2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
19 #include "gicv3_internal.h"
22 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
24 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
25 CPUARMState
*env
= &arm_cpu
->env
;
27 env
->gicv3state
= (void *)s
;
30 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
32 return env
->gicv3state
;
35 static bool gicv3_use_ns_bank(CPUARMState
*env
)
37 /* Return true if we should use the NonSecure bank for a banked GIC
38 * CPU interface register. Note that this differs from the
39 * access_secure_reg() function because GICv3 banked registers are
40 * banked even for AArch64, unlike the other CPU system registers.
42 return !arm_is_secure_below_el3(env
);
45 /* The minimum BPR for the virtual interface is a configurable property */
46 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
48 return 7 - cs
->vprebits
;
51 /* Simple accessor functions for LR fields */
52 static uint32_t ich_lr_vintid(uint64_t lr
)
54 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
57 static uint32_t ich_lr_pintid(uint64_t lr
)
59 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
62 static uint32_t ich_lr_prio(uint64_t lr
)
64 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
67 static int ich_lr_state(uint64_t lr
)
69 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
72 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
74 /* Return true if this ICC_ register access should really be
75 * directed to an ICV_ access. hcr_flags is a mask of
76 * HCR_EL2 bits to check: we treat this as an ICV_ access
77 * if we are in NS EL1 and at least one of the specified
78 * HCR_EL2 bits is set.
80 * ICV registers fall into four categories:
81 * * access if NS EL1 and HCR_EL2.FMO == 1:
82 * all ICV regs with '0' in their name
83 * * access if NS EL1 and HCR_EL2.IMO == 1:
84 * all ICV regs with '1' in their name
85 * * access if NS EL1 and either IMO or FMO == 1:
88 bool flagmatch
= ((hcr_flags
& HCR_IMO
) && arm_hcr_el2_imo(env
)) ||
89 ((hcr_flags
& HCR_FMO
) && arm_hcr_el2_fmo(env
));
91 return flagmatch
&& arm_current_el(env
) == 1
92 && !arm_is_secure_below_el3(env
);
95 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
97 /* Read VBPR value out of the VMCR field (caller must handle
98 * VCBPR effects if required)
100 if (grp
== GICV3_G0
) {
101 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
102 ICH_VMCR_EL2_VBPR0_LENGTH
);
104 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
105 ICH_VMCR_EL2_VBPR1_LENGTH
);
109 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
111 /* Write new VBPR1 value, handling the "writing a value less than
112 * the minimum sets it to the minimum" semantics.
114 int min
= icv_min_vbpr(cs
);
116 if (grp
!= GICV3_G0
) {
120 value
= MAX(value
, min
);
122 if (grp
== GICV3_G0
) {
123 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
124 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
126 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
127 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
131 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
133 /* Return a mask word which clears the unimplemented priority bits
134 * from a priority value for a virtual interrupt. (Not to be confused
135 * with the group priority, whose mask depends on the value of VBPR
136 * for the interrupt group.)
138 return ~0U << (8 - cs
->vpribits
);
141 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
143 /* Calculate the current running priority based on the set bits
144 * in the ICH Active Priority Registers.
147 int aprmax
= 1 << (cs
->vprebits
- 5);
149 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
151 for (i
= 0; i
< aprmax
; i
++) {
152 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
153 cs
->ich_apr
[GICV3_G1NS
][i
];
158 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
160 /* No current active interrupts: return idle priority */
164 static int hppvi_index(GICv3CPUState
*cs
)
166 /* Return the list register index of the highest priority pending
167 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
168 * pseudocode. If no pending virtual interrupts, return -1.
172 /* Note that a list register entry with a priority of 0xff will
173 * never be reported by this function; this is the architecturally
178 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
179 /* Both groups disabled, definitely nothing to do */
183 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
184 uint64_t lr
= cs
->ich_lr_el2
[i
];
187 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
192 /* Ignore interrupts if relevant group enable not set */
193 if (lr
& ICH_LR_EL2_GROUP
) {
194 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
198 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
203 thisprio
= ich_lr_prio(lr
);
205 if (thisprio
< prio
) {
214 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
216 /* Return a mask word which clears the subpriority bits from
217 * a priority value for a virtual interrupt in the specified group.
218 * This depends on the VBPR value.
219 * If using VBPR0 then:
220 * a BPR of 0 means the group priority bits are [7:1];
221 * a BPR of 1 means they are [7:2], and so on down to
222 * a BPR of 7 meaning no group priority bits at all.
223 * If using VBPR1 then:
224 * a BPR of 0 is impossible (the minimum value is 1)
225 * a BPR of 1 means the group priority bits are [7:1];
226 * a BPR of 2 means they are [7:2], and so on down to
227 * a BPR of 7 meaning the group priority is [7].
229 * Which BPR to use depends on the group of the interrupt and
230 * the current ICH_VMCR_EL2.VCBPR settings.
232 * This corresponds to the VGroupBits() pseudocode.
236 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
240 bpr
= read_vbpr(cs
, group
);
241 if (group
== GICV3_G1NS
) {
246 return ~0U << (bpr
+ 1);
249 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
251 /* Return true if we can signal this virtual interrupt defined by
252 * the given list register value; see the pseudocode functions
253 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
254 * Compare also icc_hppi_can_preempt() which is the non-virtual
255 * equivalent of these checks.
258 uint32_t mask
, prio
, rprio
, vpmr
;
260 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
261 /* Virtual interface disabled */
265 /* We don't need to check that this LR is in Pending state because
266 * that has already been done in hppvi_index().
269 prio
= ich_lr_prio(lr
);
270 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
271 ICH_VMCR_EL2_VPMR_LENGTH
);
274 /* Priority mask masks this interrupt */
278 rprio
= ich_highest_active_virt_prio(cs
);
280 /* No running interrupt so we can preempt */
284 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
286 mask
= icv_gprio_mask(cs
, grp
);
288 /* We only preempt a running interrupt if the pending interrupt's
289 * group priority is sufficient (the subpriorities are not considered).
