libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / core / ptimer.c
blob170fd34d8b5e67c6c0cfc6177133456af7e0b45a
1 /*
2 * General purpose implementation of a simple periodic countdown timer.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GNU LGPL.
7 */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/qtest.h"
15 #include "block/aio.h"
16 #include "sysemu/cpus.h"
18 #define DELTA_ADJUST 1
19 #define DELTA_NO_ADJUST -1
21 struct ptimer_state
23 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */
24 uint64_t limit;
25 uint64_t delta;
26 uint32_t period_frac;
27 int64_t period;
28 int64_t last_event;
29 int64_t next_event;
30 uint8_t policy_mask;
31 QEMUBH *bh;
32 QEMUTimer *timer;
35 /* Use a bottom-half routine to avoid reentrancy issues. */
36 static void ptimer_trigger(ptimer_state *s)
38 if (s->bh) {
39 replay_bh_schedule_event(s->bh);
43 static void ptimer_reload(ptimer_state *s, int delta_adjust)
45 uint32_t period_frac = s->period_frac;
46 uint64_t period = s->period;
47 uint64_t delta = s->delta;
48 bool suppress_trigger = false;
51 * Note that if delta_adjust is 0 then we must be here because of
52 * a count register write or timer start, not because of timer expiry.
53 * In that case the policy might require us to suppress the timer trigger
54 * that we would otherwise generate for a zero delta.
56 if (delta_adjust == 0 &&
57 (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
58 suppress_trigger = true;
60 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
61 && !suppress_trigger) {
62 ptimer_trigger(s);
65 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
66 delta = s->delta = s->limit;
69 if (s->period == 0) {
70 if (!qtest_enabled()) {
71 fprintf(stderr, "Timer with period zero, disabling\n");
73 timer_del(s->timer);
74 s->enabled = 0;
75 return;
78 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
79 if (delta_adjust != DELTA_NO_ADJUST) {
80 delta += delta_adjust;
84 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
85 if (s->enabled == 1 && s->limit == 0) {
86 delta = 1;
90 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
91 if (delta_adjust != DELTA_NO_ADJUST) {
92 delta = 1;
96 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
97 if (s->enabled == 1 && s->limit != 0) {
98 delta = 1;
102 if (delta == 0) {
103 if (!qtest_enabled()) {
104 fprintf(stderr, "Timer with delta zero, disabling\n");
106 timer_del(s->timer);
107 s->enabled = 0;
108 return;
112 * Artificially limit timeout rate to something
113 * achievable under QEMU. Otherwise, QEMU spends all
114 * its time generating timer interrupts, and there
115 * is no forward progress.
116 * About ten microseconds is the fastest that really works
117 * on the current generation of host machines.
120 if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
121 period = 10000 / delta;
122 period_frac = 0;
125 s->last_event = s->next_event;
126 s->next_event = s->last_event + delta * period;
127 if (period_frac) {
128 s->next_event += ((int64_t)period_frac * delta) >> 32;
130 timer_mod(s->timer, s->next_event);
133 static void ptimer_tick(void *opaque)
135 ptimer_state *s = (ptimer_state *)opaque;
136 bool trigger = true;
138 if (s->enabled == 2) {
139 s->delta = 0;
140 s->enabled = 0;
141 } else {
142 int delta_adjust = DELTA_ADJUST;
144 if (s->delta == 0 || s->limit == 0) {
145 /* If a "continuous trigger" policy is not used and limit == 0,
146 we should error out. delta == 0 means that this tick is
147 caused by a "no immediate reload" policy, so it shouldn't
148 be adjusted. */
149 delta_adjust = DELTA_NO_ADJUST;
152 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
153 /* Avoid re-trigger on deferred reload if "no immediate trigger"
154 policy isn't used. */
155 trigger = (delta_adjust == DELTA_ADJUST);
158 s->delta = s->limit;
160 ptimer_reload(s, delta_adjust);
163 if (trigger) {
164 ptimer_trigger(s);
168 uint64_t ptimer_get_count(ptimer_state *s)
170 uint64_t counter;
172 if (s->enabled && s->delta != 0) {
173 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
174 int64_t next = s->next_event;
175 int64_t last = s->last_event;
176 bool expired = (now - next >= 0);
177 bool oneshot = (s->enabled == 2);
179 /* Figure out the current counter value. */
180 if (expired) {
181 /* Prevent timer underflowing if it should already have
182 triggered. */
183 counter = 0;
184 } else {
185 uint64_t rem;
186 uint64_t div;
187 int clz1, clz2;
188 int shift;
189 uint32_t period_frac = s->period_frac;
190 uint64_t period = s->period;
192 if (!oneshot && (s->delta * period < 10000) && !use_icount) {
193 period = 10000 / s->delta;
194 period_frac = 0;
197 /* We need to divide time by period, where time is stored in
198 rem (64-bit integer) and period is stored in period/period_frac
199 (64.32 fixed point).
