libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / hw / intc / gic_internal.h
blob8d29b40ca1012bf8b5a6b667bf8160b024d2c516
1 /*
2 * ARM GIC support - internal interfaces
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #ifndef QEMU_ARM_GIC_INTERNAL_H
22 #define QEMU_ARM_GIC_INTERNAL_H
24 #include "hw/registerfields.h"
25 #include "hw/intc/arm_gic.h"
27 #define ALL_CPU_MASK ((unsigned)(((1 << GIC_NCPU) - 1)))
29 #define GIC_DIST_SET_ENABLED(irq, cm) (s->irq_state[irq].enabled |= (cm))
30 #define GIC_DIST_CLEAR_ENABLED(irq, cm) (s->irq_state[irq].enabled &= ~(cm))
31 #define GIC_DIST_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
32 #define GIC_DIST_SET_PENDING(irq, cm) (s->irq_state[irq].pending |= (cm))
33 #define GIC_DIST_CLEAR_PENDING(irq, cm) (s->irq_state[irq].pending &= ~(cm))
34 #define GIC_DIST_SET_ACTIVE(irq, cm) (s->irq_state[irq].active |= (cm))
35 #define GIC_DIST_CLEAR_ACTIVE(irq, cm) (s->irq_state[irq].active &= ~(cm))
36 #define GIC_DIST_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
37 #define GIC_DIST_SET_MODEL(irq) (s->irq_state[irq].model = true)
38 #define GIC_DIST_CLEAR_MODEL(irq) (s->irq_state[irq].model = false)
39 #define GIC_DIST_TEST_MODEL(irq) (s->irq_state[irq].model)
40 #define GIC_DIST_SET_LEVEL(irq, cm) (s->irq_state[irq].level |= (cm))
41 #define GIC_DIST_CLEAR_LEVEL(irq, cm) (s->irq_state[irq].level &= ~(cm))
42 #define GIC_DIST_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
43 #define GIC_DIST_SET_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger = true)
44 #define GIC_DIST_CLEAR_EDGE_TRIGGER(irq) \
45 (s->irq_state[irq].edge_trigger = false)
46 #define GIC_DIST_TEST_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger)
47 #define GIC_DIST_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
48 s->priority1[irq][cpu] : \
49 s->priority2[(irq) - GIC_INTERNAL])
50 #define GIC_DIST_TARGET(irq) (s->irq_target[irq])
51 #define GIC_DIST_CLEAR_GROUP(irq, cm) (s->irq_state[irq].group &= ~(cm))
52 #define GIC_DIST_SET_GROUP(irq, cm) (s->irq_state[irq].group |= (cm))
53 #define GIC_DIST_TEST_GROUP(irq, cm) ((s->irq_state[irq].group & (cm)) != 0)
55 #define GICD_CTLR_EN_GRP0 (1U << 0)
56 #define GICD_CTLR_EN_GRP1 (1U << 1)
58 #define GICC_CTLR_EN_GRP0 (1U << 0)
59 #define GICC_CTLR_EN_GRP1 (1U << 1)
60 #define GICC_CTLR_ACK_CTL (1U << 2)
61 #define GICC_CTLR_FIQ_EN (1U << 3)
62 #define GICC_CTLR_CBPR (1U << 4) /* GICv1: SBPR */
63 #define GICC_CTLR_EOIMODE (1U << 9)
64 #define GICC_CTLR_EOIMODE_NS (1U << 10)
66 REG32(GICH_HCR, 0x0)
67 FIELD(GICH_HCR, EN, 0, 1)
68 FIELD(GICH_HCR, UIE, 1, 1)
69 FIELD(GICH_HCR, LRENPIE, 2, 1)
70 FIELD(GICH_HCR, NPIE, 3, 1)
71 FIELD(GICH_HCR, VGRP0EIE, 4, 1)
72 FIELD(GICH_HCR, VGRP0DIE, 5, 1)
73 FIELD(GICH_HCR, VGRP1EIE, 6, 1)
74 FIELD(GICH_HCR, VGRP1DIE, 7, 1)
75 FIELD(GICH_HCR, EOICount, 27, 5)
77 #define GICH_HCR_MASK \
78 (R_GICH_HCR_EN_MASK | R_GICH_HCR_UIE_MASK | \
79 R_GICH_HCR_LRENPIE_MASK | R_GICH_HCR_NPIE_MASK | \
80 R_GICH_HCR_VGRP0EIE_MASK | R_GICH_HCR_VGRP0DIE_MASK | \
81 R_GICH_HCR_VGRP1EIE_MASK | R_GICH_HCR_VGRP1DIE_MASK | \
82 R_GICH_HCR_EOICount_MASK)
84 REG32(GICH_VTR, 0x4)
85 FIELD(GICH_VTR, ListRegs, 0, 6)
86 FIELD(GICH_VTR, PREbits, 26, 3)