291 if ((prio
& mask
) < (rprio
& mask
)) {
298 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
301 /* Return a set of bits indicating the EOI maintenance interrupt status
302 * for each list register. The EOI maintenance interrupt status is
303 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
304 * (see the GICv3 spec for the ICH_EISR_EL2 register).
305 * If misr is not NULL then we should also collect the information
306 * about the MISR.EOI, MISR.NP and MISR.U bits.
310 bool seenpending
= false;
313 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
314 uint64_t lr
= cs
->ich_lr_el2
[i
];
316 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
320 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
323 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
329 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
330 *misr
|= ICH_MISR_EL2_U
;
332 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
333 *misr
|= ICH_MISR_EL2_NP
;
336 *misr
|= ICH_MISR_EL2_EOI
;
342 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
344 /* Return a set of bits indicating the maintenance interrupt status
345 * (as seen in the ICH_MISR_EL2 register).
349 /* Scan list registers and fill in the U, NP and EOI bits */
350 eoi_maintenance_interrupt_state(cs
, &value
);
352 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
353 value
|= ICH_MISR_EL2_LRENP
;
356 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
357 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
358 value
|= ICH_MISR_EL2_VGRP0E
;
361 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
362 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
363 value
|= ICH_MISR_EL2_VGRP0D
;
365 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
366 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
367 value
|= ICH_MISR_EL2_VGRP1E
;
370 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
371 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
372 value
|= ICH_MISR_EL2_VGRP1D
;
378 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
380 /* Tell the CPU about any pending virtual interrupts or
381 * maintenance interrupts, following a change to the state
382 * of the CPU interface relevant to virtual interrupts.
384 * CAUTION: this function will call qemu_set_irq() on the
385 * CPU maintenance IRQ line, which is typically wired up
386 * to the GIC as a per-CPU interrupt. This means that it
387 * will recursively call back into the GIC code via
388 * gicv3_redist_set_irq() and thus into the CPU interface code's
389 * gicv3_cpuif_update(). It is therefore important that this
390 * function is only called as the final action of a CPU interface
391 * register write implementation, after all the GIC state
392 * fields have been updated. gicv3_cpuif_update() also must
393 * not cause this function to be called, but that happens
394 * naturally as a result of there being no architectural
395 * linkage between the physical and virtual GIC logic.
402 idx
= hppvi_index(cs
);
403 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
405 uint64_t lr
= cs
->ich_lr_el2
[idx
];
407 if (icv_hppi_can_preempt(cs
, lr
)) {
408 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
409 if (lr
& ICH_LR_EL2_GROUP
) {
417 if (cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) {
418 maintlevel
= maintenance_interrupt_state(cs
);
421 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
422 irqlevel
, maintlevel
);
424 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
425 qemu_set_irq(cs
->parent_virq
, irqlevel
);
426 qemu_set_irq(cs
->maintenance_irq
, maintlevel
);
429 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
431 GICv3CPUState
*cs
= icc_cs_from_env(env
);
432 int regno
= ri
->opc2
& 3;
433 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
434 uint64_t value
= cs
->ich_apr
[grp
][regno
];
436 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
440 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
443 GICv3CPUState
*cs
= icc_cs_from_env(env
);
444 int regno
= ri
->opc2
& 3;
445 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
447 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
449 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
451 gicv3_cpuif_virt_update(cs
);
455 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
457 GICv3CPUState
*cs
= icc_cs_from_env(env
);
458 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
462 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
463 /* reads return bpr0 + 1 saturated to 7, writes ignored */
468 bpr
= read_vbpr(cs
, grp
);
475 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
480 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
483 GICv3CPUState
*cs
= icc_cs_from_env(env
);
484 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
486 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
487 gicv3_redist_affid(cs
), value
);
489 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
490 /* reads return bpr0 + 1 saturated to 7, writes ignored */
494 write_vbpr(cs
, grp
, value
);
496 gicv3_cpuif_virt_update(cs
);
499 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
501 GICv3CPUState
*cs
= icc_cs_from_env(env
);
504 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
505 ICH_VMCR_EL2_VPMR_LENGTH
);
507 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
511 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
514 GICv3CPUState
*cs
= icc_cs_from_env(env
);
516 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
518 value
&= icv_fullprio_mask(cs
);
520 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
521 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
523 gicv3_cpuif_virt_update(cs
);
526 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
528 GICv3CPUState
*cs
= icc_cs_from_env(env
);
532 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
533 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
535 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
536 gicv3_redist_affid(cs
), value
);
540 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
543 GICv3CPUState
*cs
= icc_cs_from_env(env
);
546 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
547 gicv3_redist_affid(cs
), value
);
549 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
551 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
552 gicv3_cpuif_virt_update(cs
);
555 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
557 GICv3CPUState
*cs
= icc_cs_from_env(env
);
560 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
561 * should match the ones reported in ich_vtr_read().
563 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
564 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
566 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
567 value
|= ICC_CTLR_EL1_EOIMODE
;
570 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
571 value
|= ICC_CTLR_EL1_CBPR
;
574 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
578 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
581 GICv3CPUState
*cs
= icc_cs_from_env(env
);
583 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
585 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
586 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
587 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
588 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
590 gicv3_cpuif_virt_update(cs
);
593 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
595 GICv3CPUState
*cs
= icc_cs_from_env(env
);
596 int prio
= ich_highest_active_virt_prio(cs
);
598 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
602 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
604 GICv3CPUState
*cs
= icc_cs_from_env(env
);
605 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
606 int idx
= hppvi_index(cs
);
607 uint64_t value
= INTID_SPURIOUS
;
610 uint64_t lr
= cs
->ich_lr_el2
[idx
];
611 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
613 if (grp
== thisgrp
) {
614 value
= ich_lr_vintid(lr
);
618 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
622 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
624 /* Activate the interrupt in the specified list register
625 * by moving it from Pending to Active state, and update the
626 * Active Priority Registers.
