
), MACHINE(pcms
), &local_err
);
2213 nvdimm_plug(ms
->nvdimms_state
);
2216 hotplug_handler_plug(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
, &error_abort
);
2218 error_propagate(errp
, local_err
);
2221 static void pc_memory_unplug_request(HotplugHandler
*hotplug_dev
,
2222 DeviceState
*dev
, Error
**errp
)
2224 Error
*local_err
= NULL
;
2225 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2228 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2229 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2230 * addition to cover this case.
2232 if (!pcms
->acpi_dev
|| !acpi_enabled
) {
2233 error_setg(&local_err
,
2234 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2238 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
2239 error_setg(&local_err
,
2240 "nvdimm device hot unplug is not supported yet.");
2244 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
,
2247 error_propagate(errp
, local_err
);
2250 static void pc_memory_unplug(HotplugHandler
*hotplug_dev
,
2251 DeviceState
*dev
, Error
**errp
)
2253 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2254 Error
*local_err
= NULL
;
2256 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
, &local_err
);
2261 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(pcms
));
2262 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
2264 error_propagate(errp
, local_err
);
2267 static int pc_apic_cmp(const void *a
, const void *b
)
2269 CPUArchId
*apic_a
= (CPUArchId
*)a
;
2270 CPUArchId
*apic_b
= (CPUArchId
*)b
;
2272 return apic_a
->arch_id
- apic_b
->arch_id
;
2275 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2276 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2277 * entry corresponding to CPU's apic_id returns NULL.
2279 static CPUArchId
*pc_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2281 CPUArchId apic_id
, *found_cpu
;
2283 apic_id
.arch_id
= id
;
2284 found_cpu
= bsearch(&apic_id
, ms
->possible_cpus
->cpus
,
2285 ms
->possible_cpus
->len
, sizeof(*ms
->possible_cpus
->cpus
),
2287 if (found_cpu
&& idx
) {
2288 *idx
= found_cpu
- ms
->possible_cpus
->cpus
;
2293 static void pc_cpu_plug(HotplugHandler
*hotplug_dev
,
2294 DeviceState
*dev
, Error
**errp
)
2296 CPUArchId
*found_cpu
;
2297 Error
*local_err
= NULL
;
2298 X86CPU
*cpu
= X86_CPU(dev
);
2299 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2301 if (pcms
->acpi_dev
) {
2302 hotplug_handler_plug(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
, &local_err
);
2308 /* increment the number of CPUs */
2311 rtc_set_cpus_count(pcms
->rtc
, pcms
->boot_cpus
);
2314 fw_cfg_modify_i16(pcms
->fw_cfg
, FW_CFG_NB_CPUS
, pcms
->boot_cpus
);
2317 found_cpu
= pc_find_cpu_slot(MACHINE(pcms
), cpu
->apic_id
, NULL
);
2318 found_cpu
->cpu
= OBJECT(dev
);
2320 error_propagate(errp
, local_err
);
2322 static void pc_cpu_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2323 DeviceState
*dev
, Error
**errp
)
2326 Error
*local_err
= NULL
;
2327 X86CPU
*cpu
= X86_CPU(dev
);
2328 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2330 if (!pcms
->acpi_dev
) {
2331 error_setg(&local_err
, "CPU hot unplug not supported without ACPI");
2335 pc_find_cpu_slot(MACHINE(pcms
), cpu
->apic_id
, &idx
);
2338 error_setg(&local_err
, "Boot CPU is unpluggable");
2342 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
,
2349 error_propagate(errp
, local_err
);