87 FIELD(GICH_VTR, PRIbits, 29, 3)
89 REG32(GICH_VMCR, 0x8)
90 FIELD(GICH_VMCR, VMCCtlr, 0, 10)
91 FIELD(GICH_VMCR, VMABP, 18, 3)
92 FIELD(GICH_VMCR, VMBP, 21, 3)
93 FIELD(GICH_VMCR, VMPriMask, 27, 5)
95 REG32(GICH_MISR, 0x10)
96 FIELD(GICH_MISR, EOI, 0, 1)
97 FIELD(GICH_MISR, U, 1, 1)
98 FIELD(GICH_MISR, LRENP, 2, 1)
99 FIELD(GICH_MISR, NP, 3, 1)
100 FIELD(GICH_MISR, VGrp0E, 4, 1)
101 FIELD(GICH_MISR, VGrp0D, 5, 1)
102 FIELD(GICH_MISR, VGrp1E, 6, 1)
103 FIELD(GICH_MISR, VGrp1D, 7, 1)
105 REG32(GICH_EISR0, 0x20)
106 REG32(GICH_EISR1, 0x24)
107 REG32(GICH_ELRSR0, 0x30)
108 REG32(GICH_ELRSR1, 0x34)
109 REG32(GICH_APR, 0xf0)
111 REG32(GICH_LR0, 0x100)
112 FIELD(GICH_LR0, VirtualID, 0, 10)
113 FIELD(GICH_LR0, PhysicalID, 10, 10)
114 FIELD(GICH_LR0, CPUID, 10, 3)
115 FIELD(GICH_LR0, EOI, 19, 1)
116 FIELD(GICH_LR0, Priority, 23, 5)
117 FIELD(GICH_LR0, State, 28, 2)
118 FIELD(GICH_LR0, Grp1, 30, 1)
119 FIELD(GICH_LR0, HW, 31, 1)
121 /* Last LR register */
122 REG32(GICH_LR63, 0x1fc)
124 #define GICH_LR_MASK \
125 (R_GICH_LR0_VirtualID_MASK | R_GICH_LR0_PhysicalID_MASK | \
126 R_GICH_LR0_CPUID_MASK | R_GICH_LR0_EOI_MASK | \
127 R_GICH_LR0_Priority_MASK | R_GICH_LR0_State_MASK | \
128 R_GICH_LR0_Grp1_MASK | R_GICH_LR0_HW_MASK)
130 #define GICH_LR_STATE_INVALID 0
131 #define GICH_LR_STATE_PENDING 1
132 #define GICH_LR_STATE_ACTIVE 2
133 #define GICH_LR_STATE_ACTIVE_PENDING 3
135 #define GICH_LR_VIRT_ID(entry) (FIELD_EX32(entry, GICH_LR0, VirtualID))
136 #define GICH_LR_PHYS_ID(entry) (FIELD_EX32(entry, GICH_LR0, PhysicalID))
137 #define GICH_LR_CPUID(entry) (FIELD_EX32(entry, GICH_LR0, CPUID))
138 #define GICH_LR_EOI(entry) (FIELD_EX32(entry, GICH_LR0, EOI))
139 #define GICH_LR_PRIORITY(entry) (FIELD_EX32(entry, GICH_LR0, Priority) << 3)
140 #define GICH_LR_STATE(entry) (FIELD_EX32(entry, GICH_LR0, State))
141 #define GICH_LR_GROUP(entry) (FIELD_EX32(entry, GICH_LR0, Grp1))
142 #define GICH_LR_HW(entry) (FIELD_EX32(entry, GICH_LR0, HW))
144 #define GICH_LR_CLEAR_PENDING(entry) \
145 ((entry) &= ~(GICH_LR_STATE_PENDING << R_GICH_LR0_State_SHIFT))
146 #define GICH_LR_SET_ACTIVE(entry) \
147 ((entry) |= (GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
148 #define GICH_LR_CLEAR_ACTIVE(entry) \
149 ((entry) &= ~(GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
151 /* Valid bits for GICC_CTLR for GICv1, v1 with security extensions,
152 * GICv2 and GICv2 with security extensions:
154 #define GICC_CTLR_V1_MASK 0x1
155 #define GICC_CTLR_V1_S_MASK 0x1f
156 #define GICC_CTLR_V2_MASK 0x21f
157 #define GICC_CTLR_V2_S_MASK 0x61f
159 /* The special cases for the revision property: */
160 #define REV_11MPCORE 0
162 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs);
163 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
164 MemTxAttrs attrs);
166 static inline bool gic_test_pending(GICState *s, int irq, int cm)
168 if (s->revision == REV_11MPCORE) {
169 return s->irq_state[irq].pending & cm;
170 } else {
171 /* Edge-triggered interrupts are marked pending on a rising edge, but
172 * level-triggered interrupts are either considered pending when the
173 * level is active or if software has explicitly written to
174 * GICD_ISPENDR to set the state pending.