628 uint32_t mask
= icv_gprio_mask(cs
, grp
);
629 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
630 int aprbit
= prio
>> (8 - cs
->vprebits
);
631 int regno
= aprbit
/ 32;
632 int regbit
= aprbit
% 32;
634 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
635 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
636 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
639 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
641 GICv3CPUState
*cs
= icc_cs_from_env(env
);
642 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
643 int idx
= hppvi_index(cs
);
644 uint64_t intid
= INTID_SPURIOUS
;
647 uint64_t lr
= cs
->ich_lr_el2
[idx
];
648 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
650 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
651 intid
= ich_lr_vintid(lr
);
652 if (intid
< INTID_SECURE
) {
653 icv_activate_irq(cs
, idx
, grp
);
655 /* Interrupt goes from Pending to Invalid */
656 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
657 /* We will now return the (bogus) ID from the list register,
658 * as per the pseudocode.
664 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
665 gicv3_redist_affid(cs
), intid
);
669 static int icc_highest_active_prio(GICv3CPUState
*cs
)
671 /* Calculate the current running priority based on the set bits
672 * in the Active Priority Registers.
676 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
677 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
678 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
683 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
685 /* No current active interrupts: return idle priority */
689 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
691 /* Return a mask word which clears the subpriority bits from
692 * a priority value for an interrupt in the specified group.
693 * This depends on the BPR value. For CBPR0 (S or NS):
694 * a BPR of 0 means the group priority bits are [7:1];
695 * a BPR of 1 means they are [7:2], and so on down to
696 * a BPR of 7 meaning no group priority bits at all.
698 * a BPR of 0 is impossible (the minimum value is 1)
699 * a BPR of 1 means the group priority bits are [7:1];
700 * a BPR of 2 means they are [7:2], and so on down to
701 * a BPR of 7 meaning the group priority is [7].
703 * Which BPR to use depends on the group of the interrupt and
704 * the current ICC_CTLR.CBPR settings.
706 * This corresponds to the GroupBits() pseudocode.
710 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
711 (group
== GICV3_G1NS
&&
712 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
716 bpr
= cs
->icc_bpr
[group
] & 7;
718 if (group
== GICV3_G1NS
) {
723 return ~0U << (bpr
+ 1);
726 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
728 /* Return true if there is no pending interrupt, or the
729 * highest priority pending interrupt is in a group which has been
730 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
732 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
735 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
737 /* Return true if we have a pending interrupt of sufficient
738 * priority to preempt.
743 if (icc_no_enabled_hppi(cs
)) {
747 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
748 /* Priority mask masks this interrupt */
752 rprio
= icc_highest_active_prio(cs
);
754 /* No currently running interrupt so we can preempt */
758 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
760 /* We only preempt a running interrupt if the pending interrupt's
761 * group priority is sufficient (the subpriorities are not considered).
763 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
770 void gicv3_cpuif_update(GICv3CPUState
*cs
)
772 /* Tell the CPU about its highest priority pending interrupt */
775 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
776 CPUARMState
*env
= &cpu
->env
;
778 g_assert(qemu_mutex_iothread_locked());
780 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
781 cs
->hppi
.grp
, cs
->hppi
.prio
);
783 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
784 /* If a Security-enabled GIC sends a G1S interrupt to a
785 * Security-disabled CPU, we must treat it as if it were G0.
787 cs
->hppi
.grp
= GICV3_G0
;
790 if (icc_hppi_can_preempt(cs
)) {
791 /* We have an interrupt: should we signal it as IRQ or FIQ?
792 * This is described in the GICv3 spec section 4.6.2.
796 switch (cs
->hppi
.grp
) {
801 isfiq
= (!arm_is_secure(env
) ||
802 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
805 isfiq
= arm_is_secure(env
);
808 g_assert_not_reached();
818 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
820 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
821 qemu_set_irq(cs
->parent_irq
, irqlevel
);
824 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
826 GICv3CPUState
*cs
= icc_cs_from_env(env
);
827 uint32_t value
= cs
->icc_pmr_el1
;
829 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
830 return icv_pmr_read(env
, ri
);
833 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
834 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
835 /* NS access and Group 0 is inaccessible to NS: return the
836 * NS view of the current priority
838 if ((value
& 0x80) == 0) {
839 /* Secure priorities not visible to NS */
841 } else if (value
!= 0xff) {
842 value
= (value
<< 1) & 0xff;
846 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
851 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
854 GICv3CPUState
*cs
= icc_cs_from_env(env
);
856 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
857 return icv_pmr_write(env
, ri
, value
);
860 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
864 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
865 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
866 /* NS access and Group 0 is inaccessible to NS: return the
867 * NS view of the current priority
869 if (!(cs
->icc_pmr_el1
& 0x80)) {
870 /* Current PMR in the secure range, don't allow NS to change it */
873 value
= (value
>> 1) | 0x80;
875 cs
->icc_pmr_el1
= value
;
876 gicv3_cpuif_update(cs
);
879 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
881 /* Move the interrupt from the Pending state to Active, and update
882 * the Active Priority Registers
884 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
885 int prio
= cs
->hppi
.prio
& mask
;
886 int aprbit
= prio
>> 1;
887 int regno
= aprbit
/ 32;
888 int regbit
= aprbit
% 32;
890 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
892 if (irq
< GIC_INTERNAL
) {
893 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
894 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
895 gicv3_redist_update(cs
);
897 gicv3_gicd_active_set(cs
->gic
, irq
);
898 gicv3_gicd_pending_clear(cs
->gic
, irq
);
899 gicv3_update(cs
->gic
, irq
, 1);
903 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
905 /* Return the highest priority pending interrupt register value
910 if (cs
->hppi
.prio
== 0xff) {
911 return INTID_SPURIOUS
;
914 /* Check whether we can return the interrupt or if we should return
915 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
916 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
919 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
920 (cs
->hppi
.grp
!= GICV3_G1NS
));
