libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / dma / omap_dma.c
blobcbb920f31d34986df4eaf6efd48116929154711b
1 /*
2 * TI OMAP DMA gigacell.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu-common.h"
23 #include "qemu/timer.h"
24 #include "hw/arm/omap.h"
25 #include "hw/irq.h"
26 #include "hw/arm/soc_dma.h"
28 struct omap_dma_channel_s {
29 /* transfer data */
30 int burst[2];
31 int pack[2];
32 int endian[2];
33 int endian_lock[2];
34 int translate[2];
35 enum omap_dma_port port[2];
36 hwaddr addr[2];
37 omap_dma_addressing_t mode[2];
38 uint32_t elements;
39 uint16_t frames;
40 int32_t frame_index[2];
41 int16_t element_index[2];
42 int data_type;
44 /* transfer type */
45 int transparent_copy;
46 int constant_fill;
47 uint32_t color;
48 int prefetch;
50 /* auto init and linked channel data */
51 int end_prog;
52 int repeat;
53 int auto_init;
54 int link_enabled;
55 int link_next_ch;
57 /* interruption data */
58 int interrupts;
59 int status;
60 int cstatus;
62 /* state data */
63 int active;
64 int enable;
65 int sync;
66 int src_sync;
67 int pending_request;
68 int waiting_end_prog;
69 uint16_t cpc;
70 int set_update;
72 /* sync type */
73 int fs;
74 int bs;
76 /* compatibility */
77 int omap_3_1_compatible_disable;
79 qemu_irq irq;
80 struct omap_dma_channel_s *sibling;
82 struct omap_dma_reg_set_s {
83 hwaddr src, dest;
84 int frame;
85 int element;
86 int pck_element;
87 int frame_delta[2];
88 int elem_delta[2];
89 int frames;
90 int elements;
91 int pck_elements;
92 } active_set;
94 struct soc_dma_ch_s *dma;
96 /* unused parameters */
97 int write_mode;
98 int priority;
99 int interleave_disabled;
100 int type;
101 int suspend;
102 int buf_disable;
105 struct omap_dma_s {
106 struct soc_dma_s *dma;
107 MemoryRegion iomem;
109 struct omap_mpu_state_s *mpu;
110 omap_clk clk;
111 qemu_irq irq[4];
112 void (*intr_update)(struct omap_dma_s *s);
113 enum omap_dma_model model;
114 int omap_3_1_mapping_disabled;
116 uint32_t gcr;
117 uint32_t ocp;
118 uint32_t caps[5];
119 uint32_t irqen[4];
120 uint32_t irqstat[4];
122 int chans;
123 struct omap_dma_channel_s ch[32];
124 struct omap_dma_lcd_channel_s lcd_ch;
127 /* Interrupts */
128 #define TIMEOUT_INTR (1 << 0)
129 #define EVENT_DROP_INTR (1 << 1)
130 #define HALF_FRAME_INTR (1 << 2)
131 #define END_FRAME_INTR (1 << 3)
132 #define LAST_FRAME_INTR (1 << 4)
133 #define END_BLOCK_INTR (1 << 5)
134 #define SYNC (1 << 6)
135 #define END_PKT_INTR (1 << 7)
136 #define TRANS_ERR_INTR (1 << 8)
137 #define MISALIGN_INTR (1 << 11)
139 static inline void omap_dma_interrupts_update(struct omap_dma_s *s)
141 s->intr_update(s);
144 static void omap_dma_channel_load(struct omap_dma_channel_s *ch)
146 struct omap_dma_reg_set_s *a = &ch->active_set;
147 int i, normal;
148 int omap_3_1 = !ch->omap_3_1_compatible_disable;
151 * TODO: verify address ranges and alignment
152 * TODO: port endianness
155 a->src = ch->addr[0];
156 a->dest = ch->addr[1];
157 a->frames = ch->frames;
158 a->elements = ch->elements;
159 a->pck_elements = ch->frame_index[!ch->src_sync];
160 a->frame = 0;
161 a->element = 0;
162 a->pck_element = 0;
164 if (unlikely(!ch->elements || !ch->frames)) {
165 printf("%s: bad DMA request\n", __func__);
166 return;
169 for (i = 0; i < 2; i ++)
170 switch (ch->mode[i]) {
171 case constant:
172 a->elem_delta[i] = 0;
173 a->frame_delta[i] = 0;
174 break;
175 case post_incremented:
176 a->elem_delta[i] = ch->data_type;
177 a->frame_delta[i] = 0;
178 break;
179 case single_index:
180 a->elem_delta[i] = ch->data_type +
181 ch->element_index[omap_3_1 ? 0 : i] - 1;
182 a->frame_delta[i] = 0;
183 break;
184 case double_index:
185 a->elem_delta[i] = ch->data_type +
186 ch->element_index[omap_3_1 ? 0 : i] - 1;
187 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] -
188 ch->element_index[omap_3_1 ? 0 : i];
189 break;
190 default:
191 break;
194 normal = !ch->transparent_copy && !ch->constant_fill &&
195 /* FIFO is big-endian so either (ch->endian[n] == 1) OR
196 * (ch->endian_lock[n] == 1) mean no endianism conversion. */
197 (ch->endian[0] | ch->endian_lock[0]) ==
198 (ch->endian[1] | ch->endian_lock[1]);
199 for (i = 0; i < 2; i ++) {
200 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just
201 * limit min_elems in omap_dma_transfer_setup to the nearest frame
202 * end. */
203 if (!a->elem_delta[i] && normal &&
204 (a->frames == 1 || !a->frame_delta[i]))
205 ch->dma->type[i] = soc_dma_access_const;
206 else if (a->elem_delta[i] == ch->data_type && normal &&
207 (a->frames == 1 || !a->frame_delta[i]))
208 ch->dma->type[i] = soc_dma_access_linear;
209 else
210 ch->dma->type[i] = soc_dma_access_other;
212 ch->dma->vaddr[i] = ch->addr[i];
214 soc_dma_ch_update(ch->dma);
217 static void omap_dma_activate_channel(struct omap_dma_s *s,
218 struct omap_dma_channel_s *ch)
220 if (!ch->active) {
221 if (ch->set_update) {
222 /* It's not clear when the active set is supposed to be
223 * loaded from registers. We're already loading it when the
224 * channel is enabled, and for some guests this is not enough
225 * but that may be also because of a race condition (no
226 * delays in qemu) in the guest code, which we're just
227 * working around here. */
228 omap_dma_channel_load(ch);
229 ch->set_update = 0;
232 ch->active = 1;
233 soc_dma_set_request(ch->dma, 1);
234 if (ch->sync)
235 ch->status |= SYNC;
239 static void omap_dma_deactivate_channel(struct omap_dma_s *s,
240 struct omap_dma_channel_s *ch)
242 /* Update cpc */
243 ch->cpc = ch->active_set.dest & 0xffff;
245 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) {
246 /* Don't deactivate the channel */
247 ch->pending_request = 0;
248 return;
251 /* Don't deactive the channel if it is synchronized and the DMA request is
252 active */
253 if (ch->sync && ch->enable && (s->dma->drqbmp & (1ULL << ch->sync)))
254 return;
256 if (ch->active) {
257 ch->active = 0;
258 ch->status &= ~SYNC;
259 soc_dma_set_request(ch->dma, 0);
263 static void omap_dma_enable_channel(struct omap_dma_s *s,
264 struct omap_dma_channel_s *ch)
266 if (!ch->enable) {
267 ch->enable = 1;
268 ch->waiting_end_prog = 0;
269 omap_dma_channel_load(ch);
270 /* TODO: theoretically if ch->sync && ch->prefetch &&
271 * !s->dma->drqbmp[ch->sync], we should also activate and fetch
272 * from source and then stall until signalled. */
273 if ((!ch->sync) || (s->dma->drqbmp & (1ULL << ch->sync))) {
274 omap_dma_activate_channel(s, ch);
279 static void omap_dma_disable_channel(struct omap_dma_s *s,
280 struct omap_dma_channel_s *ch)
282 if (ch->enable) {
283 ch->enable = 0;
284 /* Discard any pending request */
285 ch->pending_request = 0;
286 omap_dma_deactivate_channel(s, ch);
290 static void omap_dma_channel_end_prog(struct omap_dma_s *s,
