libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / intc / arm_gicv3_redist.c
blob3b0ba6de1ab5ead8450ecddb633cbc02daba5c91
1 /*
2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
28 return 0xFFFFFFFFU;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
34 assert(irq < 16);
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
43 *reg |= val;
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
52 *reg &= ~val;
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57 uint32_t reg)
59 reg &= mask_group(cs, attrs);
60 return reg;
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64 int irq)
66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67 * honouring security state (these are RAZ/WI for Group 0 or Secure
68 * Group 1 interrupts).
70 uint32_t prio;
72 prio = cs->gicr_ipriorityr[irq];
74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75 if (!(cs->gicr_igroupr0 & (1U << irq))) {
76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77 return 0;
79 /* NS view of the interrupt priority */
80 prio = (prio << 1) & 0xff;
82 return prio;
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86 uint8_t value)
88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89 * honouring security state (these are RAZ/WI for Group 0 or Secure
90 * Group 1 interrupts).
92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93 if (!(cs->gicr_igroupr0 & (1U << irq))) {
94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95 return;
97 /* NS view of the interrupt priority */
98 value = 0x80 | (value >> 1);
100 cs->gicr_ipriorityr[irq] = value;
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104 uint64_t *data, MemTxAttrs attrs)
106 switch (offset) {
107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109 return MEMTX_OK;
110 default:
111 return MEMTX_ERROR;
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116 uint64_t value, MemTxAttrs attrs)
118 switch (offset) {
119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121 gicv3_redist_update(cs);
122 return MEMTX_OK;
123 default:
124 return MEMTX_ERROR;
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129 uint64_t *data, MemTxAttrs attrs)
131 switch (offset) {
132 case GICR_CTLR:
133 *data = cs->gicr_ctlr;
134 return MEMTX_OK;
135 case GICR_IIDR:
136 *data = gicv3_iidr();
137 return MEMTX_OK;
138 case GICR_TYPER:
139 *data = extract64(cs->gicr_typer, 0, 32);
140 return MEMTX_OK;
141 case GICR_TYPER + 4:
142 *data = extract64(cs->gicr_typer, 32, 32);
143 return MEMTX_OK;
144 case GICR_STATUSR:
145 /* RAZ/WI for us (this is an optional register and our implementation
146 * does not track RO/WO/reserved violations to report them to the guest)
148 *data = 0;
149 return MEMTX_OK;
150 case GICR_WAKER:
151 *data = cs->gicr_waker;
152 return MEMTX_OK;
153 case GICR_PROPBASER:
154 *data = extract64(cs->gicr_propbaser, 0, 32);
155 return MEMTX_OK;
156 case GICR_PROPBASER + 4:
157 *data = extract64(cs->gicr_propbaser, 32, 32);
158 return MEMTX_OK;
159 case GICR_PENDBASER:
160 *data = extract64(cs->gicr_pendbaser, 0, 32);
161 return MEMTX_OK;
162 case GICR_PENDBASER + 4:
163 *data = extract64(cs->gicr_pendbaser, 32, 32);
164 return MEMTX_OK;
165 case GICR_IGROUPR0:
166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167 *data = 0;
168 return MEMTX_OK;
170 *data = cs->gicr_igroupr0;
171 return MEMTX_OK;
172 case GICR_ISENABLER0:
173 case GICR_ICENABLER0:
174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175 return MEMTX_OK;
176 case GICR_ISPENDR0:
177 case GICR_ICPENDR0:
179 /* The pending register reads as the logical OR of the pending
180 * latch and the input line level for level-triggered interrupts.
182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183 *data = gicr_read_bitmap_reg(cs, attrs, val);
184 return MEMTX_OK;
186 case GICR_ISACTIVER0:
187 case GICR_ICACTIVER0:
188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189 return MEMTX_OK;
190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
192 int i, irq = offset - GICR_IPRIORITYR;
193 uint32_t value = 0;
195 for (i = irq + 3; i >= irq; i--) {
196 value <<= 8;
197 value |= gicr_read_ipriorityr(cs, attrs, i);
199 *data = value;
200 return MEMTX_OK;
202 case GICR_ICFGR0:
203 case GICR_ICFGR1:
205 /* Our edge_trigger bitmap is one bit per irq; take the correct
206 * half of it, and spread it out into the odd bits.
208 uint32_t value;
210 value = cs->edge_trigger & mask_group(cs, attrs);
211 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
212 value = half_shuffle32(value) << 1;
213 *data = value;
214 return MEMTX_OK;
216 case GICR_IGRPMODR0:
217 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
218 /* RAZ/WI if security disabled, or if
219 * security enabled and this is an NS access
221 *data = 0;
222 return MEMTX_OK;
224 *data = cs->gicr_igrpmodr0;
225 return MEMTX_OK;
226 case GICR_NSACR:
227 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
228 /* RAZ/WI if security disabled, or if
229 * security enabled and this is an NS access
231 *data = 0;
232 return MEMTX_OK;
234 *data = cs->gicr_nsacr;
235 return MEMTX_OK;
236 case GICR_IDREGS ... GICR_IDREGS + 0x1f:
237 *data = gicv3_idreg(offset - GICR_IDREGS);
238 return MEMTX_OK;
239 default:
240 return MEMTX_ERROR;
244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
245 uint64_t value, MemTxAttrs attrs)
247 switch (offset) {
248 case GICR_CTLR:
249 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
250 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
251 * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't
252 * implement LPIs) so Enable_LPIs is RES0. So there are no writable
253 * bits for us.
