libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / intc / armv7m_nvic.c
blob0d816fdd2cc8901a7419c425131c0ae492754ac1
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
64 static int nvic_pending_prio(NVICState *s)
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
69 return s->vectpending_prio;
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
86 static bool nvic_rettobase(NVICState *s)
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
102 return 1;
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
109 static bool nvic_isrpending(NVICState *s)
111 int irq;
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
119 if (s->vectpending == 0) {
120 return false;
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
128 return false;
131 static bool exc_is_banked(int exc)
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
150 return ~0U << (s->prigroup[secure] + 1);
153 static bool exc_targets_secure(NVICState *s, int exc)
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
182 return true;
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
192 if (rawprio < 0) {
193 return rawprio;
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
203 return rawprio;
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
209 static void nvic_recompute_state_secure(NVICState *s)
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
298 if (active_prio > 0) {
299 active_prio &= nvic_gprio_mask(s, false);
302 if (pend_prio > 0) {
303 pend_prio &= nvic_gprio_mask(s, false);
306 s->vectpending = pend_irq;
307 s->vectpending_prio = pend_prio;
308 s->exception_prio = active_prio;
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
315 /* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
319 static inline int nvic_exec_prio(NVICState *s)
321 CPUARMState *env = &s->cpu->env;
322 int running = NVIC_NOEXC_PRIO;
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
340 } else {
341 running = 0;
345 if (env->v7m.primask[M_REG_S]) {
346 running = 0;
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
357 } else {
358 running = 0;
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
381 NVICState *s = opaque;
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
397 return false;
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
402 NVICState *s = opaque;
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
407 int armv7m_nvic_raw_execution_priority(void *opaque)
409 NVICState *s = opaque;
411 return s->exception_prio;
414 /* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
423 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
425 if (secure) {
426 assert(exc_is_banked(irq));
427 s->sec_vectors[irq].prio = prio;
428 } else {
429 s->vectors[irq].prio = prio;
432 trace_nvic_set_prio(irq, secure, prio);
435 /* Return the current raw priority register value.
436 * secure indicates the bank to use for banked exceptions (we assert if
437 * we are passed secure=true for a non-banked exception).
439 static int get_prio(NVICState *s, unsigned irq, bool secure)
441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
442 assert(irq < s->num_irq);
444 if (secure) {
445 assert(exc_is_banked(irq));
446 return s->sec_vectors[irq].prio;
447 } else {
448 return s->vectors[irq].prio;
452 /* Recompute state and assert irq line accordingly.
453 * Must be called after changes to:
454 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
455 * prigroup
457 static void nvic_irq_update(NVICState *s)
459 int lvl;
460 int pend_prio;
462 nvic_recompute_state(s);
463 pend_prio = nvic_pending_prio(s);
465 /* Raise NVIC output if this IRQ would be taken, except that we
466 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
467 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
468 * to those CPU registers don't cause us to recalculate the NVIC
469 * pending info.
471 lvl = (pend_prio < s->exception_prio);
472 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
473 qemu_set_irq(s->excpout, lvl);
477 * armv7m_nvic_clear_pending: mark the specified exception as not pending
478 * @opaque: the NVIC
479 * @irq: the exception number to mark as not pending
480 * @secure: false for non-banked exceptions or for the nonsecure
481 * version of a banked exception, true for the secure version of a banked
482 * exception.
484 * Marks the specified exception as not pending. Note that we will assert()
485 * if @secure is true and @irq does not specify one of the fixed set
486 * of architecturally banked exceptions.
488 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
490 NVICState *s = (NVICState *)opaque;
491 VecInfo *vec;
493 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
495 if (secure) {
496 assert(exc_is_banked(irq));
497 vec = &s->sec_vectors[irq];
498 } else {
499 vec = &s->vectors[irq];
501 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
502 if (vec->pending) {
503 vec->pending = 0;
504 nvic_irq_update(s);
508 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
509 bool derived)
511 /* Pend an exception, including possibly escalating it to HardFault.
513 * This function handles both "normal" pending of interrupts and
514 * exceptions, and also derived exceptions (ones which occur as
515 * a result of trying to take some other exception).
517 * If derived == true, the caller guarantees that we are part way through
518 * trying to take an exception (but have not yet called
519 * armv7m_nvic_acknowledge_irq() to make it active), and so:
520 * - s->vectpending is the "original exception" we were trying to take
521 * - irq is the "derived exception"
522 * - nvic_exec_prio(s) gives the priority before exception entry
523 * Here we handle the prioritization logic which the pseudocode puts
524 * in the DerivedLateArrival() function.
527 NVICState *s = (NVICState *)opaque;
528 bool banked = exc_is_banked(irq);
529 VecInfo *vec;
530 bool targets_secure;
532 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
533 assert(!secure || banked);
535 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
537 targets_secure = banked ? secure : exc_targets_secure(s, irq);
539 trace_nvic_set_pending(irq, secure, targets_secure,
540 derived, vec->enabled, vec->prio);
542 if (derived) {
543 /* Derived exceptions are always synchronous. */
544 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
546 if (irq == ARMV7M_EXCP_DEBUG &&
547 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
548 /* DebugMonitorFault, but its priority is lower than the
549 * preempted exception priority: just ignore it.
551 return;
554 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
555 /* If this is a terminal exception (one which means we cannot
556 * take the original exception, like a failure to read its
557 * vector table entry), then we must take the derived exception.
558 * If the derived exception can't take priority over the
559 * original exception, then we go into Lockup.
561 * For QEMU, we rely on the fact that a derived exception is
562 * terminal if and only if it's reported to us as HardFault,
563 * which saves having to have an extra argument is_terminal
564 * that we'd only use in one place.
566 cpu_abort(&s->cpu->parent_obj,
567 "Lockup: can't take terminal derived exception "
568 "(original exception priority %d)\n",
569 s->vectpending_prio);
571 /* We now continue with the same code as for a normal pending
572 * exception, which will cause us to pend the derived exception.
573 * We'll then take either the original or the derived exception
574 * based on which is higher priority by the usual mechanism
575 * for selecting the highest priority pending interrupt.
579 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
580 /* If a synchronous exception is pending then it may be
581 * escalated to HardFault if:
582 * * it is equal or lower priority to current execution
583 * * it is disabled
584 * (ie we need to take it immediately but we can't do so).
585 * Asynchronous exceptions (and interrupts) simply remain pending.
587 * For QEMU, we don't have any imprecise (asynchronous) faults,
588 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
589 * synchronous.
590 * Debug exceptions are awkward because only Debug exceptions
591 * resulting from the BKPT instruction should be escalated,
592 * but we don't currently implement any Debug exceptions other
593 * than those that result from BKPT, so we treat all debug exceptions
594 * as needing escalation.