922 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
923 return INTID_SPURIOUS
;
925 if (irq_is_secure
&& !arm_is_secure(env
)) {
926 /* Secure interrupts not visible to Nonsecure */
927 return INTID_SPURIOUS
;
930 if (cs
->hppi
.grp
!= GICV3_G0
) {
931 /* Indicate to EL3 that there's a Group 1 interrupt for the other
934 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
940 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
942 /* Return the highest priority pending interrupt register value
947 if (cs
->hppi
.prio
== 0xff) {
948 return INTID_SPURIOUS
;
951 /* Check whether we can return the interrupt or if we should return
952 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
953 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
956 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
957 (cs
->hppi
.grp
!= GICV3_G1NS
));
959 if (cs
->hppi
.grp
== GICV3_G0
) {
960 /* Group 0 interrupts not visible via HPPIR1 */
961 return INTID_SPURIOUS
;
964 if (!arm_is_secure(env
)) {
965 /* Secure interrupts not visible in Non-secure */
966 return INTID_SPURIOUS
;
968 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
969 /* Group 1 non-secure interrupts not visible in Secure EL1 */
970 return INTID_SPURIOUS
;
976 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
978 GICv3CPUState
*cs
= icc_cs_from_env(env
);
981 if (icv_access(env
, HCR_FMO
)) {
982 return icv_iar_read(env
, ri
);
985 if (!icc_hppi_can_preempt(cs
)) {
986 intid
= INTID_SPURIOUS
;
988 intid
= icc_hppir0_value(cs
, env
);
991 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
992 icc_activate_irq(cs
, intid
);
995 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
999 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1001 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1004 if (icv_access(env
, HCR_IMO
)) {
1005 return icv_iar_read(env
, ri
);
1008 if (!icc_hppi_can_preempt(cs
)) {
1009 intid
= INTID_SPURIOUS
;
1011 intid
= icc_hppir1_value(cs
, env
);
1014 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1015 icc_activate_irq(cs
, intid
);
1018 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1022 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1024 /* Drop the priority of the currently active interrupt in
1025 * the specified group.
1027 * Note that we can guarantee (because of the requirement to nest
1028 * ICC_IAR reads [which activate an interrupt and raise priority]
1029 * with ICC_EOIR writes [which drop the priority for the interrupt])
1030 * that the interrupt we're being called for is the highest priority
1031 * active interrupt, meaning that it has the lowest set bit in the
1034 * If the guest does not honour the ordering constraints then the
1035 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1036 * the values of the APR registers might become incorrect and the
1037 * running priority will be wrong, so interrupts that should preempt
1038 * might not do so, and interrupts that should not preempt might do so.
1042 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1043 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1048 /* Clear the lowest set bit */
1053 /* running priority change means we need an update for this cpu i/f */
1054 gicv3_cpuif_update(cs
);
1057 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1059 /* Return true if we should split priority drop and interrupt
1060 * deactivation, ie whether the relevant EOIMode bit is set.
1062 if (arm_is_el3_or_mon(env
)) {
1063 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1065 if (arm_is_secure_below_el3(env
)) {
1066 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1068 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1072 static int icc_highest_active_group(GICv3CPUState
*cs
)
1074 /* Return the group with the highest priority active interrupt.
1075 * We can do this by just comparing the APRs to see which one
1076 * has the lowest set bit.
1077 * (If more than one group is active at the same priority then
1078 * we're in UNPREDICTABLE territory.)
1082 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1083 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1084 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1085 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1087 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1090 if (g1ctz
< g0ctz
) {
1097 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1098 * ignores the spurious EOI attempt.
1103 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1105 if (irq
< GIC_INTERNAL
) {
1106 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1107 gicv3_redist_update(cs
);
1109 gicv3_gicd_active_clear(cs
->gic
, irq
);
1110 gicv3_update(cs
->gic
, irq
, 1);
1114 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1116 /* Return true if we should split priority drop and interrupt
1117 * deactivation, ie whether the virtual EOIMode bit is set.
1119 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1122 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1124 /* Given an interrupt number for an active interrupt, return the index
1125 * of the corresponding list register, or -1 if there is no match.
1126 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1130 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1131 uint64_t lr
= cs
->ich_lr_el2
[i
];
1133 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1141 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1143 /* Deactivate the interrupt in the specified list register index */
1144 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1146 if (lr
& ICH_LR_EL2_HW
) {
1147 /* Deactivate the associated physical interrupt */
1148 int pirq
= ich_lr_pintid(lr
);
1150 if (pirq
< INTID_SECURE
) {
1151 icc_deactivate_irq(cs
, pirq
);
1155 /* Clear the 'active' part of the state, so ActivePending->Pending
1156 * and Active->Invalid.
1158 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1159 cs
->ich_lr_el2
[idx
] = lr
;
1162 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1164 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1165 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1166 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1168 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1169 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1172 static int icv_drop_prio(GICv3CPUState
*cs
)
1174 /* Drop the priority of the currently active virtual interrupt
1175 * (favouring group 0 if there is a set active bit at
1176 * the same priority for both group 0 and group 1).
1177 * Return the priority value for the bit we just cleared,
1178 * or 0xff if no bits were set in the AP registers at all.
1179 * Note that though the ich_apr[] are uint64_t only the low
1180 * 32 bits are actually relevant.
1183 int aprmax
= 1 << (cs
->vprebits
- 5);
1185 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1187 for (i
= 0; i
< aprmax
; i
++) {
1188 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1189 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1190 int apr0count
, apr1count
;
1192 if (!*papr0
&& !*papr1
) {
1196 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1197 * because we need to return the bit number we cleared so
1198 * it can be compared against the list register's priority field.
