libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / char / cadence_uart.c
blobfbdbd463bb5d9141400af53643ce6aed1cd26499
1 /*
2 * Device model for Cadence UART
4 * Reference: Xilinx Zynq 7000 reference manual
5 * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6 * - Chapter 19 UART Controller
7 * - Appendix B for Register details
9 * Copyright (c) 2010 Xilinx Inc.
10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
11 * Copyright (c) 2012 PetaLogix Pty Ltd.
12 * Written by Haibing Ma
13 * M.Habib
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/sysbus.h"
26 #include "chardev/char-fe.h"
27 #include "chardev/char-serial.h"
28 #include "qemu/timer.h"
29 #include "qemu/log.h"
30 #include "hw/char/cadence_uart.h"
32 #ifdef CADENCE_UART_ERR_DEBUG
33 #define DB_PRINT(...) do { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } while (0)
37 #else
38 #define DB_PRINT(...)
39 #endif
41 #define UART_SR_INTR_RTRIG 0x00000001
42 #define UART_SR_INTR_REMPTY 0x00000002
43 #define UART_SR_INTR_RFUL 0x00000004
44 #define UART_SR_INTR_TEMPTY 0x00000008
45 #define UART_SR_INTR_TFUL 0x00000010
46 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
47 #define UART_SR_TTRIG 0x00002000
48 #define UART_INTR_TTRIG 0x00000400
49 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
50 * SR, then the same bit in CISR is set high too */
51 #define UART_SR_TO_CISR_MASK 0x0000001F
53 #define UART_INTR_ROVR 0x00000020
54 #define UART_INTR_FRAME 0x00000040
55 #define UART_INTR_PARE 0x00000080
56 #define UART_INTR_TIMEOUT 0x00000100
57 #define UART_INTR_DMSI 0x00000200
58 #define UART_INTR_TOVR 0x00001000
60 #define UART_SR_RACTIVE 0x00000400
61 #define UART_SR_TACTIVE 0x00000800
62 #define UART_SR_FDELT 0x00001000
64 #define UART_CR_RXRST 0x00000001
65 #define UART_CR_TXRST 0x00000002
66 #define UART_CR_RX_EN 0x00000004
67 #define UART_CR_RX_DIS 0x00000008
68 #define UART_CR_TX_EN 0x00000010
69 #define UART_CR_TX_DIS 0x00000020
70 #define UART_CR_RST_TO 0x00000040
71 #define UART_CR_STARTBRK 0x00000080
72 #define UART_CR_STOPBRK 0x00000100
74 #define UART_MR_CLKS 0x00000001
75 #define UART_MR_CHRL 0x00000006
76 #define UART_MR_CHRL_SH 1
77 #define UART_MR_PAR 0x00000038
78 #define UART_MR_PAR_SH 3
79 #define UART_MR_NBSTOP 0x000000C0
80 #define UART_MR_NBSTOP_SH 6
81 #define UART_MR_CHMODE 0x00000300
82 #define UART_MR_CHMODE_SH 8
83 #define UART_MR_UCLKEN 0x00000400
84 #define UART_MR_IRMODE 0x00000800
86 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
87 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
88 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
89 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
90 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
91 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
92 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
93 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
94 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
95 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
97 #define UART_INPUT_CLK 50000000
99 #define R_CR (0x00/4)
100 #define R_MR (0x04/4)
101 #define R_IER (0x08/4)
102 #define R_IDR (0x0C/4)
103 #define R_IMR (0x10/4)
104 #define R_CISR (0x14/4)
105 #define R_BRGR (0x18/4)
106 #define R_RTOR (0x1C/4)
107 #define R_RTRIG (0x20/4)
108 #define R_MCR (0x24/4)
109 #define R_MSR (0x28/4)
110 #define R_SR (0x2C/4)
111 #define R_TX_RX (0x30/4)
112 #define R_BDIV (0x34/4)
113 #define R_FDEL (0x38/4)
114 #define R_PMIN (0x3C/4)
115 #define R_PWID (0x40/4)
116 #define R_TTRIG (0x44/4)
119 static void uart_update_status(CadenceUARTState *s)
121 s->r[R_SR] = 0;
123 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
124 : 0;
125 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
126 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
128 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
129 : 0;
130 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
131 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
133 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
134 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
135 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
138 static void fifo_trigger_update(void *opaque)
140 CadenceUARTState *s = opaque;
142 if (s->r[R_RTOR]) {
143 s->r[R_CISR] |= UART_INTR_TIMEOUT;
144 uart_update_status(s);
148 static void uart_rx_reset(CadenceUARTState *s)
150 s->rx_wpos = 0;
151 s->rx_count = 0;
152 qemu_chr_fe_accept_input(&s->chr);
155 static void uart_tx_reset(CadenceUARTState *s)
157 s->tx_count = 0;
160 static void uart_send_breaks(CadenceUARTState *s)
162 int break_enabled = 1;
164 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
165 &break_enabled);