596 * This all means we can identify whether to escalate based only on
597 * the exception number and don't (yet) need the caller to explicitly
598 * tell us whether this exception is synchronous or not.
600 int running = nvic_exec_prio(s);
601 bool escalate = false;
603 if (exc_group_prio(s, vec->prio, secure) >= running) {
604 trace_nvic_escalate_prio(irq, vec->prio, running);
605 escalate = true;
606 } else if (!vec->enabled) {
607 trace_nvic_escalate_disabled(irq);
608 escalate = true;
611 if (escalate) {
613 /* We need to escalate this exception to a synchronous HardFault.
614 * If BFHFNMINS is set then we escalate to the banked HF for
615 * the target security state of the original exception; otherwise
616 * we take a Secure HardFault.
618 irq = ARMV7M_EXCP_HARD;
619 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
620 (targets_secure ||
621 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
622 vec = &s->sec_vectors[irq];
623 } else {
624 vec = &s->vectors[irq];
626 if (running <= vec->prio) {
627 /* We want to escalate to HardFault but we can't take the
628 * synchronous HardFault at this point either. This is a
629 * Lockup condition due to a guest bug. We don't model
630 * Lockup, so report via cpu_abort() instead.
632 cpu_abort(&s->cpu->parent_obj,
633 "Lockup: can't escalate %d to HardFault "
634 "(current priority %d)\n", irq, running);
637 /* HF may be banked but there is only one shared HFSR */
638 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
642 if (!vec->pending) {
643 vec->pending = 1;
644 nvic_irq_update(s);
648 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
650 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
653 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
655 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
658 /* Make pending IRQ active. */
659 void armv7m_nvic_acknowledge_irq(void *opaque)
661 NVICState *s = (NVICState *)opaque;
662 CPUARMState *env = &s->cpu->env;
663 const int pending = s->vectpending;
664 const int running = nvic_exec_prio(s);
665 VecInfo *vec;
667 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
669 if (s->vectpending_is_s_banked) {
670 vec = &s->sec_vectors[pending];
671 } else {
672 vec = &s->vectors[pending];
675 assert(vec->enabled);
676 assert(vec->pending);
678 assert(s->vectpending_prio < running);
680 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
682 vec->active = 1;
683 vec->pending = 0;
685 write_v7m_exception(env, s->vectpending);
687 nvic_irq_update(s);
690 void armv7m_nvic_get_pending_irq_info(void *opaque,
691 int *pirq, bool *ptargets_secure)
693 NVICState *s = (NVICState *)opaque;
694 const int pending = s->vectpending;
695 bool targets_secure;
697 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
699 if (s->vectpending_is_s_banked) {
700 targets_secure = true;
701 } else {
702 targets_secure = !exc_is_banked(pending) &&
703 exc_targets_secure(s, pending);
706 trace_nvic_get_pending_irq_info(pending, targets_secure);
708 *ptargets_secure = targets_secure;
709 *pirq = pending;
712 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
714 NVICState *s = (NVICState *)opaque;
715 VecInfo *vec;
716 int ret;
718 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
720 if (secure && exc_is_banked(irq)) {
721 vec = &s->sec_vectors[irq];
722 } else {
723 vec = &s->vectors[irq];
726 trace_nvic_complete_irq(irq, secure);
728 if (!vec->active) {
729 /* Tell the caller this was an illegal exception return */
730 return -1;
733 ret = nvic_rettobase(s);
735 vec->active = 0;
736 if (vec->level) {
737 /* Re-pend the exception if it's still held high; only
738 * happens for extenal IRQs
740 assert(irq >= NVIC_FIRST_IRQ);
741 vec->pending = 1;
744 nvic_irq_update(s);
746 return ret;
749 /* callback when external interrupt line is changed */
750 static void set_irq_level(void *opaque, int n, int level)
752 NVICState *s = opaque;
753 VecInfo *vec;
755 n += NVIC_FIRST_IRQ;
757 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
759 trace_nvic_set_irq_level(n, level);
761 /* The pending status of an external interrupt is
762 * latched on rising edge and exception handler return.
764 * Pulsing the IRQ will always run the handler
765 * once, and the handler will re-run until the
766 * level is low when the handler completes.
768 vec = &s->vectors[n];
769 if (level != vec->level) {
770 vec->level = level;
771 if (level) {
772 armv7m_nvic_set_pending(s, n, false);
777 /* callback when external NMI line is changed */
778 static void nvic_nmi_trigger(void *opaque, int n, int level)
780 NVICState *s = opaque;
782 trace_nvic_set_nmi_level(level);
785 * The architecture doesn't specify whether NMI should share
786 * the normal-interrupt behaviour of being resampled on
787 * exception handler return. We choose not to, so just
788 * set NMI pending here and don't track the current level.
790 if (level) {
791 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
795 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
797 ARMCPU *cpu = s->cpu;
798 uint32_t val;
800 switch (offset) {
801 case 4: /* Interrupt Control Type. */
802 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
803 goto bad_offset;
805 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
806 case 0xc: /* CPPWR */
807 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
808 goto bad_offset;
810 /* We make the IMPDEF choice that nothing can ever go into a
811 * non-retentive power state, which allows us to RAZ/WI this.
813 return 0;
814 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
816 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
817 int i;
819 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
820 goto bad_offset;
822 if (!attrs.secure) {
823 return 0;
825 val = 0;
826 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
827 if (s->itns[startvec + i]) {
828 val |= (1 << i);
831 return val;
833 case 0xd00: /* CPUID Base. */
834 return cpu->midr;
835 case 0xd04: /* Interrupt Control State (ICSR) */
836 /* VECTACTIVE */
837 val = cpu->env.v7m.exception;
838 /* VECTPENDING */
839 val |= (s->vectpending & 0xff) << 12;
840 /* ISRPENDING - set if any external IRQ is pending */
841 if (nvic_isrpending(s)) {
842 val |= (1 << 22);
844 /* RETTOBASE - set if only one handler is active */
845 if (nvic_rettobase(s)) {
846 val |= (1 << 11);
848 if (attrs.secure) {
849 /* PENDSTSET */
850 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
851 val |= (1 << 26);
853 /* PENDSVSET */
854 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
855 val |= (1 << 28);
857 } else {
858 /* PENDSTSET */
859 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
860 val |= (1 << 26);
862 /* PENDSVSET */
863 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
864 val |= (1 << 28);
867 /* NMIPENDSET */
868 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
869 && s->vectors[ARMV7M_EXCP_NMI].pending) {
870 val |= (1 << 31);
872 /* ISRPREEMPT: RES0 when halting debug not implemented */
873 /* STTNS: RES0 for the Main Extension */
874 return val;
875 case 0xd08: /* Vector Table Offset. */
876 return cpu->env.v7m.vecbase[attrs.secure];
877 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
878 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
879 if (attrs.secure) {
880 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
881 val |= cpu->env.v7m.aircr;
882 } else {
883 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
884 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
885 * security isn't supported then BFHFNMINS is RAO (and
886 * the bit in env.v7m.aircr is always set).