291 struct omap_dma_channel_s *ch)
293 if (ch->waiting_end_prog) {
294 ch->waiting_end_prog = 0;
295 if (!ch->sync || ch->pending_request) {
296 ch->pending_request = 0;
297 omap_dma_activate_channel(s, ch);
302 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s)
304 struct omap_dma_channel_s *ch = s->ch;
306 /* First three interrupts are shared between two channels each. */
307 if (ch[0].status | ch[6].status)
308 qemu_irq_raise(ch[0].irq);
309 if (ch[1].status | ch[7].status)
310 qemu_irq_raise(ch[1].irq);
311 if (ch[2].status | ch[8].status)
312 qemu_irq_raise(ch[2].irq);
313 if (ch[3].status)
314 qemu_irq_raise(ch[3].irq);
315 if (ch[4].status)
316 qemu_irq_raise(ch[4].irq);
317 if (ch[5].status)
318 qemu_irq_raise(ch[5].irq);
321 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s)
323 struct omap_dma_channel_s *ch = s->ch;
324 int i;
326 for (i = s->chans; i; ch ++, i --)
327 if (ch->status)
328 qemu_irq_raise(ch->irq);
331 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s)
333 s->omap_3_1_mapping_disabled = 0;
334 s->chans = 9;
335 s->intr_update = omap_dma_interrupts_3_1_update;
338 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s)
340 s->omap_3_1_mapping_disabled = 1;
341 s->chans = 16;
342 s->intr_update = omap_dma_interrupts_3_2_update;
345 static void omap_dma_process_request(struct omap_dma_s *s, int request)
347 int channel;
348 int drop_event = 0;
349 struct omap_dma_channel_s *ch = s->ch;
351 for (channel = 0; channel < s->chans; channel ++, ch ++) {
352 if (ch->enable && ch->sync == request) {
353 if (!ch->active)
354 omap_dma_activate_channel(s, ch);
355 else if (!ch->pending_request)
356 ch->pending_request = 1;
357 else {
358 /* Request collision */
359 /* Second request received while processing other request */
360 ch->status |= EVENT_DROP_INTR;
361 drop_event = 1;
366 if (drop_event)
367 omap_dma_interrupts_update(s);
370 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma)
372 uint8_t value[4];
373 struct omap_dma_channel_s *ch = dma->opaque;
374 struct omap_dma_reg_set_s *a = &ch->active_set;
375 int bytes = dma->bytes;
376 #ifdef MULTI_REQ
377 uint16_t status = ch->status;
378 #endif
380 do {
381 /* Transfer a single element */
382 /* FIXME: check the endianness */
383 if (!ch->constant_fill)
384 cpu_physical_memory_read(a->src, value, ch->data_type);
385 else
386 *(uint32_t *) value = ch->color;
388 if (!ch->transparent_copy || *(uint32_t *) value != ch->color)
389 cpu_physical_memory_write(a->dest, value, ch->data_type);
391 a->src += a->elem_delta[0];
392 a->dest += a->elem_delta[1];
393 a->element ++;
395 #ifndef MULTI_REQ
396 if (a->element == a->elements) {
397 /* End of Frame */
398 a->element = 0;
399 a->src += a->frame_delta[0];
400 a->dest += a->frame_delta[1];
401 a->frame ++;
403 /* If the channel is async, update cpc */
404 if (!ch->sync)
405 ch->cpc = a->dest & 0xffff;
407 } while ((bytes -= ch->data_type));
408 #else
409 /* If the channel is element synchronized, deactivate it */
410 if (ch->sync && !ch->fs && !ch->bs)
411 omap_dma_deactivate_channel(s, ch);
413 /* If it is the last frame, set the LAST_FRAME interrupt */
414 if (a->element == 1 && a->frame == a->frames - 1)
415 if (ch->interrupts & LAST_FRAME_INTR)
416 ch->status |= LAST_FRAME_INTR;
418 /* If the half of the frame was reached, set the HALF_FRAME
419 interrupt */
420 if (a->element == (a->elements >> 1))
421 if (ch->interrupts & HALF_FRAME_INTR)
422 ch->status |= HALF_FRAME_INTR;
424 if (ch->fs && ch->bs) {
425 a->pck_element ++;
426 /* Check if a full packet has beed transferred. */
427 if (a->pck_element == a->pck_elements) {
428 a->pck_element = 0;
430 /* Set the END_PKT interrupt */
431 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync)
432 ch->status |= END_PKT_INTR;
434 /* If the channel is packet-synchronized, deactivate it */
435 if (ch->sync)
436 omap_dma_deactivate_channel(s, ch);
440 if (a->element == a->elements) {
441 /* End of Frame */
442 a->element = 0;
443 a->src += a->frame_delta[0];
444 a->dest += a->frame_delta[1];
445 a->frame ++;
447 /* If the channel is frame synchronized, deactivate it */
448 if (ch->sync && ch->fs && !ch->bs)
449 omap_dma_deactivate_channel(s, ch);
451 /* If the channel is async, update cpc */
452 if (!ch->sync)
453 ch->cpc = a->dest & 0xffff;
455 /* Set the END_FRAME interrupt */
456 if (ch->interrupts & END_FRAME_INTR)
457 ch->status |= END_FRAME_INTR;
459 if (a->frame == a->frames) {
460 /* End of Block */
461 /* Disable the channel */
463 if (ch->omap_3_1_compatible_disable) {
464 omap_dma_disable_channel(s, ch);
465 if (ch->link_enabled)
466 omap_dma_enable_channel(s,
467 &s->ch[ch->link_next_ch]);
468 } else {
469 if (!ch->auto_init)
470 omap_dma_disable_channel(s, ch);
471 else if (ch->repeat || ch->end_prog)
472 omap_dma_channel_load(ch);
473 else {
474 ch->waiting_end_prog = 1;
475 omap_dma_deactivate_channel(s, ch);
479 if (ch->interrupts & END_BLOCK_INTR)
480 ch->status |= END_BLOCK_INTR;
483 } while (status == ch->status && ch->active);
485 omap_dma_interrupts_update(s);
486 #endif
489 enum {
490 omap_dma_intr_element_sync,
491 omap_dma_intr_last_frame,
492 omap_dma_intr_half_frame,
493 omap_dma_intr_frame,
494 omap_dma_intr_frame_sync,
495 omap_dma_intr_packet,
496 omap_dma_intr_packet_sync,
497 omap_dma_intr_block,
498 __omap_dma_intr_last,
501 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma)
503 struct omap_dma_port_if_s *src_p, *dest_p;
504 struct omap_dma_reg_set_s *a;
505 struct omap_dma_channel_s *ch = dma->opaque;
506 struct omap_dma_s *s = dma->dma->opaque;
507 int frames, min_elems, elements[__omap_dma_intr_last];
509 a = &ch->active_set;
511 src_p = &s->mpu->port[ch->port[0]];
512 dest_p = &s->mpu->port[ch->port[1]];
513 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) ||
514 (!dest_p->addr_valid(s->mpu, a->dest))) {
515 #if 0
516 /* Bus time-out */
517 if (ch->interrupts & TIMEOUT_INTR)
518 ch->status |= TIMEOUT_INTR;
519 omap_dma_deactivate_channel(s, ch);
520 continue;
521 #endif
522 printf("%s: Bus time-out in DMA%i operation\n",
523 __func__, dma->num);
526 min_elems = INT_MAX;
528 /* Check all the conditions that terminate the transfer starting
529 * with those that can occur the soonest. */
530 #define INTR_CHECK(cond, id, nelements) \
531 if (cond) { \
532 elements[id] = nelements; \
533 if (elements[id] < min_elems) \
534 min_elems = elements[id]; \
535 } else \
536 elements[id] = INT_MAX;
538 /* Elements */
539 INTR_CHECK(
540 ch->sync && !ch->fs && !ch->bs,
541 omap_dma_intr_element_sync,
544 /* Frames */
545 /* TODO: for transfers where entire frames can be read and written
546 * using memcpy() but a->frame_delta is non-zero, try to still do
547 * transfers using soc_dma but limit min_elems to a->elements - ...