2353 static void pc_cpu_unplug_cb(HotplugHandler
*hotplug_dev
,
2354 DeviceState
*dev
, Error
**errp
)
2356 CPUArchId
*found_cpu
;
2357 Error
*local_err
= NULL
;
2358 X86CPU
*cpu
= X86_CPU(dev
);
2359 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2361 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms
->acpi_dev
), dev
, &local_err
);
2366 found_cpu
= pc_find_cpu_slot(MACHINE(pcms
), cpu
->apic_id
, NULL
);
2367 found_cpu
->cpu
= NULL
;
2368 object_property_set_bool(OBJECT(dev
), false, "realized", NULL
);
2370 /* decrement the number of CPUs */
2372 /* Update the number of CPUs in CMOS */
2373 rtc_set_cpus_count(pcms
->rtc
, pcms
->boot_cpus
);
2374 fw_cfg_modify_i16(pcms
->fw_cfg
, FW_CFG_NB_CPUS
, pcms
->boot_cpus
);
2376 error_propagate(errp
, local_err
);
2379 static void pc_cpu_pre_plug(HotplugHandler
*hotplug_dev
,
2380 DeviceState
*dev
, Error
**errp
)
2384 CPUArchId
*cpu_slot
;
2385 X86CPUTopoInfo topo
;
2386 X86CPU
*cpu
= X86_CPU(dev
);
2387 CPUX86State
*env
= &cpu
->env
;
2388 MachineState
*ms
= MACHINE(hotplug_dev
);
2389 PCMachineState
*pcms
= PC_MACHINE(hotplug_dev
);
2390 unsigned int smp_cores
= ms
->smp
.cores
;
2391 unsigned int smp_threads
= ms
->smp
.threads
;
2393 if(!object_dynamic_cast(OBJECT(cpu
), ms
->cpu_type
)) {
2394 error_setg(errp
, "Invalid CPU type, expected cpu type: '%s'",
2399 env
->nr_dies
= pcms
->smp_dies
;
2402 * If APIC ID is not set,
2403 * set it based on socket/die/core/thread properties.
2405 if (cpu
->apic_id
== UNASSIGNED_APIC_ID
) {
2406 int max_socket
= (ms
->smp
.max_cpus
- 1) /
2407 smp_threads
/ smp_cores
/ pcms
->smp_dies
;
2409 if (cpu
->socket_id
< 0) {
2410 error_setg(errp
, "CPU socket-id is not set");
2412 } else if (cpu
->socket_id
> max_socket
) {
2413 error_setg(errp
, "Invalid CPU socket-id: %u must be in range 0:%u",
2414 cpu
->socket_id
, max_socket
);
2416 } else if (cpu
->die_id
> pcms
->smp_dies
- 1) {
2417 error_setg(errp
, "Invalid CPU die-id: %u must be in range 0:%u",
2418 cpu
->die_id
, max_socket
);
2421 if (cpu
->core_id
< 0) {
2422 error_setg(errp
, "CPU core-id is not set");
2424 } else if (cpu
->core_id
> (smp_cores
- 1)) {
2425 error_setg(errp
, "Invalid CPU core-id: %u must be in range 0:%u",
2426 cpu
->core_id
, smp_cores
- 1);
2429 if (cpu
->thread_id
< 0) {
2430 error_setg(errp
, "CPU thread-id is not set");
2432 } else if (cpu
->thread_id
> (smp_threads
- 1)) {
2433 error_setg(errp
, "Invalid CPU thread-id: %u must be in range 0:%u",
2434 cpu
->thread_id
, smp_threads
- 1);
2438 topo
.pkg_id
= cpu
->socket_id
;
2439 topo
.die_id
= cpu
->die_id
;
2440 topo
.core_id
= cpu
->core_id
;
2441 topo
.smt_id
= cpu
->thread_id
;
2442 cpu
->apic_id
= apicid_from_topo_ids(pcms
->smp_dies
, smp_cores
,
2443 smp_threads
, &topo
);
2446 cpu_slot
= pc_find_cpu_slot(MACHINE(pcms
), cpu
->apic_id
, &idx
);
2448 MachineState
*ms
= MACHINE(pcms
);
2450 x86_topo_ids_from_apicid(cpu
->apic_id
, pcms
->smp_dies
,
2451 smp_cores
, smp_threads
, &topo
);
2453 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2454 " APIC ID %" PRIu32
", valid index range 0:%d",
2455 topo
.pkg_id
, topo
.die_id
, topo
.core_id
, topo
.smt_id
,
2456 cpu
->apic_id
, ms
->possible_cpus
->len
- 1);
2460 if (cpu_slot
->cpu
) {
2461 error_setg(errp
, "CPU[%d] with APIC ID %" PRIu32
" exists",
2466 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2467 * so that machine_query_hotpluggable_cpus would show correct values