888 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
891 return val;
892 case 0xd10: /* System Control. */
893 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
894 goto bad_offset;
896 return cpu->env.v7m.scr[attrs.secure];
897 case 0xd14: /* Configuration Control. */
898 /* The BFHFNMIGN bit is the only non-banked bit; we
899 * keep it in the non-secure copy of the register.
901 val = cpu->env.v7m.ccr[attrs.secure];
902 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
903 return val;
904 case 0xd24: /* System Handler Control and State (SHCSR) */
905 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
906 goto bad_offset;
908 val = 0;
909 if (attrs.secure) {
910 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
911 val |= (1 << 0);
913 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
914 val |= (1 << 2);
916 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
917 val |= (1 << 3);
919 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
920 val |= (1 << 7);
922 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
923 val |= (1 << 10);
925 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
926 val |= (1 << 11);
928 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
929 val |= (1 << 12);
931 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
932 val |= (1 << 13);
934 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
935 val |= (1 << 15);
937 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
938 val |= (1 << 16);
940 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
941 val |= (1 << 18);
943 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
944 val |= (1 << 21);
946 /* SecureFault is not banked but is always RAZ/WI to NS */
947 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
948 val |= (1 << 4);
950 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
951 val |= (1 << 19);
953 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
954 val |= (1 << 20);
956 } else {
957 if (s->vectors[ARMV7M_EXCP_MEM].active) {
958 val |= (1 << 0);
960 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
961 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
962 if (s->vectors[ARMV7M_EXCP_HARD].active) {
963 val |= (1 << 2);
965 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
966 val |= (1 << 21);
969 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
970 val |= (1 << 3);
972 if (s->vectors[ARMV7M_EXCP_SVC].active) {
973 val |= (1 << 7);
975 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
976 val |= (1 << 10);
978 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
979 val |= (1 << 11);
981 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
982 val |= (1 << 12);
984 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
985 val |= (1 << 13);
987 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
988 val |= (1 << 15);
990 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
991 val |= (1 << 16);
993 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
994 val |= (1 << 18);
997 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
998 if (s->vectors[ARMV7M_EXCP_BUS].active) {
999 val |= (1 << 1);
1001 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1002 val |= (1 << 14);
1004 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1005 val |= (1 << 17);
1007 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1008 s->vectors[ARMV7M_EXCP_NMI].active) {
1009 /* NMIACT is not present in v7M */
1010 val |= (1 << 5);
1014 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1015 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1016 val |= (1 << 8);
1018 return val;
1019 case 0xd2c: /* Hard Fault Status. */
1020 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1021 goto bad_offset;
1023 return cpu->env.v7m.hfsr;
1024 case 0xd30: /* Debug Fault Status. */
1025 return cpu->env.v7m.dfsr;
1026 case 0xd34: /* MMFAR MemManage Fault Address */
1027 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1028 goto bad_offset;
1030 return cpu->env.v7m.mmfar[attrs.secure];
1031 case 0xd38: /* Bus Fault Address. */
1032 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1033 goto bad_offset;
1035 return cpu->env.v7m.bfar;
1036 case 0xd3c: /* Aux Fault Status. */
1037 /* TODO: Implement fault status registers. */
1038 qemu_log_mask(LOG_UNIMP,
1039 "Aux Fault status registers unimplemented\n");
1040 return 0;
1041 case 0xd40: /* PFR0. */
1042 return cpu->id_pfr0;
1043 case 0xd44: /* PFR1. */
1044 return cpu->id_pfr1;
1045 case 0xd48: /* DFR0. */
1046 return cpu->id_dfr0;
1047 case 0xd4c: /* AFR0. */
1048 return cpu->id_afr0;
1049 case 0xd50: /* MMFR0. */
1050 return cpu->id_mmfr0;
1051 case 0xd54: /* MMFR1. */
1052 return cpu->id_mmfr1;
1053 case 0xd58: /* MMFR2. */
1054 return cpu->id_mmfr2;
1055 case 0xd5c: /* MMFR3. */
1056 return cpu->id_mmfr3;
1057 case 0xd60: /* ISAR0. */
1058 return cpu->id_isar0;
1059 case 0xd64: /* ISAR1. */
1060 return cpu->id_isar1;
1061 case 0xd68: /* ISAR2. */
1062 return cpu->id_isar2;
1063 case 0xd6c: /* ISAR3. */
1064 return cpu->id_isar3;
1065 case 0xd70: /* ISAR4. */
1066 return cpu->id_isar4;
1067 case 0xd74: /* ISAR5. */
1068 return cpu->id_isar5;
1069 case 0xd78: /* CLIDR */
1070 return cpu->clidr;
1071 case 0xd7c: /* CTR */
1072 return cpu->ctr;
1073 case 0xd80: /* CSSIDR */
1075 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1076 return cpu->ccsidr[idx];
1078 case 0xd84: /* CSSELR */
1079 return cpu->env.v7m.csselr[attrs.secure];
1080 /* TODO: Implement debug registers. */
1081 case 0xd90: /* MPU_TYPE */
1082 /* Unified MPU; if the MPU is not present this value is zero */
1083 return cpu->pmsav7_dregion << 8;
1084 break;
1085 case 0xd94: /* MPU_CTRL */
1086 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1087 case 0xd98: /* MPU_RNR */
1088 return cpu->env.pmsav7.rnr[attrs.secure];
1089 case 0xd9c: /* MPU_RBAR */
1090 case 0xda4: /* MPU_RBAR_A1 */
1091 case 0xdac: /* MPU_RBAR_A2 */
1092 case 0xdb4: /* MPU_RBAR_A3 */
1094 int region = cpu->env.pmsav7.rnr[attrs.secure];
1096 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1097 /* PMSAv8M handling of the aliases is different from v7M:
1098 * aliases A1, A2, A3 override the low two bits of the region
1099 * number in MPU_RNR, and there is no 'region' field in the
1100 * RBAR register.
1102 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1103 if (aliasno) {
1104 region = deposit32(region, 0, 2, aliasno);
1106 if (region >= cpu->pmsav7_dregion) {
1107 return 0;
1109 return cpu->env.pmsav8.rbar[attrs.secure][region];
1112 if (region >= cpu->pmsav7_dregion) {
1113 return 0;
1115 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1117 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1118 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1119 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1120 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1122 int region = cpu->env.pmsav7.rnr[attrs.secure];
1124 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1125 /* PMSAv8M handling of the aliases is different from v7M:
1126 * aliases A1, A2, A3 override the low two bits of the region
1127 * number in MPU_RNR.