201 Doing full precision division is hard, so scale values and
202 do a 64-bit division. The result should be rounded down,
203 so that the rounding error never causes the timer to go
204 backwards.
207 rem = next - now;
208 div = period;
210 clz1 = clz64(rem);
211 clz2 = clz64(div);
212 shift = clz1 < clz2 ? clz1 : clz2;
214 rem <<= shift;
215 div <<= shift;
216 if (shift >= 32) {
217 div |= ((uint64_t)period_frac << (shift - 32));
218 } else {
219 if (shift != 0)
220 div |= (period_frac >> (32 - shift));
221 /* Look at remaining bits of period_frac and round div up if
222 necessary. */
223 if ((uint32_t)(period_frac << shift))
224 div += 1;
226 counter = rem / div;
228 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
229 /* Before wrapping around, timer should stay with counter = 0
230 for a one period. */
231 if (!oneshot && s->delta == s->limit) {
232 if (now == last) {
233 /* Counter == delta here, check whether it was
234 adjusted and if it was, then right now it is
235 that "one period". */
236 if (counter == s->limit + DELTA_ADJUST) {
237 return 0;
239 } else if (counter == s->limit) {
240 /* Since the counter is rounded down and now != last,
241 the counter == limit means that delta was adjusted
242 by +1 and right now it is that adjusted period. */
243 return 0;
249 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
250 /* If now == last then delta == limit, i.e. the counter already
251 represents the correct value. It would be rounded down a 1ns
252 later. */
253 if (now != last) {
254 counter += 1;
257 } else {
258 counter = s->delta;
260 return counter;
263 void ptimer_set_count(ptimer_state *s, uint64_t count)
265 s->delta = count;
266 if (s->enabled) {
267 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
268 ptimer_reload(s, 0);
272 void ptimer_run(ptimer_state *s, int oneshot)
274 bool was_disabled = !s->enabled;
276 if (was_disabled && s->period == 0) {
277 if (!qtest_enabled()) {
278 fprintf(stderr, "Timer with period zero, disabling\n");
280 return;
282 s->enabled = oneshot ? 2 : 1;
283 if (was_disabled) {
284 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
285 ptimer_reload(s, 0);
289 /* Pause a timer. Note that this may cause it to "lose" time, even if it
290 is immediately restarted. */
291 void ptimer_stop(ptimer_state *s)
293 if (!s->enabled)
294 return;
296 s->delta = ptimer_get_count(s);
297 timer_del(s->timer);
298 s->enabled = 0;
301 /* Set counter increment interval in nanoseconds. */
302 void ptimer_set_period(ptimer_state *s, int64_t period)
304 s->delta = ptimer_get_count(s);
305 s->period = period;
306 s->period_frac = 0;
307 if (s->enabled) {
308 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
309 ptimer_reload(s, 0);
313 /* Set counter frequency in Hz. */
314 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
316 s->delta = ptimer_get_count(s);
317 s->period = 1000000000ll / freq;
318 s->period_frac = (1000000000ll << 32) / freq;
319 if (s->enabled) {
320 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
321 ptimer_reload(s, 0);
325 /* Set the initial countdown value. If reload is nonzero then also set
326 count = limit. */
327 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
329 s->limit = limit;
330 if (reload)
331 s->delta = limit;
332 if (s->enabled && reload) {
333 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
334 ptimer_reload(s, 0);
338 uint64_t ptimer_get_limit(ptimer_state *s)
340 return s->limit;
343 const VMStateDescription vmstate_ptimer = {
344 .name = "ptimer",
345 .version_id = 1,
346 .minimum_version_id = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_UINT8(enabled, ptimer_state),
349 VMSTATE_UINT64(limit, ptimer_state),
350 VMSTATE_UINT64(delta, ptimer_state),
351 VMSTATE_UINT32(period_frac, ptimer_state),
352 VMSTATE_INT64(period, ptimer_state),
353 VMSTATE_INT64(last_event, ptimer_state),
354 VMSTATE_INT64(next_event, ptimer_state),
355 VMSTATE_TIMER_PTR(timer, ptimer_state),
356 VMSTATE_END_OF_LIST()
360 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
362 ptimer_state *s;
364 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
365 s->bh = bh;
366 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
367 s->policy_mask = policy_mask;
370 * These two policies are incompatible -- trigger-on-decrement implies
371 * a timer trigger when the count becomes 0, but no-immediate-trigger
372 * implies a trigger when the count stops being 0.
374 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
375 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
376 return s;
379 void ptimer_free(ptimer_state *s)
381 qemu_bh_delete(s->bh);
382 timer_free(s->timer);
383 g_free(s);