2469 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2470 * once -smp refactoring is complete and there will be CPU private
2471 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2472 x86_topo_ids_from_apicid(cpu
->apic_id
, pcms
->smp_dies
,
2473 smp_cores
, smp_threads
, &topo
);
2474 if (cpu
->socket_id
!= -1 && cpu
->socket_id
!= topo
.pkg_id
) {
2475 error_setg(errp
, "property socket-id: %u doesn't match set apic-id:"
2476 " 0x%x (socket-id: %u)", cpu
->socket_id
, cpu
->apic_id
, topo
.pkg_id
);
2479 cpu
->socket_id
= topo
.pkg_id
;
2481 if (cpu
->die_id
!= -1 && cpu
->die_id
!= topo
.die_id
) {
2482 error_setg(errp
, "property die-id: %u doesn't match set apic-id:"
2483 " 0x%x (die-id: %u)", cpu
->die_id
, cpu
->apic_id
, topo
.die_id
);
2486 cpu
->die_id
= topo
.die_id
;
2488 if (cpu
->core_id
!= -1 && cpu
->core_id
!= topo
.core_id
) {
2489 error_setg(errp
, "property core-id: %u doesn't match set apic-id:"
2490 " 0x%x (core-id: %u)", cpu
->core_id
, cpu
->apic_id
, topo
.core_id
);
2493 cpu
->core_id
= topo
.core_id
;
2495 if (cpu
->thread_id
!= -1 && cpu
->thread_id
!= topo
.smt_id
) {
2496 error_setg(errp
, "property thread-id: %u doesn't match set apic-id:"
2497 " 0x%x (thread-id: %u)", cpu
->thread_id
, cpu
->apic_id
, topo
.smt_id
);
2500 cpu
->thread_id
= topo
.smt_id
;
2502 if (hyperv_feat_enabled(cpu
, HYPERV_FEAT_VPINDEX
) &&
2503 !kvm_hv_vpindex_settable()) {
2504 error_setg(errp
, "kernel doesn't allow setting HyperV VP_INDEX");
2509 cs
->cpu_index
= idx
;
2511 numa_cpu_pre_plug(cpu_slot
, dev
, errp
);
2514 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler
*hotplug_dev
,
2515 DeviceState
*dev
, Error
**errp
)
2517 HotplugHandler
*hotplug_dev2
= qdev_get_bus_hotplug_handler(dev
);
2518 Error
*local_err
= NULL
;
2520 if (!hotplug_dev2
) {
2522 * Without a bus hotplug handler, we cannot control the plug/unplug
2523 * order. This should never be the case on x86, however better add
2526 error_setg(errp
, "virtio-pmem-pci not supported on this bus.");
2530 * First, see if we can plug this memory device at all. If that
2531 * succeeds, branch of to the actual hotplug handler.
2533 memory_device_pre_plug(MEMORY_DEVICE(dev
), MACHINE(hotplug_dev
), NULL
,
2536 hotplug_handler_pre_plug(hotplug_dev2
, dev
, &local_err
);
2538 error_propagate(errp
, local_err
);
2541 static void pc_virtio_pmem_pci_plug(HotplugHandler
*hotplug_dev
,
2542 DeviceState
*dev
, Error
**errp
)
2544 HotplugHandler
*hotplug_dev2
= qdev_get_bus_hotplug_handler(dev
);
2545 Error
*local_err
= NULL
;
2548 * Plug the memory device first and then branch off to the actual
2549 * hotplug handler. If that one fails, we can easily undo the memory
2552 memory_device_plug(MEMORY_DEVICE(dev
), MACHINE(hotplug_dev
));
2553 hotplug_handler_plug(hotplug_dev2
, dev
, &local_err
);
2555 memory_device_unplug(MEMORY_DEVICE(dev
), MACHINE(hotplug_dev
));
2557 error_propagate(errp
, local_err
);
2560 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler
*hotplug_dev
,
2561 DeviceState
*dev
, Error
**errp
)
2563 /* We don't support virtio pmem hot unplug */
2564 error_setg(errp
, "virtio pmem device unplug not supported.");
2567 static void pc_virtio_pmem_pci_unplug(HotplugHandler
*hotplug_dev
,
2568 DeviceState
*dev
, Error
**errp
)
2570 /* We don't support virtio pmem hot unplug */