1129 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1130 if (aliasno) {
1131 region = deposit32(region, 0, 2, aliasno);
1133 if (region >= cpu->pmsav7_dregion) {
1134 return 0;
1136 return cpu->env.pmsav8.rlar[attrs.secure][region];
1139 if (region >= cpu->pmsav7_dregion) {
1140 return 0;
1142 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1143 (cpu->env.pmsav7.drsr[region] & 0xffff);
1145 case 0xdc0: /* MPU_MAIR0 */
1146 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147 goto bad_offset;
1149 return cpu->env.pmsav8.mair0[attrs.secure];
1150 case 0xdc4: /* MPU_MAIR1 */
1151 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1152 goto bad_offset;
1154 return cpu->env.pmsav8.mair1[attrs.secure];
1155 case 0xdd0: /* SAU_CTRL */
1156 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157 goto bad_offset;
1159 if (!attrs.secure) {
1160 return 0;
1162 return cpu->env.sau.ctrl;
1163 case 0xdd4: /* SAU_TYPE */
1164 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1165 goto bad_offset;
1167 if (!attrs.secure) {
1168 return 0;
1170 return cpu->sau_sregion;
1171 case 0xdd8: /* SAU_RNR */
1172 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173 goto bad_offset;
1175 if (!attrs.secure) {
1176 return 0;
1178 return cpu->env.sau.rnr;
1179 case 0xddc: /* SAU_RBAR */
1181 int region = cpu->env.sau.rnr;
1183 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1184 goto bad_offset;
1186 if (!attrs.secure) {
1187 return 0;
1189 if (region >= cpu->sau_sregion) {
1190 return 0;
1192 return cpu->env.sau.rbar[region];
1194 case 0xde0: /* SAU_RLAR */
1196 int region = cpu->env.sau.rnr;
1198 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1199 goto bad_offset;
1201 if (!attrs.secure) {
1202 return 0;
1204 if (region >= cpu->sau_sregion) {
1205 return 0;
1207 return cpu->env.sau.rlar[region];
1209 case 0xde4: /* SFSR */
1210 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1211 goto bad_offset;
1213 if (!attrs.secure) {
1214 return 0;
1216 return cpu->env.v7m.sfsr;
1217 case 0xde8: /* SFAR */
1218 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1219 goto bad_offset;
1221 if (!attrs.secure) {
1222 return 0;
1224 return cpu->env.v7m.sfar;
1225 default:
1226 bad_offset:
1227 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1228 return 0;
1232 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1233 MemTxAttrs attrs)
1235 ARMCPU *cpu = s->cpu;
1237 switch (offset) {
1238 case 0xc: /* CPPWR */
1239 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1240 goto bad_offset;
1242 /* Make the IMPDEF choice to RAZ/WI this. */
1243 break;
1244 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1246 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1247 int i;
1249 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1250 goto bad_offset;
1252 if (!attrs.secure) {
1253 break;
1255 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1256 s->itns[startvec + i] = (value >> i) & 1;
1258 nvic_irq_update(s);
1259 break;
1261 case 0xd04: /* Interrupt Control State (ICSR) */
1262 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1263 if (value & (1 << 31)) {
1264 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1265 } else if (value & (1 << 30) &&
1266 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1267 /* PENDNMICLR didn't exist in v7M */
1268 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1271 if (value & (1 << 28)) {
1272 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1273 } else if (value & (1 << 27)) {
1274 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1276 if (value & (1 << 26)) {
1277 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1278 } else if (value & (1 << 25)) {
1279 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1281 break;
1282 case 0xd08: /* Vector Table Offset. */
1283 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1284 break;
1285 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1286 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1287 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1288 if (attrs.secure ||
1289 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1290 qemu_irq_pulse(s->sysresetreq);
1293 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1294 qemu_log_mask(LOG_GUEST_ERROR,
1295 "Setting VECTCLRACTIVE when not in DEBUG mode "
1296 "is UNPREDICTABLE\n");
1298 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1299 /* NB: this bit is RES0 in v8M */
1300 qemu_log_mask(LOG_GUEST_ERROR,
1301 "Setting VECTRESET when not in DEBUG mode "
1302 "is UNPREDICTABLE\n");
1304 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1305 s->prigroup[attrs.secure] =
1306 extract32(value,
1307 R_V7M_AIRCR_PRIGROUP_SHIFT,
1308 R_V7M_AIRCR_PRIGROUP_LENGTH);
1310 if (attrs.secure) {
1311 /* These bits are only writable by secure */
1312 cpu->env.v7m.aircr = value &
1313 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1314 R_V7M_AIRCR_BFHFNMINS_MASK |
1315 R_V7M_AIRCR_PRIS_MASK);
1316 /* BFHFNMINS changes the priority of Secure HardFault, and
1317 * allows a pending Non-secure HardFault to preempt (which
1318 * we implement by marking it enabled).
1320 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1321 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1322 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1323 } else {
1324 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1325 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1328 nvic_irq_update(s);
1330 break;
1331 case 0xd10: /* System Control. */
1332 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1333 goto bad_offset;
1335 /* We don't implement deep-sleep so these bits are RAZ/WI.
1336 * The other bits in the register are banked.
1337 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1338 * is architecturally permitted.
1340 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1341 cpu->env.v7m.scr[attrs.secure] = value;
1342 break;
1343 case 0xd14: /* Configuration Control. */
1344 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1345 goto bad_offset;
1348 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1349 value &= (R_V7M_CCR_STKALIGN_MASK |
1350 R_V7M_CCR_BFHFNMIGN_MASK |
1351 R_V7M_CCR_DIV_0_TRP_MASK |
1352 R_V7M_CCR_UNALIGN_TRP_MASK |
1353 R_V7M_CCR_USERSETMPEND_MASK |
1354 R_V7M_CCR_NONBASETHRDENA_MASK);
1356 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1357 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1358 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1359 | R_V7M_CCR_STKALIGN_MASK;
1361 if (attrs.secure) {
1362 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1363 cpu->env.v7m.ccr[M_REG_NS] =
1364 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1365 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1366 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1369 cpu->env.v7m.ccr[attrs.secure] = value;
1370 break;
1371 case 0xd24: /* System Handler Control and State (SHCSR) */
1372 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1373 goto bad_offset;
1375 if (attrs.secure) {
1376 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1377 /* Secure HardFault active bit cannot be written */
1378 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1379 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1380 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1381 (value & (1 << 10)) != 0;
1382 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1383 (value & (1 << 11)) != 0;
1384 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1385 (value & (1 << 12)) != 0;
1386 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1387 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1388 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1389 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1390 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1391 (value & (1 << 18)) != 0;
1392 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1393 /* SecureFault not banked, but RAZ/WI to NS */
1394 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1395 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1396 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1397 } else {
1398 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1399 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1400 /* HARDFAULTPENDED is not present in v7M */
1401 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1403 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1404 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1405 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1406 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1407 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1408 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1409 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1410 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1411 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1413 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1414 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1415 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1416 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1418 /* NMIACT can only be written if the write is of a zero, with
1419 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1421 if (!attrs.secure && cpu->env.v7m.secure &&
1422 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1423 (value & (1 << 5)) == 0) {
1424 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1426 /* HARDFAULTACT can only be written if the write is of a zero
1427 * to the non-secure HardFault state by the CPU in secure state.