1200 apr0count
= ctz32(*papr0
);
1201 apr1count
= ctz32(*papr1
);
1203 if (apr0count
<= apr1count
) {
1204 *papr0
&= *papr0
- 1;
1205 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1207 *papr1
&= *papr1
- 1;
1208 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1214 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1217 /* Deactivate interrupt */
1218 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1220 int irq
= value
& 0xffffff;
1222 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1224 if (irq
>= cs
->gic
->num_irq
) {
1225 /* Also catches special interrupt numbers and LPIs */
1229 if (!icv_eoi_split(env
, cs
)) {
1233 idx
= icv_find_active(cs
, irq
);
1236 /* No list register matching this, so increment the EOI count
1237 * (might trigger a maintenance interrupt)
1239 icv_increment_eoicount(cs
);
1241 icv_deactivate_irq(cs
, idx
);
1244 gicv3_cpuif_virt_update(cs
);
1247 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1250 /* End of Interrupt */
1251 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1252 int irq
= value
& 0xffffff;
1253 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1256 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1257 gicv3_redist_affid(cs
), value
);
1259 if (irq
>= cs
->gic
->num_irq
) {
1260 /* Also catches special interrupt numbers and LPIs */
1264 /* We implement the IMPDEF choice of "drop priority before doing
1265 * error checks" (because that lets us avoid scanning the AP
1268 dropprio
= icv_drop_prio(cs
);
1269 if (dropprio
== 0xff) {
1270 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1271 * whether the list registers are checked in this
1272 * situation; we choose not to.
1277 idx
= icv_find_active(cs
, irq
);
1280 /* No valid list register corresponding to EOI ID */
1281 icv_increment_eoicount(cs
);
1283 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1284 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1285 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1287 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1288 if (!icv_eoi_split(env
, cs
)) {
1289 /* Priority drop and deactivate not split: deactivate irq now */
1290 icv_deactivate_irq(cs
, idx
);
1295 gicv3_cpuif_virt_update(cs
);
1298 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1301 /* End of Interrupt */
1302 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1303 int irq
= value
& 0xffffff;
1306 if (icv_access(env
, ri
->crm
== 8 ? HCR_FMO
: HCR_IMO
)) {
1307 icv_eoir_write(env
, ri
, value
);
1311 trace_gicv3_icc_eoir_write(ri
->crm
== 8 ? 0 : 1,
1312 gicv3_redist_affid(cs
), value
);
1319 if (arm_is_secure(env
)) {
1326 if (irq
>= cs
->gic
->num_irq
) {
1327 /* This handles two cases:
1328 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1329 * to the GICC_EOIR, the GIC ignores that write.
1330 * 2. If software writes the number of a non-existent interrupt
1331 * this must be a subcase of "value written does not match the last
1332 * valid interrupt value read from the Interrupt Acknowledge
1333 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1338 if (icc_highest_active_group(cs
) != grp
) {
1342 icc_drop_prio(cs
, grp
);
1344 if (!icc_eoi_split(env
, cs
)) {
1345 /* Priority drop and deactivate not split: deactivate irq now */
1346 icc_deactivate_irq(cs
, irq
);
1350 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1352 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1355 if (icv_access(env
, HCR_FMO
)) {
1356 return icv_hppir_read(env
, ri
);
1359 value
= icc_hppir0_value(cs
, env
);
1360 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1364 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1366 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1369 if (icv_access(env
, HCR_IMO
)) {
1370 return icv_hppir_read(env
, ri
);
1373 value
= icc_hppir1_value(cs
, env
);
1374 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1378 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1380 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1381 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1382 bool satinc
= false;
1385 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1386 return icv_bpr_read(env
, ri
);
1389 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1393 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1394 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1395 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1401 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1402 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1403 /* reads return bpr0 + 1 sat to 7, writes ignored */
1408 bpr
= cs
->icc_bpr
[grp
];
1414 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1419 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1422 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1423 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1426 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1427 icv_bpr_write(env
, ri
, value
);
1431 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1432 gicv3_redist_affid(cs
), value
);
1434 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1438 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1439 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1440 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1446 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1447 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1448 /* reads return bpr0 + 1 sat to 7, writes ignored */
1452 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1453 if (value
< minval
) {
1457 cs
->icc_bpr
[grp
] = value
& 7;
1458 gicv3_cpuif_update(cs
);
1461 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1463 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1466 int regno
= ri
->opc2
& 3;
1467 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1469 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1470 return icv_ap_read(env
, ri
);
1473 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1477 value
= cs
->icc_apr
[grp
][regno
];
1479 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1483 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1486 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1488 int regno
= ri
->opc2
& 3;
1489 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1491 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1492 icv_ap_write(env
, ri
, value
);
1496 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1498 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1502 /* It's not possible to claim that a Non-secure interrupt is active
1503 * at a priority outside the Non-secure range (128..255), since this
1504 * would otherwise allow malicious NS code to block delivery of S interrupts
1505 * by writing a bad value to these registers.
1507 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1511 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1512 gicv3_cpuif_update(cs
);
1515 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1518 /* Deactivate interrupt */
1519 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1520 int irq
= value
& 0xffffff;
1521 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1522 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1524 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1525 icv_dir_write(env
, ri
, value
);
1529 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1531 if (irq
>= cs
->gic
->num_irq
) {
1532 /* Also catches special interrupt numbers and LPIs */
1536 if (!icc_eoi_split(env
, cs
)) {
1540 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1542 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1543 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1544 irq_is_grp0
= grp
== GICV3_G0
;
1546 /* Check whether we're allowed to deactivate this interrupt based
1547 * on its group and the current CPU state.
1548 * These checks are laid out to correspond to the spec's pseudocode.
1550 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1551 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1552 /* No need to include !IsSecure in route_*_to_el2 as it's only
1553 * tested in cases where we know !IsSecure is true.