548 * See also the TODO in omap_dma_channel_load. */
549 INTR_CHECK(
550 (ch->interrupts & LAST_FRAME_INTR) &&
551 ((a->frame < a->frames - 1) || !a->element),
552 omap_dma_intr_last_frame,
553 (a->frames - a->frame - 2) * a->elements +
554 (a->elements - a->element + 1))
555 INTR_CHECK(
556 ch->interrupts & HALF_FRAME_INTR,
557 omap_dma_intr_half_frame,
558 (a->elements >> 1) +
559 (a->element >= (a->elements >> 1) ? a->elements : 0) -
560 a->element)
561 INTR_CHECK(
562 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR),
563 omap_dma_intr_frame,
564 a->elements - a->element)
565 INTR_CHECK(
566 ch->sync && ch->fs && !ch->bs,
567 omap_dma_intr_frame_sync,
568 a->elements - a->element)
570 /* Packets */
571 INTR_CHECK(
572 ch->fs && ch->bs &&
573 (ch->interrupts & END_PKT_INTR) && !ch->src_sync,
574 omap_dma_intr_packet,
575 a->pck_elements - a->pck_element)
576 INTR_CHECK(
577 ch->fs && ch->bs && ch->sync,
578 omap_dma_intr_packet_sync,
579 a->pck_elements - a->pck_element)
581 /* Blocks */
582 INTR_CHECK(
584 omap_dma_intr_block,
585 (a->frames - a->frame - 1) * a->elements +
586 (a->elements - a->element))
588 dma->bytes = min_elems * ch->data_type;
590 /* Set appropriate interrupts and/or deactivate channels */
592 #ifdef MULTI_REQ
593 /* TODO: should all of this only be done if dma->update, and otherwise
594 * inside omap_dma_transfer_generic below - check what's faster. */
595 if (dma->update) {
596 #endif
598 /* If the channel is element synchronized, deactivate it */
599 if (min_elems == elements[omap_dma_intr_element_sync])
600 omap_dma_deactivate_channel(s, ch);
602 /* If it is the last frame, set the LAST_FRAME interrupt */
603 if (min_elems == elements[omap_dma_intr_last_frame])
604 ch->status |= LAST_FRAME_INTR;
606 /* If exactly half of the frame was reached, set the HALF_FRAME
607 interrupt */
608 if (min_elems == elements[omap_dma_intr_half_frame])
609 ch->status |= HALF_FRAME_INTR;
611 /* If a full packet has been transferred, set the END_PKT interrupt */
612 if (min_elems == elements[omap_dma_intr_packet])
613 ch->status |= END_PKT_INTR;
615 /* If the channel is packet-synchronized, deactivate it */
616 if (min_elems == elements[omap_dma_intr_packet_sync])
617 omap_dma_deactivate_channel(s, ch);
619 /* If the channel is frame synchronized, deactivate it */
620 if (min_elems == elements[omap_dma_intr_frame_sync])
621 omap_dma_deactivate_channel(s, ch);
623 /* Set the END_FRAME interrupt */
624 if (min_elems == elements[omap_dma_intr_frame])
625 ch->status |= END_FRAME_INTR;
627 if (min_elems == elements[omap_dma_intr_block]) {
628 /* End of Block */
629 /* Disable the channel */
631 if (ch->omap_3_1_compatible_disable) {
632 omap_dma_disable_channel(s, ch);
633 if (ch->link_enabled)
634 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]);
635 } else {
636 if (!ch->auto_init)
637 omap_dma_disable_channel(s, ch);
638 else if (ch->repeat || ch->end_prog)
639 omap_dma_channel_load(ch);
640 else {
641 ch->waiting_end_prog = 1;
642 omap_dma_deactivate_channel(s, ch);
646 if (ch->interrupts & END_BLOCK_INTR)
647 ch->status |= END_BLOCK_INTR;
650 /* Update packet number */
651 if (ch->fs && ch->bs) {
652 a->pck_element += min_elems;
653 a->pck_element %= a->pck_elements;
656 /* TODO: check if we really need to update anything here or perhaps we
657 * can skip part of this. */
658 #ifndef MULTI_REQ
659 if (dma->update) {
660 #endif
661 a->element += min_elems;
663 frames = a->element / a->elements;
664 a->element = a->element % a->elements;
665 a->frame += frames;
666 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0];
667 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1];
669 /* If the channel is async, update cpc */
670 if (!ch->sync && frames)
671 ch->cpc = a->dest & 0xffff;
673 /* TODO: if the destination port is IMIF or EMIFF, set the dirty
674 * bits on it. */
675 #ifndef MULTI_REQ
677 #else
679 #endif
681 omap_dma_interrupts_update(s);
684 void omap_dma_reset(struct soc_dma_s *dma)
686 int i;
687 struct omap_dma_s *s = dma->opaque;
689 soc_dma_reset(s->dma);
690 if (s->model < omap_dma_4)
691 s->gcr = 0x0004;
692 else
693 s->gcr = 0x00010010;
694 s->ocp = 0x00000000;
695 memset(&s->irqstat, 0, sizeof(s->irqstat));
696 memset(&s->irqen, 0, sizeof(s->irqen));
697 s->lcd_ch.src = emiff;
698 s->lcd_ch.condition = 0;
699 s->lcd_ch.interrupts = 0;
700 s->lcd_ch.dual = 0;
701 if (s->model < omap_dma_4)
702 omap_dma_enable_3_1_mapping(s);
703 for (i = 0; i < s->chans; i ++) {
704 s->ch[i].suspend = 0;
705 s->ch[i].prefetch = 0;
706 s->ch[i].buf_disable = 0;
707 s->ch[i].src_sync = 0;
708 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst));
709 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port));
710 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode));
711 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index));
712 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index));
713 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian));
714 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock));
715 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate));
716 s->ch[i].write_mode = 0;
717 s->ch[i].data_type = 0;
718 s->ch[i].transparent_copy = 0;
719 s->ch[i].constant_fill = 0;
720 s->ch[i].color = 0x00000000;
721 s->ch[i].end_prog = 0;
722 s->ch[i].repeat = 0;
723 s->ch[i].auto_init = 0;
724 s->ch[i].link_enabled = 0;
725 if (s->model < omap_dma_4)
726 s->ch[i].interrupts = 0x0003;
727 else
728 s->ch[i].interrupts = 0x0000;
729 s->ch[i].status = 0;
730 s->ch[i].cstatus = 0;
731 s->ch[i].active = 0;
732 s->ch[i].enable = 0;
733 s->ch[i].sync = 0;
734 s->ch[i].pending_request = 0;
735 s->ch[i].waiting_end_prog = 0;
736 s->ch[i].cpc = 0x0000;
737 s->ch[i].fs = 0;
738 s->ch[i].bs = 0;
739 s->ch[i].omap_3_1_compatible_disable = 0;
740 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set));
741 s->ch[i].priority = 0;
742 s->ch[i].interleave_disabled = 0;
743 s->ch[i].type = 0;
747 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
748 struct omap_dma_channel_s *ch, int reg, uint16_t *value)
750 switch (reg) {
751 case 0x00: /* SYS_DMA_CSDP_CH0 */
752 *value = (ch->burst[1] << 14) |
753 (ch->pack[1] << 13) |
754 (ch->port[1] << 9) |
755 (ch->burst[0] << 7) |
756 (ch->pack[0] << 6) |
757 (ch->port[0] << 2) |
758 (ch->data_type >> 1);
759 break;
761 case 0x02: /* SYS_DMA_CCR_CH0 */
762 if (s->model <= omap_dma_3_1)
763 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */
764 else
765 *value = ch->omap_3_1_compatible_disable << 10;
766 *value |= (ch->mode[1] << 14) |
767 (ch->mode[0] << 12) |
768 (ch->end_prog << 11) |
769 (ch->repeat << 9) |
770 (ch->auto_init << 8) |
771 (ch->enable << 7) |
772 (ch->priority << 6) |
773 (ch->fs << 5) | ch->sync;
774 break;
776 case 0x04: /* SYS_DMA_CICR_CH0 */
777 *value = ch->interrupts;
778 break;
780 case 0x06: /* SYS_DMA_CSR_CH0 */