1428 * The only case where we can be targeting the non-secure HF state
1429 * when in secure state is if this is a write via the NS alias
1430 * and BFHFNMINS is 1.
1432 if (!attrs.secure && cpu->env.v7m.secure &&
1433 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1434 (value & (1 << 2)) == 0) {
1435 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1438 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1439 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1440 nvic_irq_update(s);
1441 break;
1442 case 0xd2c: /* Hard Fault Status. */
1443 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1444 goto bad_offset;
1446 cpu->env.v7m.hfsr &= ~value; /* W1C */
1447 break;
1448 case 0xd30: /* Debug Fault Status. */
1449 cpu->env.v7m.dfsr &= ~value; /* W1C */
1450 break;
1451 case 0xd34: /* Mem Manage Address. */
1452 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1453 goto bad_offset;
1455 cpu->env.v7m.mmfar[attrs.secure] = value;
1456 return;
1457 case 0xd38: /* Bus Fault Address. */
1458 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1459 goto bad_offset;
1461 cpu->env.v7m.bfar = value;
1462 return;
1463 case 0xd3c: /* Aux Fault Status. */
1464 qemu_log_mask(LOG_UNIMP,
1465 "NVIC: Aux fault status registers unimplemented\n");
1466 break;
1467 case 0xd84: /* CSSELR */
1468 if (!arm_v7m_csselr_razwi(cpu)) {
1469 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1471 break;
1472 case 0xd90: /* MPU_TYPE */
1473 return; /* RO */
1474 case 0xd94: /* MPU_CTRL */
1475 if ((value &
1476 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1477 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1478 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1479 "UNPREDICTABLE\n");
1481 cpu->env.v7m.mpu_ctrl[attrs.secure]
1482 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1483 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1484 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1485 tlb_flush(CPU(cpu));
1486 break;
1487 case 0xd98: /* MPU_RNR */
1488 if (value >= cpu->pmsav7_dregion) {
1489 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1490 PRIu32 "/%" PRIu32 "\n",
1491 value, cpu->pmsav7_dregion);
1492 } else {
1493 cpu->env.pmsav7.rnr[attrs.secure] = value;
1495 break;
1496 case 0xd9c: /* MPU_RBAR */
1497 case 0xda4: /* MPU_RBAR_A1 */
1498 case 0xdac: /* MPU_RBAR_A2 */
1499 case 0xdb4: /* MPU_RBAR_A3 */
1501 int region;
1503 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1504 /* PMSAv8M handling of the aliases is different from v7M:
1505 * aliases A1, A2, A3 override the low two bits of the region
1506 * number in MPU_RNR, and there is no 'region' field in the
1507 * RBAR register.
1509 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1511 region = cpu->env.pmsav7.rnr[attrs.secure];
1512 if (aliasno) {
1513 region = deposit32(region, 0, 2, aliasno);
1515 if (region >= cpu->pmsav7_dregion) {
1516 return;
1518 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1519 tlb_flush(CPU(cpu));
1520 return;
1523 if (value & (1 << 4)) {
1524 /* VALID bit means use the region number specified in this
1525 * value and also update MPU_RNR.REGION with that value.
1527 region = extract32(value, 0, 4);
1528 if (region >= cpu->pmsav7_dregion) {
1529 qemu_log_mask(LOG_GUEST_ERROR,
1530 "MPU region out of range %u/%" PRIu32 "\n",
1531 region, cpu->pmsav7_dregion);
1532 return;
1534 cpu->env.pmsav7.rnr[attrs.secure] = region;
1535 } else {
1536 region = cpu->env.pmsav7.rnr[attrs.secure];
1539 if (region >= cpu->pmsav7_dregion) {
1540 return;
1543 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1544 tlb_flush(CPU(cpu));
1545 break;
1547 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1548 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1549 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1550 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1552 int region = cpu->env.pmsav7.rnr[attrs.secure];
1554 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1555 /* PMSAv8M handling of the aliases is different from v7M:
1556 * aliases A1, A2, A3 override the low two bits of the region
1557 * number in MPU_RNR.
1559 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1561 region = cpu->env.pmsav7.rnr[attrs.secure];
1562 if (aliasno) {
1563 region = deposit32(region, 0, 2, aliasno);
1565 if (region >= cpu->pmsav7_dregion) {
1566 return;
1568 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1569 tlb_flush(CPU(cpu));
1570 return;
1573 if (region >= cpu->pmsav7_dregion) {
1574 return;
1577 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1578 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1579 tlb_flush(CPU(cpu));
1580 break;
1582 case 0xdc0: /* MPU_MAIR0 */
1583 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1584 goto bad_offset;
1586 if (cpu->pmsav7_dregion) {
1587 /* Register is RES0 if no MPU regions are implemented */
1588 cpu->env.pmsav8.mair0[attrs.secure] = value;
1590 /* We don't need to do anything else because memory attributes
1591 * only affect cacheability, and we don't implement caching.
1593 break;
1594 case 0xdc4: /* MPU_MAIR1 */
1595 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1596 goto bad_offset;
1598 if (cpu->pmsav7_dregion) {
1599 /* Register is RES0 if no MPU regions are implemented */
1600 cpu->env.pmsav8.mair1[attrs.secure] = value;
1602 /* We don't need to do anything else because memory attributes
1603 * only affect cacheability, and we don't implement caching.