2573 static void pc_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2574 DeviceState
*dev
, Error
**errp
)
2576 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2577 pc_memory_pre_plug(hotplug_dev
, dev
, errp
);
2578 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_CPU
)) {
2579 pc_cpu_pre_plug(hotplug_dev
, dev
, errp
);
2580 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_PMEM_PCI
)) {
2581 pc_virtio_pmem_pci_pre_plug(hotplug_dev
, dev
, errp
);
2585 static void pc_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2586 DeviceState
*dev
, Error
**errp
)
2588 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2589 pc_memory_plug(hotplug_dev
, dev
, errp
);
2590 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_CPU
)) {
2591 pc_cpu_plug(hotplug_dev
, dev
, errp
);
2592 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_PMEM_PCI
)) {
2593 pc_virtio_pmem_pci_plug(hotplug_dev
, dev
, errp
);
2597 static void pc_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2598 DeviceState
*dev
, Error
**errp
)
2600 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2601 pc_memory_unplug_request(hotplug_dev
, dev
, errp
);
2602 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_CPU
)) {
2603 pc_cpu_unplug_request_cb(hotplug_dev
, dev
, errp
);
2604 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_PMEM_PCI
)) {
2605 pc_virtio_pmem_pci_unplug_request(hotplug_dev
, dev
, errp
);
2607 error_setg(errp
, "acpi: device unplug request for not supported device"
2608 " type: %s", object_get_typename(OBJECT(dev
)));
2612 static void pc_machine_device_unplug_cb(HotplugHandler
*hotplug_dev
,
2613 DeviceState
*dev
, Error
**errp
)
2615 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2616 pc_memory_unplug(hotplug_dev
, dev
, errp
);
2617 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_CPU
)) {
2618 pc_cpu_unplug_cb(hotplug_dev
, dev
, errp
);
2619 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_PMEM_PCI
)) {
2620 pc_virtio_pmem_pci_unplug(hotplug_dev
, dev
, errp
);
2622 error_setg(errp
, "acpi: device unplug for not supported device"
2623 " type: %s", object_get_typename(OBJECT(dev
)));
2627 static HotplugHandler
*pc_get_hotplug_handler(MachineState
*machine
,
2630 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
2631 object_dynamic_cast(OBJECT(dev
), TYPE_CPU
) ||
2632 object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_PMEM_PCI
)) {
2633 return HOTPLUG_HANDLER(machine
);
2640 pc_machine_get_device_memory_region_size(Object
*obj
, Visitor
*v
,
2641 const char *name
, void *opaque
,
2644 MachineState
*ms
= MACHINE(obj
);
2647 if (ms
->device_memory
) {
2648 value
= memory_region_size(&ms
->device_memory
->mr
);
2651 visit_type_int(v
, name
, &value
, errp
);
2654 static void pc_machine_get_max_ram_below_4g(Object
*obj
, Visitor
*v
,
2655 const char *name
, void *opaque
,
2658 PCMachineState
*pcms
= PC_MACHINE(obj
);
2659 uint64_t value
= pcms
->max_ram_below_4g
;
2661 visit_type_size(v
, name
, &value
, errp
);
2664 static void pc_machine_set_max_ram_below_4g(Object
*obj
, Visitor
*v
,
2665 const char *name
, void *opaque
,
2668 PCMachineState
*pcms
= PC_MACHINE(obj
);
2669 Error
*error
= NULL
;
2672 visit_type_size(v
, name
, &value
, &error
);
2674 error_propagate(errp
, error
);
2677 if (value
> 4 * GiB
) {
2679 "Machine option 'max-ram-below-4g=%"PRIu64