781 *value = ch->status;
782 ch->status &= SYNC;
783 if (!ch->omap_3_1_compatible_disable && ch->sibling) {
784 *value |= (ch->sibling->status & 0x3f) << 6;
785 ch->sibling->status &= SYNC;
787 qemu_irq_lower(ch->irq);
788 break;
790 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
791 *value = ch->addr[0] & 0x0000ffff;
792 break;
794 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
795 *value = ch->addr[0] >> 16;
796 break;
798 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
799 *value = ch->addr[1] & 0x0000ffff;
800 break;
802 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
803 *value = ch->addr[1] >> 16;
804 break;
806 case 0x10: /* SYS_DMA_CEN_CH0 */
807 *value = ch->elements;
808 break;
810 case 0x12: /* SYS_DMA_CFN_CH0 */
811 *value = ch->frames;
812 break;
814 case 0x14: /* SYS_DMA_CFI_CH0 */
815 *value = ch->frame_index[0];
816 break;
818 case 0x16: /* SYS_DMA_CEI_CH0 */
819 *value = ch->element_index[0];
820 break;
822 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
823 if (ch->omap_3_1_compatible_disable)
824 *value = ch->active_set.src & 0xffff; /* CSAC */
825 else
826 *value = ch->cpc;
827 break;
829 case 0x1a: /* DMA_CDAC */
830 *value = ch->active_set.dest & 0xffff; /* CDAC */
831 break;
833 case 0x1c: /* DMA_CDEI */
834 *value = ch->element_index[1];
835 break;
837 case 0x1e: /* DMA_CDFI */
838 *value = ch->frame_index[1];
839 break;
841 case 0x20: /* DMA_COLOR_L */
842 *value = ch->color & 0xffff;
843 break;
845 case 0x22: /* DMA_COLOR_U */
846 *value = ch->color >> 16;
847 break;
849 case 0x24: /* DMA_CCR2 */
850 *value = (ch->bs << 2) |
851 (ch->transparent_copy << 1) |
852 ch->constant_fill;
853 break;
855 case 0x28: /* DMA_CLNK_CTRL */
856 *value = (ch->link_enabled << 15) |
857 (ch->link_next_ch & 0xf);
858 break;
860 case 0x2a: /* DMA_LCH_CTRL */
861 *value = (ch->interleave_disabled << 15) |
862 ch->type;
863 break;
865 default:
866 return 1;
868 return 0;
871 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
872 struct omap_dma_channel_s *ch, int reg, uint16_t value)
874 switch (reg) {
875 case 0x00: /* SYS_DMA_CSDP_CH0 */
876 ch->burst[1] = (value & 0xc000) >> 14;
877 ch->pack[1] = (value & 0x2000) >> 13;
878 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
879 ch->burst[0] = (value & 0x0180) >> 7;
880 ch->pack[0] = (value & 0x0040) >> 6;
881 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
882 if (ch->port[0] >= __omap_dma_port_last) {
883 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DMA port %i\n",
884 __func__, ch->port[0]);
886 if (ch->port[1] >= __omap_dma_port_last) {
887 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DMA port %i\n",
888 __func__, ch->port[1]);
890 ch->data_type = 1 << (value & 3);
891 if ((value & 3) == 3) {
892 qemu_log_mask(LOG_GUEST_ERROR,
893 "%s: bad data_type for DMA channel\n", __func__);
894 ch->data_type >>= 1;
896 break;
898 case 0x02: /* SYS_DMA_CCR_CH0 */
899 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
900 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
901 ch->end_prog = (value & 0x0800) >> 11;
902 if (s->model >= omap_dma_3_2)
903 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1;
904 ch->repeat = (value & 0x0200) >> 9;
905 ch->auto_init = (value & 0x0100) >> 8;
906 ch->priority = (value & 0x0040) >> 6;
907 ch->fs = (value & 0x0020) >> 5;
908 ch->sync = value & 0x001f;
910 if (value & 0x0080)
911 omap_dma_enable_channel(s, ch);
912 else
913 omap_dma_disable_channel(s, ch);
915 if (ch->end_prog)
916 omap_dma_channel_end_prog(s, ch);
918 break;
920 case 0x04: /* SYS_DMA_CICR_CH0 */
921 ch->interrupts = value & 0x3f;
922 break;
924 case 0x06: /* SYS_DMA_CSR_CH0 */
925 OMAP_RO_REG((hwaddr) reg);
926 break;
928 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
929 ch->addr[0] &= 0xffff0000;
930 ch->addr[0] |= value;
931 break;
933 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
934 ch->addr[0] &= 0x0000ffff;
935 ch->addr[0] |= (uint32_t) value << 16;
936 break;
938 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
939 ch->addr[1] &= 0xffff0000;
940 ch->addr[1] |= value;
941 break;
943 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
944 ch->addr[1] &= 0x0000ffff;
945 ch->addr[1] |= (uint32_t) value << 16;
946 break;
948 case 0x10: /* SYS_DMA_CEN_CH0 */
949 ch->elements = value;
950 break;
952 case 0x12: /* SYS_DMA_CFN_CH0 */
953 ch->frames = value;
954 break;
956 case 0x14: /* SYS_DMA_CFI_CH0 */
957 ch->frame_index[0] = (int16_t) value;
958 break;
960 case 0x16: /* SYS_DMA_CEI_CH0 */
961 ch->element_index[0] = (int16_t) value;
962 break;
964 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */
965 OMAP_RO_REG((hwaddr) reg);
966 break;
968 case 0x1c: /* DMA_CDEI */
969 ch->element_index[1] = (int16_t) value;
970 break;
972 case 0x1e: /* DMA_CDFI */
973 ch->frame_index[1] = (int16_t) value;
974 break;
976 case 0x20: /* DMA_COLOR_L */
977 ch->color &= 0xffff0000;
978 ch->color |= value;
979 break;
981 case 0x22: /* DMA_COLOR_U */
982 ch->color &= 0xffff;
983 ch->color |= (uint32_t)value << 16;
984 break;
986 case 0x24: /* DMA_CCR2 */
987 ch->bs = (value >> 2) & 0x1;
988 ch->transparent_copy = (value >> 1) & 0x1;
989 ch->constant_fill = value & 0x1;
990 break;
992 case 0x28: /* DMA_CLNK_CTRL */
993 ch->link_enabled = (value >> 15) & 0x1;
994 if (value & (1 << 14)) { /* Stop_Lnk */
995 ch->link_enabled = 0;
996 omap_dma_disable_channel(s, ch);
998 ch->link_next_ch = value & 0x1f;
999 break;
1001 case 0x2a: /* DMA_LCH_CTRL */
1002 ch->interleave_disabled = (value >> 15) & 0x1;
1003 ch->type = value & 0xf;
1004 break;
1006 default:
1007 return 1;
1009 return 0;
1012 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1013 uint16_t value)
1015 switch (offset) {
1016 case 0xbc0: /* DMA_LCD_CSDP */
1017 s->brust_f2 = (value >> 14) & 0x3;
1018 s->pack_f2 = (value >> 13) & 0x1;
1019 s->data_type_f2 = (1 << ((value >> 11) & 0x3));
1020 s->brust_f1 = (value >> 7) & 0x3;
1021 s->pack_f1 = (value >> 6) & 0x1;
1022 s->data_type_f1 = (1 << ((value >> 0) & 0x3));
1023 break;
1025 case 0xbc2: /* DMA_LCD_CCR */
1026 s->mode_f2 = (value >> 14) & 0x3;
1027 s->mode_f1 = (value >> 12) & 0x3;
1028 s->end_prog = (value >> 11) & 0x1;
1029 s->omap_3_1_compatible_disable = (value >> 10) & 0x1;
1030 s->repeat = (value >> 9) & 0x1;
1031 s->auto_init = (value >> 8) & 0x1;
1032 s->running = (value >> 7) & 0x1;
1033 s->priority = (value >> 6) & 0x1;
1034 s->bs = (value >> 4) & 0x1;
1035 break;
1037 case 0xbc4: /* DMA_LCD_CTRL */
1038 s->dst = (value >> 8) & 0x1;
1039 s->src = ((value >> 6) & 0x3) << 1;
1040 s->condition = 0;
1041 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1042 s->interrupts = (value >> 1) & 1;
1043 s->dual = value & 1;
1044 break;
1046 case 0xbc8: /* TOP_B1_L */
1047 s->src_f1_top &= 0xffff0000;
1048 s->src_f1_top |= 0x0000ffff & value;
1049 break;