1605 break;
1606 case 0xdd0: /* SAU_CTRL */
1607 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1608 goto bad_offset;
1610 if (!attrs.secure) {
1611 return;
1613 cpu->env.sau.ctrl = value & 3;
1614 break;
1615 case 0xdd4: /* SAU_TYPE */
1616 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1617 goto bad_offset;
1619 break;
1620 case 0xdd8: /* SAU_RNR */
1621 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1622 goto bad_offset;
1624 if (!attrs.secure) {
1625 return;
1627 if (value >= cpu->sau_sregion) {
1628 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1629 PRIu32 "/%" PRIu32 "\n",
1630 value, cpu->sau_sregion);
1631 } else {
1632 cpu->env.sau.rnr = value;
1634 break;
1635 case 0xddc: /* SAU_RBAR */
1637 int region = cpu->env.sau.rnr;
1639 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1640 goto bad_offset;
1642 if (!attrs.secure) {
1643 return;
1645 if (region >= cpu->sau_sregion) {
1646 return;
1648 cpu->env.sau.rbar[region] = value & ~0x1f;
1649 tlb_flush(CPU(cpu));
1650 break;
1652 case 0xde0: /* SAU_RLAR */
1654 int region = cpu->env.sau.rnr;
1656 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1657 goto bad_offset;
1659 if (!attrs.secure) {
1660 return;
1662 if (region >= cpu->sau_sregion) {
1663 return;
1665 cpu->env.sau.rlar[region] = value & ~0x1c;
1666 tlb_flush(CPU(cpu));
1667 break;
1669 case 0xde4: /* SFSR */
1670 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1671 goto bad_offset;
1673 if (!attrs.secure) {
1674 return;
1676 cpu->env.v7m.sfsr &= ~value; /* W1C */
1677 break;
1678 case 0xde8: /* SFAR */
1679 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1680 goto bad_offset;
1682 if (!attrs.secure) {
1683 return;
1685 cpu->env.v7m.sfsr = value;
1686 break;
1687 case 0xf00: /* Software Triggered Interrupt Register */
1689 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1691 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1692 goto bad_offset;
1695 if (excnum < s->num_irq) {
1696 armv7m_nvic_set_pending(s, excnum, false);
1698 break;
1700 case 0xf50: /* ICIALLU */
1701 case 0xf58: /* ICIMVAU */
1702 case 0xf5c: /* DCIMVAC */
1703 case 0xf60: /* DCISW */
1704 case 0xf64: /* DCCMVAU */
1705 case 0xf68: /* DCCMVAC */
1706 case 0xf6c: /* DCCSW */
1707 case 0xf70: /* DCCIMVAC */
1708 case 0xf74: /* DCCISW */
1709 case 0xf78: /* BPIALL */
1710 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1711 break;
1712 default:
1713 bad_offset:
1714 qemu_log_mask(LOG_GUEST_ERROR,
1715 "NVIC: Bad write offset 0x%x\n", offset);
1719 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1721 /* Return true if unprivileged access to this register is permitted. */
1722 switch (offset) {
1723 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1724 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1725 * controls access even though the CPU is in Secure state (I_QDKX).
1727 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1728 default:
1729 /* All other user accesses cause a BusFault unconditionally */
1730 return false;
1734 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1736 /* Behaviour for the SHPR register field for this exception:
1737 * return M_REG_NS to use the nonsecure vector (including for
1738 * non-banked exceptions), M_REG_S for the secure version of
1739 * a banked exception, and -1 if this field should RAZ/WI.
1741 switch (exc) {
1742 case ARMV7M_EXCP_MEM:
1743 case ARMV7M_EXCP_USAGE:
1744 case ARMV7M_EXCP_SVC:
1745 case ARMV7M_EXCP_PENDSV:
1746 case ARMV7M_EXCP_SYSTICK:
1747 /* Banked exceptions */
1748 return attrs.secure;
1749 case ARMV7M_EXCP_BUS:
1750 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1751 if (!attrs.secure &&
1752 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1753 return -1;
1755 return M_REG_NS;
1756 case ARMV7M_EXCP_SECURE:
1757 /* Not banked, RAZ/WI from nonsecure */
1758 if (!attrs.secure) {
1759 return -1;
1761 return M_REG_NS;
1762 case ARMV7M_EXCP_DEBUG:
1763 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1764 return M_REG_NS;
1765 case 8 ... 10:
1766 case 13:
1767 /* RES0 */
1768 return -1;
1769 default:
1770 /* Not reachable due to decode of SHPR register addresses */
1771 g_assert_not_reached();
1775 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1776 uint64_t *data, unsigned size,
1777 MemTxAttrs attrs)
1779 NVICState *s = (NVICState *)opaque;
1780 uint32_t offset = addr;
1781 unsigned i, startvec, end;
1782 uint32_t val;
1784 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1785 /* Generate BusFault for unprivileged accesses */
1786 return MEMTX_ERROR;
1789 switch (offset) {
1790 /* reads of set and clear both return the status */
1791 case 0x100 ... 0x13f: /* NVIC Set enable */
1792 offset += 0x80;
1793 /* fall through */
1794 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1795 val = 0;
1796 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1798 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1799 if (s->vectors[startvec + i].enabled &&
1800 (attrs.secure || s->itns[startvec + i])) {
1801 val |= (1 << i);
1804 break;
1805 case 0x200 ... 0x23f: /* NVIC Set pend */
1806 offset += 0x80;
1807 /* fall through */
1808 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1809 val = 0;
1810 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1811 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1812 if (s->vectors[startvec + i].pending &&
1813 (attrs.secure || s->itns[startvec + i])) {
1814 val |= (1 << i);
1817 break;
1818 case 0x300 ... 0x33f: /* NVIC Active */
1819 val = 0;
1821 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
1822 break;
1825 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1827 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1828 if (s->vectors[startvec + i].active &&
1829 (attrs.secure || s->itns[startvec + i])) {
1830 val |= (1 << i);
1833 break;
1834 case 0x400 ... 0x5ef: /* NVIC Priority */
1835 val = 0;
1836 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1838 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1839 if (attrs.secure || s->itns[startvec + i]) {
1840 val |= s->vectors[startvec + i].prio << (8 * i);
1843 break;
1844 case 0xd18: /* System Handler Priority (SHPR1) */
1845 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1846 val = 0;
1847 break;
1849 /* fall through */
1850 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1851 val = 0;
1852 for (i = 0; i < size; i++) {
1853 unsigned hdlidx = (offset - 0xd14) + i;
1854 int sbank = shpr_bank(s, hdlidx, attrs);
1856 if (sbank < 0) {
1857 continue;
1859 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1861 break;
1862 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1863 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1864 val = 0;
1865 break;
1867 /* The BFSR bits [15:8] are shared between security states
1868 * and we store them in the NS copy
1870 val = s->cpu->env.v7m.cfsr[attrs.secure];
1871 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1872 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1873 break;
1874 case 0xfe0 ... 0xfff: /* ID. */
1875 if (offset & 3) {
1876 val = 0;
1877 } else {
1878 val = nvic_id[(offset - 0xfe0) >> 2];
1880 break;
1881 default:
1882 if (size == 4) {