2680 "' expects size less than or equal to 4G", value
);
2681 error_propagate(errp
, error
);
2685 if (value
< 1 * MiB
) {
2686 warn_report("Only %" PRIu64
" bytes of RAM below the 4GiB boundary,"
2687 "BIOS may not work with less than 1MiB", value
);
2690 pcms
->max_ram_below_4g
= value
;
2693 static void pc_machine_get_vmport(Object
*obj
, Visitor
*v
, const char *name
,
2694 void *opaque
, Error
**errp
)
2696 PCMachineState
*pcms
= PC_MACHINE(obj
);
2697 OnOffAuto vmport
= pcms
->vmport
;
2699 visit_type_OnOffAuto(v
, name
, &vmport
, errp
);
2702 static void pc_machine_set_vmport(Object
*obj
, Visitor
*v
, const char *name
,
2703 void *opaque
, Error
**errp
)
2705 PCMachineState
*pcms
= PC_MACHINE(obj
);
2707 visit_type_OnOffAuto(v
, name
, &pcms
->vmport
, errp
);
2710 bool pc_machine_is_smm_enabled(PCMachineState
*pcms
)
2712 bool smm_available
= false;
2714 if (pcms
->smm
== ON_OFF_AUTO_OFF
) {
2718 if (tcg_enabled() || qtest_enabled()) {
2719 smm_available
= true;
2720 } else if (kvm_enabled()) {
2721 smm_available
= kvm_has_smm();
2724 if (smm_available
) {
2728 if (pcms
->smm
== ON_OFF_AUTO_ON
) {
2729 error_report("System Management Mode not supported by this hypervisor.");
2735 static void pc_machine_get_smm(Object
*obj
, Visitor
*v
, const char *name
,
2736 void *opaque
, Error
**errp
)
2738 PCMachineState
*pcms
= PC_MACHINE(obj
);
2739 OnOffAuto smm
= pcms
->smm
;
2741 visit_type_OnOffAuto(v
, name
, &smm
, errp
);
2744 static void pc_machine_set_smm(Object
*obj
, Visitor
*v
, const char *name
,
2745 void *opaque
, Error
**errp
)
2747 PCMachineState
*pcms
= PC_MACHINE(obj
);
2749 visit_type_OnOffAuto(v
, name
, &pcms
->smm
, errp
);
2752 static bool pc_machine_get_smbus(Object
*obj
, Error
**errp
)
2754 PCMachineState
*pcms
= PC_MACHINE(obj
);
2756 return pcms
->smbus_enabled
;
2759 static void pc_machine_set_smbus(Object
*obj
, bool value
, Error
**errp
)
2761 PCMachineState
*pcms
= PC_MACHINE(obj
);
2763 pcms
->smbus_enabled
= value
;
2766 static bool pc_machine_get_sata(Object
*obj
, Error
**errp
)
2768 PCMachineState
*pcms
= PC_MACHINE(obj
);
2770 return pcms
->sata_enabled
;
2773 static void pc_machine_set_sata(Object
*obj
, bool value
, Error
**errp
)
2775 PCMachineState
*pcms
= PC_MACHINE(obj
);
2777 pcms
->sata_enabled
= value
;
2780 static bool pc_machine_get_pit(Object
*obj
, Error
**errp
)
2782 PCMachineState
*pcms
= PC_MACHINE(obj
);
2784 return pcms
->pit_enabled
;
2787 static void pc_machine_set_pit(Object
*obj
, bool value
, Error
**errp
)
2789 PCMachineState
*pcms
= PC_MACHINE(obj
);
2791 pcms
->pit_enabled
= value
;
2794 static void pc_machine_initfn(Object
*obj
)
2796 PCMachineState
*pcms
= PC_MACHINE(obj
);
2798 pcms
->max_ram_below_4g
= 0; /* use default */
2799 pcms
->smm
= ON_OFF_AUTO_AUTO
;
2800 #ifdef CONFIG_VMPORT
2801 pcms
->vmport
= ON_OFF_AUTO_AUTO
;
2803 pcms
->vmport
= ON_OFF_AUTO_OFF
;
2804 #endif /* CONFIG_VMPORT */
2805 /* acpi build is enabled by default if machine supports it */
2806 pcms
->acpi_build_enabled
= PC_MACHINE_GET_CLASS(pcms
)->has_acpi_build
;
2807 pcms
->smbus_enabled
= true;
2808 pcms
->sata_enabled
= true;
2809 pcms
->pit_enabled
= true;
2812 pc_system_flash_create(pcms
);
2815 static void pc_machine_reset(MachineState
*machine
)
2820 qemu_devices_reset();
2822 /* Reset APIC after devices have been reset to cancel
2823 * any changes that qemu_devices_reset() might have done.