255 return MEMTX_OK;
256 case GICR_STATUSR:
257 /* RAZ/WI for our implementation */
258 return MEMTX_OK;
259 case GICR_WAKER:
260 /* Only the ProcessorSleep bit is writeable. When the guest sets
261 * it it requests that we transition the channel between the
262 * redistributor and the cpu interface to quiescent, and that
263 * we set the ChildrenAsleep bit once the inteface has reached the
264 * quiescent state.
265 * Setting the ProcessorSleep to 0 reverses the quiescing, and
266 * ChildrenAsleep is cleared once the transition is complete.
267 * Since our interface is not asynchronous, we complete these
268 * transitions instantaneously, so we set ChildrenAsleep to the
269 * same value as ProcessorSleep here.
271 value &= GICR_WAKER_ProcessorSleep;
272 if (value & GICR_WAKER_ProcessorSleep) {
273 value |= GICR_WAKER_ChildrenAsleep;
275 cs->gicr_waker = value;
276 return MEMTX_OK;
277 case GICR_PROPBASER:
278 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
279 return MEMTX_OK;
280 case GICR_PROPBASER + 4:
281 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
282 return MEMTX_OK;
283 case GICR_PENDBASER:
284 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
285 return MEMTX_OK;
286 case GICR_PENDBASER + 4:
287 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
288 return MEMTX_OK;
289 case GICR_IGROUPR0:
290 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
291 return MEMTX_OK;
293 cs->gicr_igroupr0 = value;
294 gicv3_redist_update(cs);
295 return MEMTX_OK;
296 case GICR_ISENABLER0:
297 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
298 return MEMTX_OK;
299 case GICR_ICENABLER0:
300 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
301 return MEMTX_OK;
302 case GICR_ISPENDR0:
303 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
304 return MEMTX_OK;
305 case GICR_ICPENDR0:
306 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
307 return MEMTX_OK;
308 case GICR_ISACTIVER0:
309 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
310 return MEMTX_OK;
311 case GICR_ICACTIVER0:
312 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
313 return MEMTX_OK;
314 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
316 int i, irq = offset - GICR_IPRIORITYR;
318 for (i = irq; i < irq + 4; i++, value >>= 8) {
319 gicr_write_ipriorityr(cs, attrs, i, value);
321 gicv3_redist_update(cs);
322 return MEMTX_OK;
324 case GICR_ICFGR0:
325 /* Register is all RAZ/WI or RAO/WI bits */
326 return MEMTX_OK;
327 case GICR_ICFGR1:
329 uint32_t mask;
331 /* Since our edge_trigger bitmap is one bit per irq, our input
332 * 32-bits will compress down into 16 bits which we need
333 * to write into the bitmap.
335 value = half_unshuffle32(value >> 1) << 16;
336 mask = mask_group(cs, attrs) & 0xffff0000U;
338 cs->edge_trigger &= ~mask;
339 cs->edge_trigger |= (value & mask);
341 gicv3_redist_update(cs);
342 return MEMTX_OK;
344 case GICR_IGRPMODR0:
345 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
346 /* RAZ/WI if security disabled, or if
347 * security enabled and this is an NS access
349 return MEMTX_OK;
351 cs->gicr_igrpmodr0 = value;
352 gicv3_redist_update(cs);
353 return MEMTX_OK;
354 case GICR_NSACR:
355 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
356 /* RAZ/WI if security disabled, or if
357 * security enabled and this is an NS access
359 return MEMTX_OK;
361 cs->gicr_nsacr = value;
362 /* no update required as this only affects access permission checks */
363 return MEMTX_OK;
364 case GICR_IIDR:
365 case GICR_TYPER:
366 case GICR_IDREGS ... GICR_IDREGS + 0x1f:
367 /* RO registers, ignore the write */
368 qemu_log_mask(LOG_GUEST_ERROR,
369 "%s: invalid guest write to RO register at offset "
370 TARGET_FMT_plx "\n", __func__, offset);
371 return MEMTX_OK;
372 default:
373 return MEMTX_ERROR;
377 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
378 uint64_t *data, MemTxAttrs attrs)
380 switch (offset) {
381 case GICR_TYPER:
382 *data = cs->gicr_typer;
383 return MEMTX_OK;
384 case GICR_PROPBASER:
385 *data = cs->gicr_propbaser;
386 return MEMTX_OK;
387 case GICR_PENDBASER:
388 *data = cs->gicr_pendbaser;
389 return MEMTX_OK;
390 default:
391 return MEMTX_ERROR;
395 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
396 uint64_t value, MemTxAttrs attrs)
398 switch (offset) {
399 case GICR_PROPBASER:
400 cs->gicr_propbaser = value;
401 return MEMTX_OK;
402 case GICR_PENDBASER:
403 cs->gicr_pendbaser = value;
404 return MEMTX_OK;
405 case GICR_TYPER:
406 /* RO register, ignore the write */
407 qemu_log_mask(LOG_GUEST_ERROR,
408 "%s: invalid guest write to RO register at offset "
409 TARGET_FMT_plx "\n", __func__, offset);
410 return MEMTX_OK;
411 default:
412 return MEMTX_ERROR;
416 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
417 unsigned size, MemTxAttrs attrs)
419 GICv3State *s = opaque;
420 GICv3CPUState *cs;
421 MemTxResult r;
422 int cpuidx;
424 assert((offset & (size - 1)) == 0);
426 /* This region covers all the redistributor pages; there are
427 * (for GICv3) two 64K pages per CPU. At the moment they are
428 * all contiguous (ie in this one region), though we might later
429 * want to allow splitting of redistributor pages into several
430 * blocks so we can support more CPUs.