168 static void uart_parameters_setup(CadenceUARTState *s)
170 QEMUSerialSetParams ssp;
171 unsigned int baud_rate, packet_size;
173 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
174 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
176 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
177 packet_size = 1;
179 switch (s->r[R_MR] & UART_MR_PAR) {
180 case UART_PARITY_EVEN:
181 ssp.parity = 'E';
182 packet_size++;
183 break;
184 case UART_PARITY_ODD:
185 ssp.parity = 'O';
186 packet_size++;
187 break;
188 default:
189 ssp.parity = 'N';
190 break;
193 switch (s->r[R_MR] & UART_MR_CHRL) {
194 case UART_DATA_BITS_6:
195 ssp.data_bits = 6;
196 break;
197 case UART_DATA_BITS_7:
198 ssp.data_bits = 7;
199 break;
200 default:
201 ssp.data_bits = 8;
202 break;
205 switch (s->r[R_MR] & UART_MR_NBSTOP) {
206 case UART_STOP_BITS_1:
207 ssp.stop_bits = 1;
208 break;
209 default:
210 ssp.stop_bits = 2;
211 break;
214 packet_size += ssp.data_bits + ssp.stop_bits;
215 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
216 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
219 static int uart_can_receive(void *opaque)
221 CadenceUARTState *s = opaque;
222 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
223 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
225 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
226 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
228 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
229 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
231 return ret;
234 static void uart_ctrl_update(CadenceUARTState *s)
236 if (s->r[R_CR] & UART_CR_TXRST) {
237 uart_tx_reset(s);
240 if (s->r[R_CR] & UART_CR_RXRST) {
241 uart_rx_reset(s);
244 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
246 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
247 uart_send_breaks(s);
251 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
253 CadenceUARTState *s = opaque;
254 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
255 int i;
257 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
258 return;
261 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
262 s->r[R_CISR] |= UART_INTR_ROVR;
263 } else {
264 for (i = 0; i < size; i++) {
265 s->rx_fifo[s->rx_wpos] = buf[i];
266 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
267 s->rx_count++;
269 timer_mod(s->fifo_trigger_handle, new_rx_time +
270 (s->char_tx_time * 4));
272 uart_update_status(s);
275 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
276 void *opaque)
278 CadenceUARTState *s = opaque;
279 int ret;
281 /* instant drain the fifo when there's no back-end */
282 if (!qemu_chr_fe_backend_connected(&s->chr)) {
283 s->tx_count = 0;
284 return FALSE;
287 if (!s->tx_count) {
288 return FALSE;
291 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
293 if (ret >= 0) {
294 s->tx_count -= ret;
295 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
298 if (s->tx_count) {
299 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
300 cadence_uart_xmit, s);
301 if (!r) {
302 s->tx_count = 0;
303 return FALSE;
307 uart_update_status(s);
308 return FALSE;
311 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
312 int size)
314 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
315 return;
318 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
319 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
321 * This can only be a guest error via a bad tx fifo register push,
322 * as can_receive() should stop remote loop and echo modes ever getting
323 * us to here.
325 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
326 s->r[R_CISR] |= UART_INTR_ROVR;
329 memcpy(s->tx_fifo + s->tx_count, buf, size);
330 s->tx_count += size;
332 cadence_uart_xmit(NULL, G_IO_OUT, s);
335 static void uart_receive(void *opaque, const uint8_t *buf, int size)
337 CadenceUARTState *s = opaque;
338 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
340 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
341 uart_write_rx_fifo(opaque, buf, size);
343 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
344 uart_write_tx_fifo(s, buf, size);
348 static void uart_event(void *opaque, int event)
350 CadenceUARTState *s = opaque;
351 uint8_t buf = '\0';
353 if (event == CHR_EVENT_BREAK) {
354 uart_write_rx_fifo(opaque, &buf, 1);
357 uart_update_status(s);
360 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
362 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
363 return;
366 if (s->rx_count) {
367 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
368 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
369 *c = s->rx_fifo[rx_rpos];
370 s->rx_count--;
372 qemu_chr_fe_accept_input(&s->chr);