1051 case 0xbca: /* TOP_B1_U */
1052 s->src_f1_top &= 0x0000ffff;
1053 s->src_f1_top |= (uint32_t)value << 16;
1054 break;
1056 case 0xbcc: /* BOT_B1_L */
1057 s->src_f1_bottom &= 0xffff0000;
1058 s->src_f1_bottom |= 0x0000ffff & value;
1059 break;
1061 case 0xbce: /* BOT_B1_U */
1062 s->src_f1_bottom &= 0x0000ffff;
1063 s->src_f1_bottom |= (uint32_t) value << 16;
1064 break;
1066 case 0xbd0: /* TOP_B2_L */
1067 s->src_f2_top &= 0xffff0000;
1068 s->src_f2_top |= 0x0000ffff & value;
1069 break;
1071 case 0xbd2: /* TOP_B2_U */
1072 s->src_f2_top &= 0x0000ffff;
1073 s->src_f2_top |= (uint32_t) value << 16;
1074 break;
1076 case 0xbd4: /* BOT_B2_L */
1077 s->src_f2_bottom &= 0xffff0000;
1078 s->src_f2_bottom |= 0x0000ffff & value;
1079 break;
1081 case 0xbd6: /* BOT_B2_U */
1082 s->src_f2_bottom &= 0x0000ffff;
1083 s->src_f2_bottom |= (uint32_t) value << 16;
1084 break;
1086 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1087 s->element_index_f1 = value;
1088 break;
1090 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1091 s->frame_index_f1 &= 0xffff0000;
1092 s->frame_index_f1 |= 0x0000ffff & value;
1093 break;
1095 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1096 s->frame_index_f1 &= 0x0000ffff;
1097 s->frame_index_f1 |= (uint32_t) value << 16;
1098 break;
1100 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1101 s->element_index_f2 = value;
1102 break;
1104 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1105 s->frame_index_f2 &= 0xffff0000;
1106 s->frame_index_f2 |= 0x0000ffff & value;
1107 break;
1109 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1110 s->frame_index_f2 &= 0x0000ffff;
1111 s->frame_index_f2 |= (uint32_t) value << 16;
1112 break;
1114 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1115 s->elements_f1 = value;
1116 break;
1118 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1119 s->frames_f1 = value;
1120 break;
1122 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1123 s->elements_f2 = value;
1124 break;
1126 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1127 s->frames_f2 = value;
1128 break;
1130 case 0xbea: /* DMA_LCD_LCH_CTRL */
1131 s->lch_type = value & 0xf;
1132 break;
1134 default:
1135 return 1;
1137 return 0;
1140 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1141 uint16_t *ret)
1143 switch (offset) {
1144 case 0xbc0: /* DMA_LCD_CSDP */
1145 *ret = (s->brust_f2 << 14) |
1146 (s->pack_f2 << 13) |
1147 ((s->data_type_f2 >> 1) << 11) |
1148 (s->brust_f1 << 7) |
1149 (s->pack_f1 << 6) |
1150 ((s->data_type_f1 >> 1) << 0);
1151 break;
1153 case 0xbc2: /* DMA_LCD_CCR */
1154 *ret = (s->mode_f2 << 14) |
1155 (s->mode_f1 << 12) |
1156 (s->end_prog << 11) |
1157 (s->omap_3_1_compatible_disable << 10) |
1158 (s->repeat << 9) |
1159 (s->auto_init << 8) |
1160 (s->running << 7) |
1161 (s->priority << 6) |
1162 (s->bs << 4);
1163 break;
1165 case 0xbc4: /* DMA_LCD_CTRL */
1166 qemu_irq_lower(s->irq);
1167 *ret = (s->dst << 8) |
1168 ((s->src & 0x6) << 5) |
1169 (s->condition << 3) |
1170 (s->interrupts << 1) |
1171 s->dual;
1172 break;
1174 case 0xbc8: /* TOP_B1_L */
1175 *ret = s->src_f1_top & 0xffff;
1176 break;
1178 case 0xbca: /* TOP_B1_U */
1179 *ret = s->src_f1_top >> 16;
1180 break;
1182 case 0xbcc: /* BOT_B1_L */
1183 *ret = s->src_f1_bottom & 0xffff;
1184 break;
1186 case 0xbce: /* BOT_B1_U */
1187 *ret = s->src_f1_bottom >> 16;
1188 break;
1190 case 0xbd0: /* TOP_B2_L */
1191 *ret = s->src_f2_top & 0xffff;
1192 break;
1194 case 0xbd2: /* TOP_B2_U */
1195 *ret = s->src_f2_top >> 16;
1196 break;
1198 case 0xbd4: /* BOT_B2_L */
1199 *ret = s->src_f2_bottom & 0xffff;
1200 break;
1202 case 0xbd6: /* BOT_B2_U */
1203 *ret = s->src_f2_bottom >> 16;
1204 break;
1206 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */
1207 *ret = s->element_index_f1;
1208 break;
1210 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */
1211 *ret = s->frame_index_f1 & 0xffff;
1212 break;
1214 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */
1215 *ret = s->frame_index_f1 >> 16;
1216 break;
1218 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */
1219 *ret = s->element_index_f2;
1220 break;
1222 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */
1223 *ret = s->frame_index_f2 & 0xffff;
1224 break;
1226 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */
1227 *ret = s->frame_index_f2 >> 16;
1228 break;
1230 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */
1231 *ret = s->elements_f1;
1232 break;
1234 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */
1235 *ret = s->frames_f1;
1236 break;
1238 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */
1239 *ret = s->elements_f2;
1240 break;
1242 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */
1243 *ret = s->frames_f2;
1244 break;
1246 case 0xbea: /* DMA_LCD_LCH_CTRL */
1247 *ret = s->lch_type;
1248 break;
1250 default:
1251 return 1;
1253 return 0;
1256 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset,
1257 uint16_t value)
1259 switch (offset) {
1260 case 0x300: /* SYS_DMA_LCD_CTRL */
1261 s->src = (value & 0x40) ? imif : emiff;
1262 s->condition = 0;
1263 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
1264 s->interrupts = (value >> 1) & 1;
1265 s->dual = value & 1;
1266 break;
1268 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1269 s->src_f1_top &= 0xffff0000;
1270 s->src_f1_top |= 0x0000ffff & value;
1271 break;
1273 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1274 s->src_f1_top &= 0x0000ffff;
1275 s->src_f1_top |= (uint32_t)value << 16;
1276 break;
1278 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1279 s->src_f1_bottom &= 0xffff0000;
1280 s->src_f1_bottom |= 0x0000ffff & value;
1281 break;
1283 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1284 s->src_f1_bottom &= 0x0000ffff;
1285 s->src_f1_bottom |= (uint32_t)value << 16;
1286 break;
1288 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1289 s->src_f2_top &= 0xffff0000;
1290 s->src_f2_top |= 0x0000ffff & value;
1291 break;
1293 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1294 s->src_f2_top &= 0x0000ffff;
1295 s->src_f2_top |= (uint32_t)value << 16;
1296 break;
1298 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1299 s->src_f2_bottom &= 0xffff0000;
1300 s->src_f2_bottom |= 0x0000ffff & value;
1301 break;
1303 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1304 s->src_f2_bottom &= 0x0000ffff;
1305 s->src_f2_bottom |= (uint32_t)value << 16;
1306 break;
1308 default:
1309 return 1;
1311 return 0;
1314 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset,
1315 uint16_t *ret)
1317 int i;
1319 switch (offset) {
1320 case 0x300: /* SYS_DMA_LCD_CTRL */
1321 i = s->condition;
1322 s->condition = 0;
1323 qemu_irq_lower(s->irq);
1324 *ret = ((s->src == imif) << 6) | (i << 3) |
1325 (s->interrupts << 1) | s->dual;
1326 break;
1328 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