176 return (s->irq_state[irq].pending & cm) ||
177 (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_LEVEL(irq, cm));
181 static inline bool gic_is_vcpu(int cpu)
183 return cpu >= GIC_NCPU;
186 static inline int gic_get_vcpu_real_id(int cpu)
188 return (cpu >= GIC_NCPU) ? (cpu - GIC_NCPU) : cpu;
191 /* Return true if the given vIRQ state exists in a LR and is either active or
192 * pending and active.
194 * This function is used to check that a guest's `end of interrupt' or
195 * `interrupts deactivation' request is valid, and matches with a LR of an
196 * already acknowledged vIRQ (i.e. has the active bit set in its state).
198 static inline bool gic_virq_is_valid(GICState *s, int irq, int vcpu)
200 int cpu = gic_get_vcpu_real_id(vcpu);
201 int lr_idx;
203 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
204 uint32_t *entry = &s->h_lr[lr_idx][cpu];
206 if ((GICH_LR_VIRT_ID(*entry) == irq) &&
207 (GICH_LR_STATE(*entry) & GICH_LR_STATE_ACTIVE)) {
208 return true;
212 return false;
215 /* Return a pointer on the LR entry matching the given vIRQ.
217 * This function is used to retrieve an LR for which we know for sure that the
218 * corresponding vIRQ exists in the current context (i.e. its current state is
219 * not `invalid'):
220 * - Either the corresponding vIRQ has been validated with gic_virq_is_valid()
221 * so it is `active' or `active and pending',
222 * - Or it was pending and has been selected by gic_get_best_virq(). It is now
223 * `pending', `active' or `active and pending', depending on what the guest
224 * already did with this vIRQ.
226 * Having multiple LRs with the same VirtualID leads to UNPREDICTABLE
227 * behaviour in the GIC. We choose to return the first one that matches.
229 static inline uint32_t *gic_get_lr_entry(GICState *s, int irq, int vcpu)
231 int cpu = gic_get_vcpu_real_id(vcpu);
232 int lr_idx;
234 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
235 uint32_t *entry = &s->h_lr[lr_idx][cpu];
237 if ((GICH_LR_VIRT_ID(*entry) == irq) &&
238 (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID)) {
239 return entry;
243 g_assert_not_reached();
246 static inline bool gic_test_group(GICState *s, int irq, int cpu)
248 if (gic_is_vcpu(cpu)) {
249 uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
250 return GICH_LR_GROUP(*entry);
251 } else {
252 return GIC_DIST_TEST_GROUP(irq, 1 << cpu);
256 static inline void gic_clear_pending(GICState *s, int irq, int cpu)
258 if (gic_is_vcpu(cpu)) {
259 uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
260 GICH_LR_CLEAR_PENDING(*entry);
261 } else {
262 /* Clear pending state for both level and edge triggered
263 * interrupts. (level triggered interrupts with an active line
264 * remain pending, see gic_test_pending)
266 GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
267 : (1 << cpu));
271 static inline void gic_set_active(GICState *s, int irq, int cpu)
273 if (gic_is_vcpu(cpu)) {
274 uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
275 GICH_LR_SET_ACTIVE(*entry);
276 } else {
277 GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
281 static inline void gic_clear_active(GICState *s, int irq, int cpu)
283 if (gic_is_vcpu(cpu)) {
284 uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
285 GICH_LR_CLEAR_ACTIVE(*entry);
287 if (GICH_LR_HW(*entry)) {
288 /* Hardware interrupt. We must forward the deactivation request to
289 * the distributor.
291 int phys_irq = GICH_LR_PHYS_ID(*entry);
292 int rcpu = gic_get_vcpu_real_id(cpu);
294 if (phys_irq < GIC_NR_SGIS || phys_irq >= GIC_MAXIRQ) {
295 /* UNPREDICTABLE behaviour, we choose to ignore the request */
296 return;
299 /* This is equivalent to a NS write to DIR on the physical CPU
300 * interface. Hence group0 interrupt deactivation is ignored if
301 * the GIC is secure.
303 if (!s->security_extn || GIC_DIST_TEST_GROUP(phys_irq, 1 << rcpu)) {
304 GIC_DIST_CLEAR_ACTIVE(phys_irq, 1 << rcpu);
307 } else {
308 GIC_DIST_CLEAR_ACTIVE(irq, 1 << cpu);
312 static inline int gic_get_priority(GICState *s, int irq, int cpu)
314 if (gic_is_vcpu(cpu)) {
315 uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
316 return GICH_LR_PRIORITY(*entry);
317 } else {
318 return GIC_DIST_GET_PRIORITY(irq, cpu);
322 #endif /* QEMU_ARM_GIC_INTERNAL_H */