1555 route_fiq_to_el2
= arm_hcr_el2_fmo(env
);
1556 route_irq_to_el2
= arm_hcr_el2_imo(env
);
1558 switch (arm_current_el(env
)) {
1562 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1565 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1570 if (!arm_is_secure_below_el3(env
)) {
1571 if (single_sec_state
&& irq_is_grp0
&&
1572 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1575 if (!irq_is_secure
&& !irq_is_grp0
&&
1576 !route_irq_to_el3
&& !route_irq_to_el2
) {
1580 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1584 (!irq_is_secure
|| !single_sec_state
) &&
1585 !route_irq_to_el3
) {
1591 g_assert_not_reached();
1594 icc_deactivate_irq(cs
, irq
);
1597 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1599 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1602 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1603 return icv_rpr_read(env
, ri
);
1606 prio
= icc_highest_active_prio(cs
);
1608 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1609 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1610 /* NS GIC access and Group 0 is inaccessible to NS */
1611 if ((prio
& 0x80) == 0) {
1612 /* NS mustn't see priorities in the Secure half of the range */
1614 } else if (prio
!= 0xff) {
1615 /* Non-idle priority: show the Non-secure view of it */
1616 prio
= (prio
<< 1) & 0xff;
1620 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1624 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1625 uint64_t value
, int grp
, bool ns
)
1627 GICv3State
*s
= cs
->gic
;
1629 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1630 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1631 extract64(value
, 32, 8) << 8 |
1632 extract64(value
, 16, 8);
1633 uint32_t targetlist
= extract64(value
, 0, 16);
1634 uint32_t irq
= extract64(value
, 24, 4);
1635 bool irm
= extract64(value
, 40, 1);
1638 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1639 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1640 * interrupts as Group 0 interrupts and must send Secure Group 0
1641 * interrupts to the target CPUs.
1646 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1649 for (i
= 0; i
< s
->num_cpu
; i
++) {
1650 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1653 /* IRM == 1 : route to all CPUs except self */
1658 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1659 * where the corresponding bit is set in targetlist
1663 if (ocs
->gicr_typer
>> 40 != aff
) {
1666 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1667 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1672 /* The redistributor will check against its own GICR_NSACR as needed */
1673 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1677 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1680 /* Generate Secure Group 0 SGI. */
1681 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1682 bool ns
= !arm_is_secure(env
);
1684 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1687 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1690 /* Generate Group 1 SGI for the current Security state */
1691 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1693 bool ns
= !arm_is_secure(env
);
1695 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1696 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1699 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1702 /* Generate Group 1 SGI for the Security state that is not
1705 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1707 bool ns
= !arm_is_secure(env
);
1709 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1710 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1713 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1715 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1716 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1719 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1720 return icv_igrpen_read(env
, ri
);
1723 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1727 value
= cs
->icc_igrpen
[grp
];
1728 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1729 gicv3_redist_affid(cs
), value
);
1733 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1736 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1737 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1739 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1740 icv_igrpen_write(env
, ri
, value
);
1744 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1745 gicv3_redist_affid(cs
), value
);
1747 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1751 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1752 gicv3_cpuif_update(cs
);
1755 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1757 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1760 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1761 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1762 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1766 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1769 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1771 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1773 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1774 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1775 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1776 gicv3_cpuif_update(cs
);
1779 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1781 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1782 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1785 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1786 return icv_ctlr_read(env
, ri
);
1789 value
= cs
->icc_ctlr_el1
[bank
];
1790 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1794 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1797 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1798 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1801 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1802 icv_ctlr_write(env
, ri
, value
);
1806 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1808 /* Only CBPR and EOIMODE can be RW;
1809 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1810 * the asseciated priority-based routing of them);
1811 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1813 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1814 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1815 mask
= ICC_CTLR_EL1_EOIMODE
;
1817 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1820 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1821 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1822 gicv3_cpuif_update(cs
);
1826 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1828 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1831 value
= cs
->icc_ctlr_el3
;
1832 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1833 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1835 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1836 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1838 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1839 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1841 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1842 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1845 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1849 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1852 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1855 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1857 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1858 cs
->icc_ctlr_el1
[GICV3_NS
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1859 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1860 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1862 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1863 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1866 cs
->icc_ctlr_el1
[GICV3_S
] &= (ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1867 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1868 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1870 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1871 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1874 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1875 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1877 cs
->icc_ctlr_el3
&= ~mask
;
1878 cs
->icc_ctlr_el3
|= (value
& mask
);
1879 gicv3_cpuif_update(cs
);
1882 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1883 const ARMCPRegInfo
*ri
, bool isread
)
1885 CPAccessResult r
= CP_ACCESS_OK
;
1886 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1887 int el
= arm_current_el(env
);
1889 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1890 el
== 1 && !arm_is_secure_below_el3(env
)) {
1891 /* Takes priority over a possible EL3 trap */
1892 return CP_ACCESS_TRAP_EL2
;
1895 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1898 if (arm_is_secure_below_el3(env
) ||
1899 (arm_hcr_el2_imo(env
) == 0 && arm_hcr_el2_fmo(env
) == 0)) {
1900 r
= CP_ACCESS_TRAP_EL3
;
1904 r
= CP_ACCESS_TRAP_EL3
;
1907 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1908 r
= CP_ACCESS_TRAP_EL3
;
1912 g_assert_not_reached();
1916 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1922 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1923 const ARMCPRegInfo
*ri
, bool isread
)
1925 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1927 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1928 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1929 /* Takes priority over a possible EL3 trap */
1930 return CP_ACCESS_TRAP_EL2
;
1933 return gicv3_irqfiq_access(env
, ri
, isread
);
1936 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1937 const ARMCPRegInfo
*ri
, bool isread
)
1939 if ((arm_hcr_el2_imo(env
) || arm_hcr_el2_fmo(env
)) &&
1940 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1941 /* Takes priority over a possible EL3 trap */
1942 return CP_ACCESS_TRAP_EL2
;
1945 return gicv3_irqfiq_access(env
, ri
, isread
);
1948 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1949 const ARMCPRegInfo
*ri
, bool isread
)
1951 CPAccessResult r
= CP_ACCESS_OK
;
1952 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1953 int el
= arm_current_el(env
);
1955 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1956 el
== 1 && !arm_is_secure_below_el3(env
)) {
1957 /* Takes priority over a possible EL3 trap */
1958 return CP_ACCESS_TRAP_EL2
;
1961 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1964 if (arm_is_secure_below_el3(env
) || !arm_hcr_el2_fmo(env
)) {
1965 r
= CP_ACCESS_TRAP_EL3
;
1969 r
= CP_ACCESS_TRAP_EL3
;
1972 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1973 r
= CP_ACCESS_TRAP_EL3
;
1977 g_assert_not_reached();
1981 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1987 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
1988 const ARMCPRegInfo
*ri
, bool isread
)
1990 CPAccessResult r
= CP_ACCESS_OK
;
1991 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1992 int el
= arm_current_el(env
);
1994 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
1995 el
== 1 && !arm_is_secure_below_el3(env
)) {
1996 /* Takes priority over a possible EL3 trap */
1997 return CP_ACCESS_TRAP_EL2
;
2000 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2003 if (arm_is_secure_below_el3(env
) || !arm_hcr_el2_imo(env
)) {
2004 r
= CP_ACCESS_TRAP_EL3
;
2008 r
= CP_ACCESS_TRAP_EL3
;
2011 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2012 r
= CP_ACCESS_TRAP_EL3
;
2016 g_assert_not_reached();
2020 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2026 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2028 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2030 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2031 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2032 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2033 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2034 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2035 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2036 cs
->icc_pmr_el1
= 0;