432 cpuidx = offset / 0x20000;
433 offset %= 0x20000;
434 assert(cpuidx < s->num_cpu);
436 cs = &s->cpu[cpuidx];
438 switch (size) {
439 case 1:
440 r = gicr_readb(cs, offset, data, attrs);
441 break;
442 case 4:
443 r = gicr_readl(cs, offset, data, attrs);
444 break;
445 case 8:
446 r = gicr_readll(cs, offset, data, attrs);
447 break;
448 default:
449 r = MEMTX_ERROR;
450 break;
453 if (r == MEMTX_ERROR) {
454 qemu_log_mask(LOG_GUEST_ERROR,
455 "%s: invalid guest read at offset " TARGET_FMT_plx
456 "size %u\n", __func__, offset, size);
457 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
458 size, attrs.secure);
459 /* The spec requires that reserved registers are RAZ/WI;
460 * so use MEMTX_ERROR returns from leaf functions as a way to
461 * trigger the guest-error logging but don't return it to
462 * the caller, or we'll cause a spurious guest data abort.
464 r = MEMTX_OK;
465 *data = 0;
466 } else {
467 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
468 size, attrs.secure);
470 return r;
473 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
474 unsigned size, MemTxAttrs attrs)
476 GICv3State *s = opaque;
477 GICv3CPUState *cs;
478 MemTxResult r;
479 int cpuidx;
481 assert((offset & (size - 1)) == 0);
483 /* This region covers all the redistributor pages; there are
484 * (for GICv3) two 64K pages per CPU. At the moment they are
485 * all contiguous (ie in this one region), though we might later
486 * want to allow splitting of redistributor pages into several
487 * blocks so we can support more CPUs.
489 cpuidx = offset / 0x20000;
490 offset %= 0x20000;
491 assert(cpuidx < s->num_cpu);
493 cs = &s->cpu[cpuidx];
495 switch (size) {
496 case 1:
497 r = gicr_writeb(cs, offset, data, attrs);
498 break;
499 case 4:
500 r = gicr_writel(cs, offset, data, attrs);
501 break;
502 case 8:
503 r = gicr_writell(cs, offset, data, attrs);
504 break;
505 default:
506 r = MEMTX_ERROR;
507 break;
510 if (r == MEMTX_ERROR) {
511 qemu_log_mask(LOG_GUEST_ERROR,
512 "%s: invalid guest write at offset " TARGET_FMT_plx
513 "size %u\n", __func__, offset, size);
514 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
515 size, attrs.secure);
516 /* The spec requires that reserved registers are RAZ/WI;
517 * so use MEMTX_ERROR returns from leaf functions as a way to
518 * trigger the guest-error logging but don't return it to
519 * the caller, or we'll cause a spurious guest data abort.
521 r = MEMTX_OK;
522 } else {
523 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
524 size, attrs.secure);
526 return r;
529 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
531 /* Update redistributor state for a change in an external PPI input line */
532 if (level == extract32(cs->level, irq, 1)) {
533 return;
536 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
538 cs->level = deposit32(cs->level, irq, 1, level);
540 if (level) {
541 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
542 if (extract32(cs->edge_trigger, irq, 1)) {
543 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
547 gicv3_redist_update(cs);
550 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
552 /* Update redistributor state for a generated SGI */
553 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
555 /* If we are asked for a Secure Group 1 SGI and it's actually
556 * configured as Secure Group 0 this is OK (subject to the usual
557 * NSACR checks).
559 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
560 grp = GICV3_G0;
563 if (grp != irqgrp) {
564 return;
567 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
568 /* If security is enabled we must test the NSACR bits */
569 int nsaccess = gicr_ns_access(cs, irq);
571 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
572 (irqgrp == GICV3_G1 && nsaccess < 2)) {
573 return;
577 /* OK, we can accept the SGI */
578 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
579 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
580 gicv3_redist_update(cs);