1329 *ret = s->src_f1_top & 0xffff;
1330 break;
1332 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
1333 *ret = s->src_f1_top >> 16;
1334 break;
1336 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
1337 *ret = s->src_f1_bottom & 0xffff;
1338 break;
1340 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
1341 *ret = s->src_f1_bottom >> 16;
1342 break;
1344 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
1345 *ret = s->src_f2_top & 0xffff;
1346 break;
1348 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
1349 *ret = s->src_f2_top >> 16;
1350 break;
1352 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
1353 *ret = s->src_f2_bottom & 0xffff;
1354 break;
1356 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
1357 *ret = s->src_f2_bottom >> 16;
1358 break;
1360 default:
1361 return 1;
1363 return 0;
1366 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value)
1368 switch (offset) {
1369 case 0x400: /* SYS_DMA_GCR */
1370 s->gcr = value;
1371 break;
1373 case 0x404: /* DMA_GSCR */
1374 if (value & 0x8)
1375 omap_dma_disable_3_1_mapping(s);
1376 else
1377 omap_dma_enable_3_1_mapping(s);
1378 break;
1380 case 0x408: /* DMA_GRST */
1381 if (value & 0x1)
1382 omap_dma_reset(s->dma);
1383 break;
1385 default:
1386 return 1;
1388 return 0;
1391 static int omap_dma_sys_read(struct omap_dma_s *s, int offset,
1392 uint16_t *ret)
1394 switch (offset) {
1395 case 0x400: /* SYS_DMA_GCR */
1396 *ret = s->gcr;
1397 break;
1399 case 0x404: /* DMA_GSCR */
1400 *ret = s->omap_3_1_mapping_disabled << 3;
1401 break;
1403 case 0x408: /* DMA_GRST */
1404 *ret = 0;
1405 break;
1407 case 0x442: /* DMA_HW_ID */
1408 case 0x444: /* DMA_PCh2_ID */
1409 case 0x446: /* DMA_PCh0_ID */
1410 case 0x448: /* DMA_PCh1_ID */
1411 case 0x44a: /* DMA_PChG_ID */
1412 case 0x44c: /* DMA_PChD_ID */
1413 *ret = 1;
1414 break;
1416 case 0x44e: /* DMA_CAPS_0_U */
1417 *ret = (s->caps[0] >> 16) & 0xffff;
1418 break;
1419 case 0x450: /* DMA_CAPS_0_L */
1420 *ret = (s->caps[0] >> 0) & 0xffff;
1421 break;
1423 case 0x452: /* DMA_CAPS_1_U */
1424 *ret = (s->caps[1] >> 16) & 0xffff;
1425 break;
1426 case 0x454: /* DMA_CAPS_1_L */
1427 *ret = (s->caps[1] >> 0) & 0xffff;
1428 break;
1430 case 0x456: /* DMA_CAPS_2 */
1431 *ret = s->caps[2];
1432 break;
1434 case 0x458: /* DMA_CAPS_3 */
1435 *ret = s->caps[3];
1436 break;
1438 case 0x45a: /* DMA_CAPS_4 */
1439 *ret = s->caps[4];
1440 break;
1442 case 0x460: /* DMA_PCh2_SR */
1443 case 0x480: /* DMA_PCh0_SR */
1444 case 0x482: /* DMA_PCh1_SR */
1445 case 0x4c0: /* DMA_PChD_SR_0 */
1446 qemu_log_mask(LOG_UNIMP,
1447 "%s: Physical Channel Status Registers not implemented\n",
1448 __func__);
1449 *ret = 0xff;
1450 break;
1452 default:
1453 return 1;
1455 return 0;
1458 static uint64_t omap_dma_read(void *opaque, hwaddr addr,
1459 unsigned size)
1461 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1462 int reg, ch;
1463 uint16_t ret;
1465 if (size != 2) {
1466 return omap_badwidth_read16(opaque, addr);
1469 switch (addr) {
1470 case 0x300 ... 0x3fe:
1471 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1472 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret))
1473 break;
1474 return ret;
1476 /* Fall through. */
1477 case 0x000 ... 0x2fe:
1478 reg = addr & 0x3f;
1479 ch = (addr >> 6) & 0x0f;
1480 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret))
1481 break;
1482 return ret;
1484 case 0x404 ... 0x4fe:
1485 if (s->model <= omap_dma_3_1)
1486 break;
1487 /* Fall through. */
1488 case 0x400:
1489 if (omap_dma_sys_read(s, addr, &ret))
1490 break;
1491 return ret;
1493 case 0xb00 ... 0xbfe:
1494 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1495 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret))
1496 break;
1497 return ret;
1499 break;
1502 OMAP_BAD_REG(addr);
1503 return 0;
1506 static void omap_dma_write(void *opaque, hwaddr addr,
1507 uint64_t value, unsigned size)
1509 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1510 int reg, ch;
1512 if (size != 2) {
1513 omap_badwidth_write16(opaque, addr, value);
1514 return;
1517 switch (addr) {
1518 case 0x300 ... 0x3fe:
1519 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) {
1520 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value))
1521 break;
1522 return;
1524 /* Fall through. */
1525 case 0x000 ... 0x2fe:
1526 reg = addr & 0x3f;
1527 ch = (addr >> 6) & 0x0f;
1528 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value))
1529 break;
1530 return;
1532 case 0x404 ... 0x4fe:
1533 if (s->model <= omap_dma_3_1)
1534 break;
1535 case 0x400:
1536 /* Fall through. */
1537 if (omap_dma_sys_write(s, addr, value))
1538 break;
1539 return;
1541 case 0xb00 ... 0xbfe:
1542 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) {
1543 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value))
1544 break;
1545 return;
1547 break;
1550 OMAP_BAD_REG(addr);
1553 static const MemoryRegionOps omap_dma_ops = {
1554 .read = omap_dma_read,
1555 .write = omap_dma_write,
1556 .endianness = DEVICE_NATIVE_ENDIAN,
1559 static void omap_dma_request(void *opaque, int drq, int req)
1561 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1562 /* The request pins are level triggered in QEMU. */
1563 if (req) {
1564 if (~s->dma->drqbmp & (1ULL << drq)) {
1565 s->dma->drqbmp |= 1ULL << drq;
1566 omap_dma_process_request(s, drq);
1568 } else
1569 s->dma->drqbmp &= ~(1ULL << drq);
1572 /* XXX: this won't be needed once soc_dma knows about clocks. */
1573 static void omap_dma_clk_update(void *opaque, int line, int on)
1575 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1576 int i;
1578 s->dma->freq = omap_clk_getrate(s->clk);
1580 for (i = 0; i < s->chans; i ++)
1581 if (s->ch[i].active)
1582 soc_dma_set_request(s->ch[i].dma, on);
1585 static void omap_dma_setcaps(struct omap_dma_s *s)
1587 switch (s->model) {
1588 default:
1589 case omap_dma_3_1:
1590 break;
1591 case omap_dma_3_2:
1592 case omap_dma_4:
1593 /* XXX Only available for sDMA */
1594 s->caps[0] =
1595 (1 << 19) | /* Constant Fill Capability */
1596 (1 << 18); /* Transparent BLT Capability */
1597 s->caps[1] =
1598 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */
1599 s->caps[2] =
1600 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */
1601 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */
1602 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */
1603 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */
1604 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */
1605 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */
1606 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */
1607 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */
1608 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */
1609 s->caps[3] =
1610 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */
1611 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */
1612 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */
1613 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */
1614 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */
1615 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */
1616 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */
1617 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */
1618 s->caps[4] =
1619 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */
1620 (1 << 6) | /* SYNC_STATUS_CPBLTY */
1621 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */
1622 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */
1623 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */
1624 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */
1625 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */
1626 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */
1627 break;
1631 struct soc_dma_s *omap_dma_init(hwaddr base, qemu_irq *irqs,
1632 MemoryRegion *sysmem,
1633 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk,
1634 enum omap_dma_model model)
1636 int num_irqs, memsize, i;
1637 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1);
1639 if (model <= omap_dma_3_1) {
1640 num_irqs = 6;
1641 memsize = 0x800;
1642 } else {
1643 num_irqs = 16;
1644 memsize = 0xc00;
1646 s->model = model;
1647 s->mpu = mpu;
1648 s->clk = clk;
1649 s->lcd_ch.irq = lcd_irq;
1650 s->lcd_ch.mpu = mpu;
1652 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16);
1653 s->dma->freq = omap_clk_getrate(clk);
1654 s->dma->transfer_fn = omap_dma_transfer_generic;
1655 s->dma->setup_fn = omap_dma_transfer_setup;
1656 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1657 s->dma->opaque = s;
1659 while (num_irqs --)
1660 s->ch[num_irqs].irq = irqs[num_irqs];
1661 for (i = 0; i < 3; i ++) {
1662 s->ch[i].sibling = &s->ch[i + 6];
1663 s->ch[i + 6].sibling = &s->ch[i];
1665 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) {
1666 s->ch[i].dma = &s->dma->ch[i];
1667 s->dma->ch[i].opaque = &s->ch[i];
1670 omap_dma_setcaps(s);
1671 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0));
1672 omap_dma_reset(s->dma);
1673 omap_dma_clk_update(s, 0, 1);
1675 memory_region_init_io(&s->iomem, NULL, &omap_dma_ops, s, "omap.dma", memsize);
1676 memory_region_add_subregion(sysmem, base, &s->iomem);
1678 mpu->drq = s->dma->drq;
1680 return s->dma;
1683 static void omap_dma_interrupts_4_update(struct omap_dma_s *s)
1685 struct omap_dma_channel_s *ch = s->ch;
1686 uint32_t bmp, bit;
1688 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1)
1689 if (ch->status) {
1690 bmp |= bit;
1691 ch->cstatus |= ch->status;
1692 ch->status = 0;
1694 if ((s->irqstat[0] |= s->irqen[0] & bmp))
1695 qemu_irq_raise(s->irq[0]);
1696 if ((s->irqstat[1] |= s->irqen[1] & bmp))
1697 qemu_irq_raise(s->irq[1]);
1698 if ((s->irqstat[2] |= s->irqen[2] & bmp))
1699 qemu_irq_raise(s->irq[2]);
1700 if ((s->irqstat[3] |= s->irqen[3] & bmp))
1701 qemu_irq_raise(s->irq[3]);
1704 static uint64_t omap_dma4_read(void *opaque, hwaddr addr,
1705 unsigned size)
1707 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1708 int irqn = 0, chnum;
1709 struct omap_dma_channel_s *ch;
1711 if (size == 1) {
1712 return omap_badwidth_read16(opaque, addr);
1715 switch (addr) {
1716 case 0x00: /* DMA4_REVISION */
1717 return 0x40;
1719 case 0x14: /* DMA4_IRQSTATUS_L3 */
1720 irqn ++;
1721 /* fall through */
1722 case 0x10: /* DMA4_IRQSTATUS_L2 */
1723 irqn ++;
1724 /* fall through */
1725 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1726 irqn ++;
1727 /* fall through */
1728 case 0x08: /* DMA4_IRQSTATUS_L0 */
1729 return s->irqstat[irqn];
1731 case 0x24: /* DMA4_IRQENABLE_L3 */
1732 irqn ++;
1733 /* fall through */
1734 case 0x20: /* DMA4_IRQENABLE_L2 */
1735 irqn ++;
1736 /* fall through */
1737 case 0x1c: /* DMA4_IRQENABLE_L1 */
1738 irqn ++;
1739 /* fall through */
1740 case 0x18: /* DMA4_IRQENABLE_L0 */
1741 return s->irqen[irqn];
1743 case 0x28: /* DMA4_SYSSTATUS */
1744 return 1; /* RESETDONE */
1746 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1747 return s->ocp;
1749 case 0x64: /* DMA4_CAPS_0 */
1750 return s->caps[0];
1751 case 0x6c: /* DMA4_CAPS_2 */
1752 return s->caps[2];
1753 case 0x70: /* DMA4_CAPS_3 */
1754 return s->caps[3];
1755 case 0x74: /* DMA4_CAPS_4 */
1756 return s->caps[4];
1758 case 0x78: /* DMA4_GCR */
1759 return s->gcr;
1761 case 0x80 ... 0xfff:
1762 addr -= 0x80;
1763 chnum = addr / 0x60;
1764 ch = s->ch + chnum;
1765 addr -= chnum * 0x60;
1766 break;
1768 default:
1769 OMAP_BAD_REG(addr);
1770 return 0;
1773 /* Per-channel registers */
1774 switch (addr) {
1775 case 0x00: /* DMA4_CCR */
1776 return (ch->buf_disable << 25) |
1777 (ch->src_sync << 24) |
1778 (ch->prefetch << 23) |
1779 ((ch->sync & 0x60) << 14) |
1780 (ch->bs << 18) |
1781 (ch->transparent_copy << 17) |
1782 (ch->constant_fill << 16) |
1783 (ch->mode[1] << 14) |
1784 (ch->mode[0] << 12) |
1785 (0 << 10) | (0 << 9) |
1786 (ch->suspend << 8) |
1787 (ch->enable << 7) |
1788 (ch->priority << 6) |
1789 (ch->fs << 5) | (ch->sync & 0x1f);
1791 case 0x04: /* DMA4_CLNK_CTRL */
1792 return (ch->link_enabled << 15) | ch->link_next_ch;
1794 case 0x08: /* DMA4_CICR */
1795 return ch->interrupts;
1797 case 0x0c: /* DMA4_CSR */
1798 return ch->cstatus;
1800 case 0x10: /* DMA4_CSDP */
1801 return (ch->endian[0] << 21) |
1802 (ch->endian_lock[0] << 20) |
1803 (ch->endian[1] << 19) |
1804 (ch->endian_lock[1] << 18) |
1805 (ch->write_mode << 16) |
1806 (ch->burst[1] << 14) |
1807 (ch->pack[1] << 13) |
1808 (ch->translate[1] << 9) |
1809 (ch->burst[0] << 7) |
1810 (ch->pack[0] << 6) |
1811 (ch->translate[0] << 2) |
1812 (ch->data_type >> 1);
1814 case 0x14: /* DMA4_CEN */
1815 return ch->elements;
1817 case 0x18: /* DMA4_CFN */
1818 return ch->frames;
1820 case 0x1c: /* DMA4_CSSA */
1821 return ch->addr[0];
1823 case 0x20: /* DMA4_CDSA */
1824 return ch->addr[1];
1826 case 0x24: /* DMA4_CSEI */
1827 return ch->element_index[0];
1829 case 0x28: /* DMA4_CSFI */
1830 return ch->frame_index[0];
1832 case 0x2c: /* DMA4_CDEI */
1833 return ch->element_index[1];
1835 case 0x30: /* DMA4_CDFI */
1836 return ch->frame_index[1];
1838 case 0x34: /* DMA4_CSAC */
1839 return ch->active_set.src & 0xffff;
1841 case 0x38: /* DMA4_CDAC */
1842 return ch->active_set.dest & 0xffff;
1844 case 0x3c: /* DMA4_CCEN */
1845 return ch->active_set.element;
1847 case 0x40: /* DMA4_CCFN */
1848 return ch->active_set.frame;
1850 case 0x44: /* DMA4_COLOR */
1851 /* XXX only in sDMA */
1852 return ch->color;
1854 default:
1855 OMAP_BAD_REG(addr);
1856 return 0;
1860 static void omap_dma4_write(void *opaque, hwaddr addr,
1861 uint64_t value, unsigned size)
1863 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1864 int chnum, irqn = 0;
1865 struct omap_dma_channel_s *ch;
1867 if (size == 1) {
1868 omap_badwidth_write16(opaque, addr, value);