1883 val = nvic_readl(s, offset, attrs);
1884 } else {
1885 qemu_log_mask(LOG_GUEST_ERROR,
1886 "NVIC: Bad read of size %d at offset 0x%x\n",
1887 size, offset);
1888 val = 0;
1892 trace_nvic_sysreg_read(addr, val, size);
1893 *data = val;
1894 return MEMTX_OK;
1897 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1898 uint64_t value, unsigned size,
1899 MemTxAttrs attrs)
1901 NVICState *s = (NVICState *)opaque;
1902 uint32_t offset = addr;
1903 unsigned i, startvec, end;
1904 unsigned setval = 0;
1906 trace_nvic_sysreg_write(addr, value, size);
1908 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1909 /* Generate BusFault for unprivileged accesses */
1910 return MEMTX_ERROR;
1913 switch (offset) {
1914 case 0x100 ... 0x13f: /* NVIC Set enable */
1915 offset += 0x80;
1916 setval = 1;
1917 /* fall through */
1918 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1919 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1921 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1922 if (value & (1 << i) &&
1923 (attrs.secure || s->itns[startvec + i])) {
1924 s->vectors[startvec + i].enabled = setval;
1927 nvic_irq_update(s);
1928 return MEMTX_OK;
1929 case 0x200 ... 0x23f: /* NVIC Set pend */
1930 /* the special logic in armv7m_nvic_set_pending()
1931 * is not needed since IRQs are never escalated
1933 offset += 0x80;
1934 setval = 1;
1935 /* fall through */
1936 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1937 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1939 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1940 if (value & (1 << i) &&
1941 (attrs.secure || s->itns[startvec + i])) {
1942 s->vectors[startvec + i].pending = setval;
1945 nvic_irq_update(s);
1946 return MEMTX_OK;
1947 case 0x300 ... 0x33f: /* NVIC Active */
1948 return MEMTX_OK; /* R/O */
1949 case 0x400 ... 0x5ef: /* NVIC Priority */
1950 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1952 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1953 if (attrs.secure || s->itns[startvec + i]) {
1954 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1957 nvic_irq_update(s);
1958 return MEMTX_OK;
1959 case 0xd18: /* System Handler Priority (SHPR1) */
1960 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1961 return MEMTX_OK;
1963 /* fall through */
1964 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1965 for (i = 0; i < size; i++) {
1966 unsigned hdlidx = (offset - 0xd14) + i;
1967 int newprio = extract32(value, i * 8, 8);
1968 int sbank = shpr_bank(s, hdlidx, attrs);
1970 if (sbank < 0) {
1971 continue;
1973 set_prio(s, hdlidx, sbank, newprio);
1975 nvic_irq_update(s);
1976 return MEMTX_OK;
1977 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1978 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1979 return MEMTX_OK;
1981 /* All bits are W1C, so construct 32 bit value with 0s in
1982 * the parts not written by the access size
1984 value <<= ((offset - 0xd28) * 8);
1986 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1987 if (attrs.secure) {
1988 /* The BFSR bits [15:8] are shared between security states
1989 * and we store them in the NS copy.
1991 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1993 return MEMTX_OK;
1995 if (size == 4) {
1996 nvic_writel(s, offset, value, attrs);
1997 return MEMTX_OK;
1999 qemu_log_mask(LOG_GUEST_ERROR,
2000 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2001 /* This is UNPREDICTABLE; treat as RAZ/WI */
2002 return MEMTX_OK;
2005 static const MemoryRegionOps nvic_sysreg_ops = {
2006 .read_with_attrs = nvic_sysreg_read,
2007 .write_with_attrs = nvic_sysreg_write,
2008 .endianness = DEVICE_NATIVE_ENDIAN,
2011 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2012 uint64_t value, unsigned size,
2013 MemTxAttrs attrs)
2015 MemoryRegion *mr = opaque;
2017 if (attrs.secure) {
2018 /* S accesses to the alias act like NS accesses to the real region */
2019 attrs.secure = 0;
2020 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2021 } else {
2022 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2023 if (attrs.user) {
2024 return MEMTX_ERROR;
2026 return MEMTX_OK;
2030 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2031 uint64_t *data, unsigned size,
2032 MemTxAttrs attrs)
2034 MemoryRegion *mr = opaque;
2036 if (attrs.secure) {
2037 /* S accesses to the alias act like NS accesses to the real region */
2038 attrs.secure = 0;
2039 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2040 } else {
2041 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2042 if (attrs.user) {
2043 return MEMTX_ERROR;
2045 *data = 0;
2046 return MEMTX_OK;
2050 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2051 .read_with_attrs = nvic_sysreg_ns_read,
2052 .write_with_attrs = nvic_sysreg_ns_write,
2053 .endianness = DEVICE_NATIVE_ENDIAN,
2056 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2057 uint64_t value, unsigned size,
2058 MemTxAttrs attrs)
2060 NVICState *s = opaque;
2061 MemoryRegion *mr;
2063 /* Direct the access to the correct systick */
2064 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2065 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2068 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2069 uint64_t *data, unsigned size,
2070 MemTxAttrs attrs)
2072 NVICState *s = opaque;
2073 MemoryRegion *mr;
2075 /* Direct the access to the correct systick */
2076 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2077 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2080 static const MemoryRegionOps nvic_systick_ops = {
2081 .read_with_attrs = nvic_systick_read,
2082 .write_with_attrs = nvic_systick_write,
2083 .endianness = DEVICE_NATIVE_ENDIAN,
2086 static int nvic_post_load(void *opaque, int version_id)
2088 NVICState *s = opaque;
2089 unsigned i;
2090 int resetprio;
2092 /* Check for out of range priority settings */
2093 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2095 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2096 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2097 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2098 return 1;
2100 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2101 if (s->vectors[i].prio & ~0xff) {
2102 return 1;
2106 nvic_recompute_state(s);
2108 return 0;
2111 static const VMStateDescription vmstate_VecInfo = {
2112 .name = "armv7m_nvic_info",
2113 .version_id = 1,
2114 .minimum_version_id = 1,
2115 .fields = (VMStateField[]) {
2116 VMSTATE_INT16(prio, VecInfo),
2117 VMSTATE_UINT8(enabled, VecInfo),
2118 VMSTATE_UINT8(pending, VecInfo),
2119 VMSTATE_UINT8(active, VecInfo),
2120 VMSTATE_UINT8(level, VecInfo),
2121 VMSTATE_END_OF_LIST()
2125 static bool nvic_security_needed(void *opaque)
2127 NVICState *s = opaque;
2129 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2132 static int nvic_security_post_load(void *opaque, int version_id)
2134 NVICState *s = opaque;
2135 int i;
2137 /* Check for out of range priority settings */
2138 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2139 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2140 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2141 * if the CPU state has been migrated yet; a mismatch won't
2142 * cause the emulation to blow up, though.