2828 if (cpu
->apic_state
) {
2829 device_reset(cpu
->apic_state
);
2834 static CpuInstanceProperties
2835 pc_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
2837 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2838 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
2840 assert(cpu_index
< possible_cpus
->len
);
2841 return possible_cpus
->cpus
[cpu_index
].props
;
2844 static int64_t pc_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2846 X86CPUTopoInfo topo
;
2847 PCMachineState
*pcms
= PC_MACHINE(ms
);
2849 assert(idx
< ms
->possible_cpus
->len
);
2850 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[idx
].arch_id
,
2851 pcms
->smp_dies
, ms
->smp
.cores
,
2852 ms
->smp
.threads
, &topo
);
2853 return topo
.pkg_id
% nb_numa_nodes
;
2856 static const CPUArchIdList
*pc_possible_cpu_arch_ids(MachineState
*ms
)
2858 PCMachineState
*pcms
= PC_MACHINE(ms
);
2860 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2862 if (ms
->possible_cpus
) {
2864 * make sure that max_cpus hasn't changed since the first use, i.e.
2865 * -smp hasn't been parsed after it
2867 assert(ms
->possible_cpus
->len
== max_cpus
);
2868 return ms
->possible_cpus
;
2871 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2872 sizeof(CPUArchId
) * max_cpus
);
2873 ms
->possible_cpus
->len
= max_cpus
;
2874 for (i
= 0; i
< ms
->possible_cpus
->len
; i
++) {
2875 X86CPUTopoInfo topo
;
2877 ms
->possible_cpus
->cpus
[i
].type
= ms
->cpu_type
;
2878 ms
->possible_cpus
->cpus
[i
].vcpus_count
= 1;
2879 ms
->possible_cpus
->cpus
[i
].arch_id
= x86_cpu_apic_id_from_index(pcms
, i
);
2880 x86_topo_ids_from_apicid(ms
->possible_cpus
->cpus
[i
].arch_id
,
2881 pcms
->smp_dies
, ms
->smp
.cores
,
2882 ms
->smp
.threads
, &topo
);
2883 ms
->possible_cpus
->cpus
[i
].props
.has_socket_id
= true;
2884 ms
->possible_cpus
->cpus
[i
].props
.socket_id
= topo
.pkg_id
;
2885 ms
->possible_cpus
->cpus
[i
].props
.has_die_id
= true;
2886 ms
->possible_cpus
->cpus
[i
].props
.die_id
= topo
.die_id
;
2887 ms
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
2888 ms
->possible_cpus
->cpus
[i
].props
.core_id
= topo
.core_id
;
2889 ms
->possible_cpus
->cpus
[i
].props
.has_thread_id
= true;
2890 ms
->possible_cpus
->cpus
[i
].props
.thread_id
= topo
.smt_id
;
2892 return ms
->possible_cpus
;
2895 static void x86_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2897 /* cpu index isn't used */
2901 X86CPU
*cpu
= X86_CPU(cs
);
2903 if (!cpu
->apic_state
) {
2904 cpu_interrupt(cs
, CPU_INTERRUPT_NMI
);
2906 apic_deliver_nmi(cpu
->apic_state
);
2911 static void pc_machine_class_init(ObjectClass
*oc
, void *data
)
2913 MachineClass
*mc
= MACHINE_CLASS(oc
);
2914 PCMachineClass
*pcmc
= PC_MACHINE_CLASS(oc
);
2915 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2916 NMIClass
*nc
= NMI_CLASS(oc
);
2918 pcmc
->pci_enabled
= true;
2919 pcmc
->has_acpi_build
= true;
2920 pcmc
->rsdp_in_ram
= true;
2921 pcmc
->smbios_defaults
= true;
2922 pcmc
->smbios_uuid_encoded
= true;
2923 pcmc
->gigabyte_align
= true;
2924 pcmc
->has_reserved_memory
= true;
2925 pcmc
->kvmclock_enabled
= true;
2926 pcmc
->enforce_aligned_dimm