1869 return;
1872 switch (addr) {
1873 case 0x14: /* DMA4_IRQSTATUS_L3 */
1874 irqn ++;
1875 /* fall through */
1876 case 0x10: /* DMA4_IRQSTATUS_L2 */
1877 irqn ++;
1878 /* fall through */
1879 case 0x0c: /* DMA4_IRQSTATUS_L1 */
1880 irqn ++;
1881 /* fall through */
1882 case 0x08: /* DMA4_IRQSTATUS_L0 */
1883 s->irqstat[irqn] &= ~value;
1884 if (!s->irqstat[irqn])
1885 qemu_irq_lower(s->irq[irqn]);
1886 return;
1888 case 0x24: /* DMA4_IRQENABLE_L3 */
1889 irqn ++;
1890 /* fall through */
1891 case 0x20: /* DMA4_IRQENABLE_L2 */
1892 irqn ++;
1893 /* fall through */
1894 case 0x1c: /* DMA4_IRQENABLE_L1 */
1895 irqn ++;
1896 /* fall through */
1897 case 0x18: /* DMA4_IRQENABLE_L0 */
1898 s->irqen[irqn] = value;
1899 return;
1901 case 0x2c: /* DMA4_OCP_SYSCONFIG */
1902 if (value & 2) /* SOFTRESET */
1903 omap_dma_reset(s->dma);
1904 s->ocp = value & 0x3321;
1905 if (((s->ocp >> 12) & 3) == 3) { /* MIDLEMODE */
1906 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid DMA power mode\n",
1907 __func__);
1909 return;
1911 case 0x78: /* DMA4_GCR */
1912 s->gcr = value & 0x00ff00ff;
1913 if ((value & 0xff) == 0x00) { /* MAX_CHANNEL_FIFO_DEPTH */
1914 qemu_log_mask(LOG_GUEST_ERROR, "%s: wrong FIFO depth in GCR\n",
1915 __func__);
1917 return;
1919 case 0x80 ... 0xfff:
1920 addr -= 0x80;
1921 chnum = addr / 0x60;
1922 ch = s->ch + chnum;
1923 addr -= chnum * 0x60;
1924 break;
1926 case 0x00: /* DMA4_REVISION */
1927 case 0x28: /* DMA4_SYSSTATUS */
1928 case 0x64: /* DMA4_CAPS_0 */
1929 case 0x6c: /* DMA4_CAPS_2 */
1930 case 0x70: /* DMA4_CAPS_3 */
1931 case 0x74: /* DMA4_CAPS_4 */
1932 OMAP_RO_REG(addr);
1933 return;
1935 default:
1936 OMAP_BAD_REG(addr);
1937 return;
1940 /* Per-channel registers */
1941 switch (addr) {
1942 case 0x00: /* DMA4_CCR */
1943 ch->buf_disable = (value >> 25) & 1;
1944 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */
1945 if (ch->buf_disable && !ch->src_sync) {
1946 qemu_log_mask(LOG_GUEST_ERROR,
1947 "%s: Buffering disable is not allowed in "
1948 "destination synchronised mode\n", __func__);
1950 ch->prefetch = (value >> 23) & 1;
1951 ch->bs = (value >> 18) & 1;
1952 ch->transparent_copy = (value >> 17) & 1;
1953 ch->constant_fill = (value >> 16) & 1;
1954 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
1955 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
1956 ch->suspend = (value & 0x0100) >> 8;
1957 ch->priority = (value & 0x0040) >> 6;
1958 ch->fs = (value & 0x0020) >> 5;
1959 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1]) {
1960 qemu_log_mask(LOG_GUEST_ERROR,
1961 "%s: For a packet transfer at least one port "
1962 "must be constant-addressed\n", __func__);
1964 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060);
1965 /* XXX must be 0x01 for CamDMA */
1967 if (value & 0x0080)
1968 omap_dma_enable_channel(s, ch);
1969 else
1970 omap_dma_disable_channel(s, ch);
1972 break;
1974 case 0x04: /* DMA4_CLNK_CTRL */
1975 ch->link_enabled = (value >> 15) & 0x1;
1976 ch->link_next_ch = value & 0x1f;
1977 break;
1979 case 0x08: /* DMA4_CICR */
1980 ch->interrupts = value & 0x09be;
1981 break;
1983 case 0x0c: /* DMA4_CSR */
1984 ch->cstatus &= ~value;
1985 break;
1987 case 0x10: /* DMA4_CSDP */
1988 ch->endian[0] =(value >> 21) & 1;
1989 ch->endian_lock[0] =(value >> 20) & 1;
1990 ch->endian[1] =(value >> 19) & 1;
1991 ch->endian_lock[1] =(value >> 18) & 1;
1992 if (ch->endian[0] != ch->endian[1]) {
1993 qemu_log_mask(LOG_GUEST_ERROR,
1994 "%s: DMA endianness conversion enable attempt\n",
1995 __func__);
1997 ch->write_mode = (value >> 16) & 3;
1998 ch->burst[1] = (value & 0xc000) >> 14;
1999 ch->pack[1] = (value & 0x2000) >> 13;
2000 ch->translate[1] = (value & 0x1e00) >> 9;
2001 ch->burst[0] = (value & 0x0180) >> 7;
2002 ch->pack[0] = (value & 0x0040) >> 6;
2003 ch->translate[0] = (value & 0x003c) >> 2;
2004 if (ch->translate[0] | ch->translate[1]) {
2005 qemu_log_mask(LOG_GUEST_ERROR,
2006 "%s: bad MReqAddressTranslate sideband signal\n",
2007 __func__);
2009 ch->data_type = 1 << (value & 3);
2010 if ((value & 3) == 3) {
2011 qemu_log_mask(LOG_GUEST_ERROR,
2012 "%s: bad data_type for DMA channel\n", __func__);
2013 ch->data_type >>= 1;
2015 break;
2017 case 0x14: /* DMA4_CEN */
2018 ch->set_update = 1;
2019 ch->elements = value & 0xffffff;
2020 break;
2022 case 0x18: /* DMA4_CFN */
2023 ch->frames = value & 0xffff;
2024 ch->set_update = 1;
2025 break;
2027 case 0x1c: /* DMA4_CSSA */
2028 ch->addr[0] = (hwaddr) (uint32_t) value;
2029 ch->set_update = 1;
2030 break;
2032 case 0x20: /* DMA4_CDSA */
2033 ch->addr[1] = (hwaddr) (uint32_t) value;
2034 ch->set_update = 1;
2035 break;
2037 case 0x24: /* DMA4_CSEI */
2038 ch->element_index[0] = (int16_t) value;
2039 ch->set_update = 1;
2040 break;
2042 case 0x28: /* DMA4_CSFI */
2043 ch->frame_index[0] = (int32_t) value;
2044 ch->set_update = 1;
2045 break;
2047 case 0x2c: /* DMA4_CDEI */
2048 ch->element_index[1] = (int16_t) value;
2049 ch->set_update = 1;
2050 break;
2052 case 0x30: /* DMA4_CDFI */
2053 ch->frame_index[1] = (int32_t) value;
2054 ch->set_update = 1;
2055 break;
2057 case 0x44: /* DMA4_COLOR */
2058 /* XXX only in sDMA */
2059 ch->color = value;
2060 break;
2062 case 0x34: /* DMA4_CSAC */
2063 case 0x38: /* DMA4_CDAC */
2064 case 0x3c: /* DMA4_CCEN */
2065 case 0x40: /* DMA4_CCFN */
2066 OMAP_RO_REG(addr);
2067 break;
2069 default:
2070 OMAP_BAD_REG(addr);
2074 static const MemoryRegionOps omap_dma4_ops = {
2075 .read = omap_dma4_read,
2076 .write = omap_dma4_write,
2077 .endianness = DEVICE_NATIVE_ENDIAN,
2080 struct soc_dma_s *omap_dma4_init(hwaddr base, qemu_irq *irqs,
2081 MemoryRegion *sysmem,
2082 struct omap_mpu_state_s *mpu, int fifo,
2083 int chans, omap_clk iclk, omap_clk fclk)
2085 int i;
2086 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1);
2088 s->model = omap_dma_4;
2089 s->chans = chans;
2090 s->mpu = mpu;
2091 s->clk = fclk;
2093 s->dma = soc_dma_init(s->chans);
2094 s->dma->freq = omap_clk_getrate(fclk);
2095 s->dma->transfer_fn = omap_dma_transfer_generic;
2096 s->dma->setup_fn = omap_dma_transfer_setup;
2097 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64);
2098 s->dma->opaque = s;
2099 for (i = 0; i < s->chans; i ++) {
2100 s->ch[i].dma = &s->dma->ch[i];
2101 s->dma->ch[i].opaque = &s->ch[i];
2104 memcpy(&s->irq, irqs, sizeof(s->irq));
2105 s->intr_update = omap_dma_interrupts_4_update;
2107 omap_dma_setcaps(s);
2108 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0));
2109 omap_dma_reset(s->dma);
2110 omap_dma_clk_update(s, 0, !!s->dma->freq);
2112 memory_region_init_io(&s->iomem, NULL, &omap_dma4_ops, s, "omap.dma4", 0x1000);
2113 memory_region_add_subregion(sysmem, base, &s->iomem);
2115 mpu->drq = s->dma->drq;
2117 return s->dma;
2120 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma)
2122 struct omap_dma_s *s = dma->opaque;
2124 return &s->lcd_ch;