2144 return 1;
2146 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2147 if (s->sec_vectors[i].prio & ~0xff) {
2148 return 1;
2151 return 0;
2154 static const VMStateDescription vmstate_nvic_security = {
2155 .name = "armv7m_nvic/m-security",
2156 .version_id = 1,
2157 .minimum_version_id = 1,
2158 .needed = nvic_security_needed,
2159 .post_load = &nvic_security_post_load,
2160 .fields = (VMStateField[]) {
2161 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2162 vmstate_VecInfo, VecInfo),
2163 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2164 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2165 VMSTATE_END_OF_LIST()
2169 static const VMStateDescription vmstate_nvic = {
2170 .name = "armv7m_nvic",
2171 .version_id = 4,
2172 .minimum_version_id = 4,
2173 .post_load = &nvic_post_load,
2174 .fields = (VMStateField[]) {
2175 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2176 vmstate_VecInfo, VecInfo),
2177 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2178 VMSTATE_END_OF_LIST()
2180 .subsections = (const VMStateDescription*[]) {
2181 &vmstate_nvic_security,
2182 NULL
2186 static Property props_nvic[] = {
2187 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2188 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2189 DEFINE_PROP_END_OF_LIST()
2192 static void armv7m_nvic_reset(DeviceState *dev)
2194 int resetprio;
2195 NVICState *s = NVIC(dev);
2197 memset(s->vectors, 0, sizeof(s->vectors));
2198 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2199 s->prigroup[M_REG_NS] = 0;
2200 s->prigroup[M_REG_S] = 0;
2202 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2203 /* MEM, BUS, and USAGE are enabled through
2204 * the System Handler Control register
2206 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2207 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2208 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2209 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2211 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2212 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2213 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2214 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2216 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2217 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2218 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2219 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2220 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2222 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2223 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2224 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2225 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2226 } else {
2227 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2230 /* Strictly speaking the reset handler should be enabled.
2231 * However, we don't simulate soft resets through the NVIC,
2232 * and the reset vector should never be pended.
2233 * So we leave it disabled to catch logic errors.
2236 s->exception_prio = NVIC_NOEXC_PRIO;
2237 s->vectpending = 0;
2238 s->vectpending_is_s_banked = false;
2239 s->vectpending_prio = NVIC_NOEXC_PRIO;
2241 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2242 memset(s->itns, 0, sizeof(s->itns));
2243 } else {
2244 /* This state is constant and not guest accessible in a non-security
2245 * NVIC; we set the bits to true to avoid having to do a feature
2246 * bit check in the NVIC enable/pend/etc register accessors.
2248 int i;
2250 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2251 s->itns[i] = true;
2256 static void nvic_systick_trigger(void *opaque, int n, int level)
2258 NVICState *s = opaque;
2260 if (level) {
2261 /* SysTick just asked us to pend its exception.
2262 * (This is different from an external interrupt line's
2263 * behaviour.)
2264 * n == 0 : NonSecure systick
2265 * n == 1 : Secure systick
2267 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2271 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2273 NVICState *s = NVIC(dev);
2274 Error *err = NULL;
2275 int regionlen;
2277 s->cpu = ARM_CPU(qemu_get_cpu(0));
2279 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2280 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2281 return;
2284 if (s->num_irq > NVIC_MAX_IRQ) {
2285 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2286 return;
2289 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2291 /* include space for internal exception vectors */
2292 s->num_irq += NVIC_FIRST_IRQ;
2294 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2296 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2297 "realized", &err);
2298 if (err != NULL) {
2299 error_propagate(errp, err);
2300 return;
2302 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2303 qdev_get_gpio_in_named(dev, "systick-trigger",
2304 M_REG_NS));
2306 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2307 /* We couldn't init the secure systick device in instance_init
2308 * as we didn't know then if the CPU had the security extensions;
2309 * so we have to do it here.
2311 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2312 TYPE_SYSTICK);
2313 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2315 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2316 "realized", &err);
2317 if (err != NULL) {
2318 error_propagate(errp, err);
2319 return;
2321 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2322 qdev_get_gpio_in_named(dev, "systick-trigger",
2323 M_REG_S));
2326 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2327 * and looks like this:
2328 * 0x004 - ICTR
2329 * 0x010 - 0xff - systick
2330 * 0x100..0x7ec - NVIC
2331 * 0x7f0..0xcff - Reserved
2332 * 0xd00..0xd3c - SCS registers
2333 * 0xd40..0xeff - Reserved or Not implemented
2334 * 0xf00 - STIR
2336 * Some registers within this space are banked between security states.
2337 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2338 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2339 * to the main SCS range, and non-secure accesses (including when
2340 * the security extension is not implemented) are RAZ/WI.
2341 * Note that both the main SCS range and the alias range are defined
2342 * to be exempt from memory attribution (R_BLJT) and so the memory
2343 * transaction attribute always matches the current CPU security
2344 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2345 * wrappers we change attrs.secure to indicate the NS access; so
2346 * generally code determining which banked register to use should
2347 * use attrs.secure; code determining actual behaviour of the system
2348 * should use env->v7m.secure.
2350 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2351 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2352 /* The system register region goes at the bottom of the priority
2353 * stack as it covers the whole page.
2355 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2356 "nvic_sysregs", 0x1000);
2357 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2359 memory_region_init_io(&s->systickmem, OBJECT(s),
2360 &nvic_systick_ops, s,
2361 "nvic_systick", 0xe0);
2363 memory_region_add_subregion_overlap(&s->container, 0x10,
2364 &s->systickmem, 1);
2366 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2367 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2368 &nvic_sysreg_ns_ops, &s->sysregmem,
2369 "nvic_sysregs_ns", 0x1000);
2370 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2371 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2372 &nvic_sysreg_ns_ops, &s->systickmem,
2373 "nvic_systick_ns", 0xe0);
2374 memory_region_add_subregion_overlap(&s->container, 0x20010,
2375 &s->systick_ns_mem, 1);
2378 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2381 static void armv7m_nvic_instance_init(Object *obj)
2383 /* We have a different default value for the num-irq property
2384 * than our superclass. This function runs after qdev init
2385 * has set the defaults from the Property array and before
2386 * any user-specified property setting, so just modify the
2387 * value in the GICState struct.
2389 DeviceState *dev = DEVICE(obj);
2390 NVICState *nvic = NVIC(obj);
2391 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2393 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2394 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2395 /* We can't initialize the secure systick here, as we don't know
2396 * yet if we need it.
2399 sysbus_init_irq(sbd, &nvic->excpout);
2400 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2401 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2402 M_REG_NUM_BANKS);
2403 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2406 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2408 DeviceClass *dc = DEVICE_CLASS(klass);
2410 dc->vmsd = &vmstate_nvic;
2411 dc->props = props_nvic;
2412 dc->reset = armv7m_nvic_reset;
2413 dc->realize = armv7m_nvic_realize;
2416 static const TypeInfo armv7m_nvic_info = {
2417 .name = TYPE_NVIC,
2418 .parent = TYPE_SYS_BUS_DEVICE,
2419 .instance_init = armv7m_nvic_instance_init,
2420 .instance_size = sizeof(NVICState),
2421 .class_init = armv7m_nvic_class_init,
2422 .class_size = sizeof(SysBusDeviceClass),
2425 static void armv7m_nvic_register_types(void)
2427 type_register_static(&armv7m_nvic_info);
2430 type_init(armv7m_nvic_register_types)