2037 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2038 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2039 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2040 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2041 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2042 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2043 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2044 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2046 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2047 cs
->ich_hcr_el2
= 0;
2048 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2049 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2050 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2051 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2054 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2055 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2056 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2057 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2058 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2059 .readfn
= icc_pmr_read
,
2060 .writefn
= icc_pmr_write
,
2061 /* We hang the whole cpu interface reset routine off here
2062 * rather than parcelling it out into one little function
2065 .resetfn
= icc_reset
,
2067 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2068 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2069 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2070 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2071 .readfn
= icc_iar0_read
,
2073 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2074 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2075 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2076 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2077 .writefn
= icc_eoir_write
,
2079 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2080 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2081 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2082 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2083 .readfn
= icc_hppir0_read
,
2085 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2086 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2087 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2088 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2089 .readfn
= icc_bpr_read
,
2090 .writefn
= icc_bpr_write
,
2092 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2093 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2094 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2095 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2096 .readfn
= icc_ap_read
,
2097 .writefn
= icc_ap_write
,
2099 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2100 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2101 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2102 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2103 .readfn
= icc_ap_read
,
2104 .writefn
= icc_ap_write
,
2106 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2107 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2108 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2109 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2110 .readfn
= icc_ap_read
,
2111 .writefn
= icc_ap_write
,
2113 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2114 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2115 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2116 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2117 .readfn
= icc_ap_read
,
2118 .writefn
= icc_ap_write
,
2120 /* All the ICC_AP1R*_EL1 registers are banked */
2121 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2122 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2123 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2124 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2125 .readfn
= icc_ap_read
,
2126 .writefn
= icc_ap_write
,
2128 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2129 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2130 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2131 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2132 .readfn
= icc_ap_read
,
2133 .writefn
= icc_ap_write
,
2135 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2136 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2137 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2138 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2139 .readfn
= icc_ap_read
,
2140 .writefn
= icc_ap_write
,
2142 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2143 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2144 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2145 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2146 .readfn
= icc_ap_read
,
2147 .writefn
= icc_ap_write
,
2149 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2150 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2151 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2152 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2153 .writefn
= icc_dir_write
,
2155 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2156 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2157 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2158 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2159 .readfn
= icc_rpr_read
,
2161 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2162 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2163 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2164 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2165 .writefn
= icc_sgi1r_write
,
2167 { .name
= "ICC_SGI1R",
2168 .cp
= 15, .opc1
= 0, .crm
= 12,
2169 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2170 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2171 .writefn
= icc_sgi1r_write
,
2173 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2174 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2175 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2176 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2177 .writefn
= icc_asgi1r_write
,
2179 { .name
= "ICC_ASGI1R",
2180 .cp
= 15, .opc1
= 1, .crm
= 12,
2181 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2182 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2183 .writefn
= icc_asgi1r_write
,
2185 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2186 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2187 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2188 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2189 .writefn
= icc_sgi0r_write
,
2191 { .name
= "ICC_SGI0R",
2192 .cp
= 15, .opc1
= 2, .crm
= 12,
2193 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2194 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2195 .writefn
= icc_sgi0r_write
,
2197 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2198 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2199 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2200 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2201 .readfn
= icc_iar1_read
,
2203 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2204 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2205 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2206 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2207 .writefn
= icc_eoir_write
,
2209 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2210 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2211 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2212 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2213 .readfn
= icc_hppir1_read
,
2215 /* This register is banked */
2216 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2217 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2218 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2219 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2220 .readfn
= icc_bpr_read
,
2221 .writefn
= icc_bpr_write
,
2223 /* This register is banked */
2224 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2225 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2226 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2227 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2228 .readfn
= icc_ctlr_el1_read
,
2229 .writefn
= icc_ctlr_el1_write
,
2231 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2232 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2233 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2235 /* We don't support IRQ/FIQ bypass and system registers are
2236 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2237 * This register is banked but since it's constant we don't
2238 * need to do anything special.
2242 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2243 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2244 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2245 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2246 .readfn
= icc_igrpen_read
,
2247 .writefn
= icc_igrpen_write
,
2249 /* This register is banked */
2250 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2251 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2252 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2253 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2254 .readfn
= icc_igrpen_read
,
2255 .writefn
= icc_igrpen_write
,
2257 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2258 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2259 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2261 /* We don't support IRQ/FIQ bypass and system registers are
2262 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2266 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2267 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2268 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2270 .readfn
= icc_ctlr_el3_read
,
2271 .writefn
= icc_ctlr_el3_write
,
2273 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2274 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2275 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2277 /* We don't support IRQ/FIQ bypass and system registers are
2278 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2282 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2283 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2284 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2286 .readfn
= icc_igrpen1_el3_read
,
2287 .writefn
= icc_igrpen1_el3_write
,
2292 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2294 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2295 int regno
= ri
->opc2
& 3;
2296 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2299 value
= cs
->ich_apr
[grp
][regno
];
2300 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2304 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2307 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2308 int regno
= ri
->opc2
& 3;
2309 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2311 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2313 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2314 gicv3_cpuif_virt_update(cs
);
2317 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2319 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2320 uint64_t value
= cs
->ich_hcr_el2
;
2322 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2326 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2329 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2331 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2333 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2334 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2335 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2336 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2337 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2339 cs
->ich_hcr_el2
= value
;
2340 gicv3_cpuif_virt_update(cs
);
2343 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2345 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2346 uint64_t value
= cs
->ich_vmcr_el2
;
2348 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2352 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2355 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2357 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2359 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2360 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2361 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2362 value
|= ICH_VMCR_EL2_VFIQEN
;
2364 cs
->ich_vmcr_el2
= value
;
2365 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2366 * by reading and writing back the fields.