= true;
2927 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2928 * to be used at the moment, 32K should be enough for a while. */
2929 pcmc
->acpi_data_size
= 0x20000 + 0x8000;
2930 pcmc
->save_tsc_khz
= true;
2931 pcmc
->linuxboot_dma_enabled
= true;
2932 pcmc
->pvh_enabled
= true;
2933 assert(!mc
->get_hotplug_handler
);
2934 mc
->get_hotplug_handler
= pc_get_hotplug_handler
;
2935 mc
->cpu_index_to_instance_props
= pc_cpu_index_to_props
;
2936 mc
->get_default_cpu_node_id
= pc_get_default_cpu_node_id
;
2937 mc
->possible_cpu_arch_ids
= pc_possible_cpu_arch_ids
;
2938 mc
->auto_enable_numa_with_memhp
= true;
2939 mc
->has_hotpluggable_cpus
= true;
2940 mc
->default_boot_order
= "cad";
2941 mc
->hot_add_cpu
= pc_hot_add_cpu
;
2942 mc
->smp_parse
= pc_smp_parse
;
2943 mc
->block_default_type
= IF_IDE
;
2945 mc
->reset
= pc_machine_reset
;
2946 hc
->pre_plug
= pc_machine_device_pre_plug_cb
;
2947 hc
->plug
= pc_machine_device_plug_cb
;
2948 hc
->unplug_request
= pc_machine_device_unplug_request_cb
;
2949 hc
->unplug
= pc_machine_device_unplug_cb
;
2950 nc
->nmi_monitor_handler
= x86_nmi
;
2951 mc
->default_cpu_type
= TARGET_DEFAULT_CPU_TYPE
;
2952 mc
->nvdimm_supported
= true;
2953 mc
->numa_mem_supported
= true;
2955 object_class_property_add(oc
, PC_MACHINE_DEVMEM_REGION_SIZE
, "int",
2956 pc_machine_get_device_memory_region_size
, NULL
,
2957 NULL
, NULL
, &error_abort
);
2959 object_class_property_add(oc
, PC_MACHINE_MAX_RAM_BELOW_4G
, "size",
2960 pc_machine_get_max_ram_below_4g
, pc_machine_set_max_ram_below_4g
,
2961 NULL
, NULL
, &error_abort
);
2963 object_class_property_set_description(oc
, PC_MACHINE_MAX_RAM_BELOW_4G
,
2964 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort
);
2966 object_class_property_add(oc
, PC_MACHINE_SMM
, "OnOffAuto",
2967 pc_machine_get_smm
, pc_machine_set_smm
,
2968 NULL
, NULL
, &error_abort
);
2969 object_class_property_set_description(oc
, PC_MACHINE_SMM
,
2970 "Enable SMM (pc & q35)", &error_abort
);
2972 object_class_property_add(oc
, PC_MACHINE_VMPORT
, "OnOffAuto",
2973 pc_machine_get_vmport
, pc_machine_set_vmport
,
2974 NULL
, NULL
, &error_abort
);
2975 object_class_property_set_description(oc
, PC_MACHINE_VMPORT
,
2976 "Enable vmport (pc & q35)", &error_abort
);
2978 object_class_property_add_bool(oc
, PC_MACHINE_SMBUS
,
2979 pc_machine_get_smbus
, pc_machine_set_smbus
, &error_abort
);
2981 object_class_property_add_bool(oc
, PC_MACHINE_SATA
,
2982 pc_machine_get_sata
, pc_machine_set_sata
, &error_abort
);
2984 object_class_property_add_bool(oc
, PC_MACHINE_PIT
,
2985 pc_machine_get_pit
, pc_machine_set_pit
, &error_abort
);
2988 static const TypeInfo pc_machine_info
= {
2989 .name
= TYPE_PC_MACHINE
,
2990 .parent
= TYPE_MACHINE
,
2992 .instance_size
= sizeof(PCMachineState
),
2993 .instance_init
= pc_machine_initfn
,
2994 .class_size
= sizeof(PCMachineClass
),
2995 .class_init
= pc_machine_class_init
,
2996 .interfaces
= (InterfaceInfo
[]) {
2997 { TYPE_HOTPLUG_HANDLER
},
3003 static void pc_machine_register_types(void)
3005 type_register_static(&pc_machine_info
);
3008 type_init(pc_machine_register_types
)