373 } else {
374 *c = 0;
377 uart_update_status(s);
380 static void uart_write(void *opaque, hwaddr offset,
381 uint64_t value, unsigned size)
383 CadenceUARTState *s = opaque;
385 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
386 offset >>= 2;
387 if (offset >= CADENCE_UART_R_MAX) {
388 return;
390 switch (offset) {
391 case R_IER: /* ier (wts imr) */
392 s->r[R_IMR] |= value;
393 break;
394 case R_IDR: /* idr (wtc imr) */
395 s->r[R_IMR] &= ~value;
396 break;
397 case R_IMR: /* imr (read only) */
398 break;
399 case R_CISR: /* cisr (wtc) */
400 s->r[R_CISR] &= ~value;
401 break;
402 case R_TX_RX: /* UARTDR */
403 switch (s->r[R_MR] & UART_MR_CHMODE) {
404 case NORMAL_MODE:
405 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
406 break;
407 case LOCAL_LOOPBACK:
408 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
409 break;
411 break;
412 case R_BRGR: /* Baud rate generator */
413 if (value >= 0x01) {
414 s->r[offset] = value & 0xFFFF;
416 break;
417 case R_BDIV: /* Baud rate divider */
418 if (value >= 0x04) {
419 s->r[offset] = value & 0xFF;
421 break;
422 default:
423 s->r[offset] = value;
426 switch (offset) {
427 case R_CR:
428 uart_ctrl_update(s);
429 break;
430 case R_MR:
431 uart_parameters_setup(s);
432 break;
434 uart_update_status(s);
437 static uint64_t uart_read(void *opaque, hwaddr offset,
438 unsigned size)
440 CadenceUARTState *s = opaque;
441 uint32_t c = 0;
443 offset >>= 2;
444 if (offset >= CADENCE_UART_R_MAX) {
445 c = 0;
446 } else if (offset == R_TX_RX) {
447 uart_read_rx_fifo(s, &c);
448 } else {
449 c = s->r[offset];
452 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
453 return c;
456 static const MemoryRegionOps uart_ops = {
457 .read = uart_read,
458 .write = uart_write,
459 .endianness = DEVICE_NATIVE_ENDIAN,
462 static void cadence_uart_reset(DeviceState *dev)
464 CadenceUARTState *s = CADENCE_UART(dev);
466 s->r[R_CR] = 0x00000128;
467 s->r[R_IMR] = 0;
468 s->r[R_CISR] = 0;
469 s->r[R_RTRIG] = 0x00000020;
470 s->r[R_BRGR] = 0x0000028B;
471 s->r[R_BDIV] = 0x0000000F;
472 s->r[R_TTRIG] = 0x00000020;
474 uart_rx_reset(s);
475 uart_tx_reset(s);
477 uart_update_status(s);
480 static void cadence_uart_realize(DeviceState *dev, Error **errp)
482 CadenceUARTState *s = CADENCE_UART(dev);
484 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
485 fifo_trigger_update, s);
487 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
488 uart_event, NULL, s, NULL, true);
491 static void cadence_uart_init(Object *obj)
493 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
494 CadenceUARTState *s = CADENCE_UART(obj);
496 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
497 sysbus_init_mmio(sbd, &s->iomem);
498 sysbus_init_irq(sbd, &s->irq);
500 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
503 static int cadence_uart_post_load(void *opaque, int version_id)
505 CadenceUARTState *s = opaque;
507 /* Ensure these two aren't invalid numbers */
508 if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
509 s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
510 /* Value is invalid, abort */
511 return 1;
514 uart_parameters_setup(s);
515 uart_update_status(s);
516 return 0;
519 static const VMStateDescription vmstate_cadence_uart = {
520 .name = "cadence_uart",
521 .version_id = 2,
522 .minimum_version_id = 2,
523 .post_load = cadence_uart_post_load,
524 .fields = (VMStateField[]) {
525 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
526 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
527 CADENCE_UART_RX_FIFO_SIZE),
528 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
529 CADENCE_UART_TX_FIFO_SIZE),
530 VMSTATE_UINT32(rx_count, CadenceUARTState),
531 VMSTATE_UINT32(tx_count, CadenceUARTState),
532 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
533 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
534 VMSTATE_END_OF_LIST()
538 static Property cadence_uart_properties[] = {
539 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
540 DEFINE_PROP_END_OF_LIST(),
543 static void cadence_uart_class_init(ObjectClass *klass, void *data)
545 DeviceClass *dc = DEVICE_CLASS(klass);
547 dc->realize = cadence_uart_realize;
548 dc->vmsd = &vmstate_cadence_uart;
549 dc->reset = cadence_uart_reset;
550 dc->props = cadence_uart_properties;
553 static const TypeInfo cadence_uart_info = {
554 .name = TYPE_CADENCE_UART,
555 .parent = TYPE_SYS_BUS_DEVICE,
556 .instance_size = sizeof(CadenceUARTState),
557 .instance_init = cadence_uart_init,
558 .class_init = cadence_uart_class_init,
561 static void cadence_uart_register_types(void)
563 type_register_static(&cadence_uart_info);
566 type_init(cadence_uart_register_types)