2368 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G0
));
2369 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2371 gicv3_cpuif_virt_update(cs
);
2374 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2376 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2377 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2380 /* This read function handles all of:
2381 * 64-bit reads of the whole LR
2382 * 32-bit reads of the low half of the LR
2383 * 32-bit reads of the high half of the LR
2385 if (ri
->state
== ARM_CP_STATE_AA32
) {
2386 if (ri
->crm
>= 14) {
2387 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2388 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2390 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2391 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2394 value
= cs
->ich_lr_el2
[regno
];
2395 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2401 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2404 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2405 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2407 /* This write function handles all of:
2408 * 64-bit writes to the whole LR
2409 * 32-bit writes to the low half of the LR
2410 * 32-bit writes to the high half of the LR
2412 if (ri
->state
== ARM_CP_STATE_AA32
) {
2413 if (ri
->crm
>= 14) {
2414 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2415 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2417 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2418 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2421 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2424 /* Enforce RES0 bits in priority field */
2425 if (cs
->vpribits
< 8) {
2426 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2427 8 - cs
->vpribits
, 0);
2430 cs
->ich_lr_el2
[regno
] = value
;
2431 gicv3_cpuif_virt_update(cs
);
2434 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2436 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2439 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2440 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2441 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2442 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2443 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2445 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2449 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2451 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2452 uint64_t value
= maintenance_interrupt_state(cs
);
2454 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2458 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2460 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2461 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2463 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2467 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2469 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2473 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2474 uint64_t lr
= cs
->ich_lr_el2
[i
];
2476 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2477 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2482 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2486 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2487 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2488 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2489 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2491 .readfn
= ich_ap_read
,
2492 .writefn
= ich_ap_write
,
2494 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2495 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2496 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2498 .readfn
= ich_ap_read
,
2499 .writefn
= ich_ap_write
,
2501 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2502 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2503 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2505 .readfn
= ich_hcr_read
,
2506 .writefn
= ich_hcr_write
,
2508 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2509 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2510 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2512 .readfn
= ich_vtr_read
,
2514 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2515 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2516 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2518 .readfn
= ich_misr_read
,
2520 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2521 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2522 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2524 .readfn
= ich_eisr_read
,
2526 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2527 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2528 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2530 .readfn
= ich_elrsr_read
,
2532 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2533 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2534 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2536 .readfn
= ich_vmcr_read
,
2537 .writefn
= ich_vmcr_write
,
2542 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2543 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2544 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2545 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2547 .readfn
= ich_ap_read
,
2548 .writefn
= ich_ap_write
,
2550 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2551 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2552 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2554 .readfn
= ich_ap_read
,
2555 .writefn
= ich_ap_write
,
2560 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2561 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2562 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2563 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2565 .readfn
= ich_ap_read
,
2566 .writefn
= ich_ap_write
,
2568 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2569 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2570 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2572 .readfn
= ich_ap_read
,
2573 .writefn
= ich_ap_write
,
2575 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2576 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2577 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2579 .readfn
= ich_ap_read
,
2580 .writefn
= ich_ap_write
,
2582 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2583 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2584 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2586 .readfn
= ich_ap_read
,
2587 .writefn
= ich_ap_write
,
2592 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2594 GICv3CPUState
*cs
= opaque
;
2596 gicv3_cpuif_update(cs
);
2599 void gicv3_init_cpuif(GICv3State
*s
)
2601 /* Called from the GICv3 realize function; register our system
2602 * registers with the CPU
2606 for (i
= 0; i
< s
->num_cpu
; i
++) {
2607 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2608 GICv3CPUState
*cs
= &s
->cpu
[i
];
2610 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2611 * in define_arm_cp_regs_with_opaque(), because when we're called back
2612 * it might be with code translated by CPU 0 but run by CPU 1, in
2613 * which case we'd get the wrong value.
2614 * So instead we define the regs with no ri->opaque info, and
2615 * get back to the GICv3CPUState from the CPUARMState.
2617 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2618 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2619 && cpu
->gic_num_lrs
) {
2622 cs
->maintenance_irq
= cpu
->gicv3_maintenance_interrupt
;
2624 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2625 cs
->vpribits
= cpu
->gic_vpribits
;
2626 cs
->vprebits
= cpu
->gic_vprebits
;
2628 /* Check against architectural constraints: getting these
2629 * wrong would be a bug in the CPU code defining these,
2630 * and the implementation relies on them holding.
2632 g_assert(cs
->vprebits
<= cs
->vpribits
);
2633 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2634 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2636 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2638 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2639 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2640 * are split into two cp15 regs, LR (the low part, with the
2641 * same encoding as the AArch64 LR) and LRC (the high part).
2643 ARMCPRegInfo lr_regset
[] = {
2644 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2645 .opc0
= 3, .opc1
= 4, .crn
= 12,
2646 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2647 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2649 .readfn
= ich_lr_read
,
2650 .writefn
= ich_lr_write
,
2652 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2653 .cp
= 15, .opc1
= 4, .crn
= 12,
2654 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2655 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2657 .readfn
= ich_lr_read
,
2658 .writefn
= ich_lr_write
,
2662 define_arm_cp_regs(cpu
, lr_regset
);
2664 if (cs
->vprebits
>= 6) {
2665 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2667 if (cs
->vprebits
== 7) {
2668 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2671 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);